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REGULAR GROWTH OF SUBHARMONIC FUNCTIONS
OF SEVERAL VARIABLES

Yang XING*

0. Introduction.

In this paper we shall study the growth characteristics of subharmonic functions
in R™ and the continuity of their indicator functions. We shall denote by
SH?"Y(R™) the family of subharmonic functions u in R™ which are of finite order
p > 0 and of normal type with respect to the proximate order p(r). So there exist
constants A, and A, depending on u such that u(x) < Ay + A, |x]?"*" for all
xeR™, where the non-negative function p(r) is defined for reR* such that
p(r) » p and p'(r)rlogr -0 as r - co. For such a function u, the indicator
function h} of u is defined as

u(rx)

h¥(x) = lim sup lim sup u,(x’), where u(x) = e

x'x r—ow
This indicator function is positively homogeneous of degree p and subharmonic.
Thus its Laplacian 4k}, in the sense of distributions, is a positive measure.

In view of subharmonicity there exist several equivalent convergences of the
sequence u,. In section 1 we prove that u, converges in L (R™) to h* if and only if
Au, converges as a distribution to 4k in R™. In contrast to the case m = 2, the
indicator h} may not be continuous for general m. In section 2 we prove that the
uniformly bounded masses of the Laplacians Au, on any compact subset imply
continuity of the indicator function. This result improves earlier work by Gru-
man and Berndtsson, see [9] and [7]. We also get a characteristic of functions of
regular growth with continuous indicators. Finally in section 3 we present some
related facts in terms of the limit sets introduced by Azarin in the paper [6].
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1. Subharmonic Functions of Regular Growth in R™.

Following [ 14] we let I/(x, §) denote the integral averages of the functions u, over
the ball in R™ with center x and radius .

DeFINITION 1.1. Given a function u e SH?®™(R™), we say u is of regular growth
(RG) in the direction of xe R™ if x¢ E, = {x; h*(x) = — o0} and

lim inf lim inf I7(x, §) = h}(x).
-0 r—ow
The function u is said to be of regular growth in a subset K = R™ if u is of regular
growth in the direction of every x e K\E, and K ¢ E,.

The RG functions was first studied by Levin and Pfluger in a different way, see
[15]. The Levin-Pfluger theory of entire functions of one complex variable with
completely regular growth plays an important role for the study of entire and
meromorphic functions of finite order. This theory establishes a relationship
between the distribution of zero set of an entire function and its asymptotic
growth, and in 1962 it was extended by Azarin, see [2]-[5], to subharmonic
functions in R™. Recall that a set E c R™ is called a C}-set if every subset
E n{|x| < R} can be covered by balls with centers in {|x| < R} whose radii r;(R)
satisfy

lim !
R— o Ra

YriR) =0,

see [6]. Azarin introduced the following

DEFINITION 1.2. A function ue SH?®(R™) is said to be of completely regular
growth (CRG) in R™ if there exists a C? ™ !-set E such that

lim sup |u.(x) — B¥(x)| =0.
r—o |x|=1,rx¢E
We know now that the two definitions above coincide. In fact, in view of
subharmonicity, the functions of regular growth can be characterized in several
different ways.

THEOREM 1.3. For ue SHP"”(R™), the following statements are equivalent:
(1) uisRGin R™.

(2) uis CRG in R™.

(3) u, converges as a distribution to h¥ in R™.

(4) u, converges to h¥ in L} .(R™).

(5) k¥, = h* + k* for all ve SHPO(R™)

(1) <> (4) was proved by Gruman, see [14, Theorem 4.7], and (2) <> (5) was
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given by Favarov, see [8]. (2) < (3) can be founded in [1], and (3) <> (4) is a basic
fact for subharmonic functions, see [11, Theorem 4.1.9].

Theorem 1.3 implies that if u is a RG function then 4u, converges as a distribu-
tion to 4h¥. On the other hand, we know that for a function u of integral order
p, 4u, —» Ah} implies the regularity of growth of u. This follows directly from
results of Gruman or Azarin, see [14, Theorems 4.15 and 4.16] and [5] respec-
tively. But the corresponding assertion for integer p seems to be unknown even
for m = 2. We shall now prove that the assertion holds for any p. Let B(x,,r) be
the open ball in R™ with center at x, and radius r, and let I'® be the right circular
cone with vertex at the origin, w as axis and angular opening ¢. We shall denote
by u(E) the mass of a positive measure y on a subset E = R™. Our result is

THEOREM 1.4. Let ue SH?”(R™). Then uis RG in R™ if and only iffor any w % 0
one has

Au(BO,") N T?)

rp(r) +m-2

lim

r—o

= 4h¥(B(0,1) N IY),

except perhaps for a countable set of ¢ depending on .

As an application of Theorem 1.4, we get that u, converges to k¥ in Lj,.(R™) if
and only if Au, converges as a distribution to 4k} in R™.
To prove Theorem 1.4 we need two simple lemmas.

LemMa 1.5. Let ue SH?™(R™) and let K be a compact subset in R™. Then

lim j(u,(x) — h¥*(x))dx =0 ifand onlyif lim jlu,(x) — h¥(x)|dx = 0.

r—o re o,

Proor. The “if” part is trivial. For “only if”, we introduce the notation

1
Ix(x, 5)‘—“1—57 j h¥(y)dy,

ly—x|<é

where 1, is the volume of the unit ball in R™. Let us write

f h¥(x)dx — Iu,(x) dx = f[h,’,"(x) — I#(x,0)] dx

K

J[I,,'(x d) — u, x)] = C,; + Dy.

For any &>0 we choose 00>0 such that IC,,0|<s‘ But
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lim sup, . , 4,(x) < h¥(x) < Iy2(x, 60) in K. So it follows from the Hartogs lemma,

see [14, Corollary 1.32] that there exists a constant R, > 0 such that
u,(x) £ Ly(x,60) + € for all r > R, and all x € K. Hence, for such r we have

D;, = f|1h:(x, do) + & — u(x)|dx — efdx
K

K

Z flhif(X) — u,(x)|dx — f iy (x, 00) — hii(x)] dx — 2¢ fdx
K K

K

= th},“(x) —u(x)|dx — e — 2¢ J dx.

K

Therefore, for r large enough

K

th;' () — u(x) dx = f[h:(x) — u,(x)]dx + 2¢ + 2¢ jdx.
X X

This implies that u, converges to h* in L'(K), if the first integral on the right-hand
side converges to zero, and hence Lemma 1.5 follows.

A useful consequence of Lemma 1.5, which follows by the positive homogene-
ity, is the following

LemMMA 1.6. A function u is RG in R™ if and only if there exists a shell
= {xeR™ d, < |x| < &,} such that

J' u,(x)dx — jh,’f(x) dx, as r-— oo.
D D

PrOOF OF THEOREM 1.4. The “only if” part is a consequence of Theorem 1.3
because the Laplacian operator 4 is continuous in the distribution space and
takes all subharmonic functions to positive measures. For “if” part, the generaliz-
ed Jensen formula says that for every subharmonic function f and any constants
81 > J; > 0 the following equality holds:

f f(x)do(x) — f f(x)do(x) = f 2 fsﬁ(ol 5»

Ix| =61 |x| =82 82

where do is the Lebesgue measure of the unit sphere in R™.
Hence for r > 2 we have
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W= 1= 6 [ oo

1

<|x|<1 =1
1 o1
- faq"‘ s, f 2509 45
3 1
and '
1 a9y
h¥(x)dx = f5'{"1 dé, J‘%@ld&
p<ixi<1 } o
But

rml j u,(x) do(x) = r~*® f u(x)do(x) >0, as r— oo,
Ixl=% Ixl=1

so by Lemma 1.6 we only need to show

1 91 1 &1
*
[orras, [ 220D g5 [ir-1as, [AEECD
E 1 % 0

In view of the Lebesgue dominated convergence theorem, it suffices to verify that
(i) for any 6€(0,d,) we have

Xr,3, (0) 1
6m—1 5m—1

where y, 5, denotes the characteristic function of the interval [+,4,], and
(ii) thereexists a constant C > Osuch that forall din (0, §,) and r large enough,

Au,(B(0, 8)) — Ah*(B(0,8)), as r—» oo,

-———"g;,"_(f) Au,(B(0, )| < C85~ .
To prove assertion (i) we can assume, without loss of generality, that 6 = 1 and
Xr,5,(0) = 1. Let wy and wg be the north and south pole, respectively in the unit
ball B(0, 1). By the assumption in the theorem we can define an increasing
function Fy(¢) in (0,7), such that Fy(¢) = lim,_,, 4u,(I's, N B(0, 1)) holds for
almost every ¢ in (0, n). So for almost every ¢ in (0, 7) and small y > 0,

lim sup 4u, (3%, N B(0,1)\{0})

r—+o

< limsup(4u(I'4 ¥ n B(0, 1)) — Au, (TS, 0 B0, 1))) = Fu(¢ + ¥) — Fu(9).

r—oo
1
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The last difference converges to zero almost everywhere as ¥ | 0 because an
increasing function is continuous almost everywhere. Hence we get that for
almost every ¢ in (0, )

lim 4u,(0I'? ~ B(0,1)\{0}) = 0.

Similarly, for almost every ¢ in (0, ) we have
AR¥@T%, B0, I\{0}) = 0.

Therefore, there exists /2 < ¢, < = satisfying the following conditions:

(@ lim 4u,(I'%2, N B(0, )D\{0}) = Ah}(@I%3 n B(O, D\{0}) = 0;
(b) lim Au,(I'%S, A B0, 1)) = Ah*(I'%2 ~ B(O, 1);
© lim Au,(I';%° ~ B(0, 1)) = Ak*(I'%%° ~ B(0, 1)).

But 4h¥({0}) = 0 and

1 1
Au,({0}) < Au, (B (0,-;)) = ;p(—,);-m—_z—Au(B(O, 1)-»0, as r— oo.

These facts, together with (a), (b) and (c), imply that
lim 4u,(B(O, 1)) = lim 4u,(B(O, D\{0}) = 4R¥(B(O, I\{0}) = 4h}(B(0, 1)),

r—+ o r—* o
and assertion (i) follows.
Assertion (ii) is the consequence of assertion (i). In fact, for any o € (0, §,) we have

Xr,s 1 (5)

Xr,5,(9)
2257 Au,(B(0,8)) = S ipmimZ

sm1 Au(B(0, dr))

(6r)Pen- £

-5

= 08711,5,0) Auy(B(0,1)) - 6°~ ' AhE(B(0, 1),

as r — c0. On the other hand, by the definition of the proximate order p(r), we
have

%(r""’“%) =41 (rp’(r) logr + p(r) — —’2’—> >0

for r large enough. So 0% is an increasing function for such r. Hence there
exists a constant R > 0 such that for r > R



REGULAR GROWTH OF SUBHARMONIC FUNCTIONS OF SEVERAL VARIABLES 235

Xr, o 1(5)

6m—1

Au,(B(0,6)) < 62~ 1(Ah*(B(0, 1)) + 1).

Butfor0<dér<R
Xr.5,(0)

5m—1

Au(B(0, 8)) < 571 4u(B(0, R)).

So there exists C > 0 such that for all § (0, é,) and sufficiently large r,

——X(;’,,‘,"_(‘f) Au(B(O, )| < Co% 1.

This is assertion (ii). Hence the proof of Theorem 1.4 is complete.

2. Continuity of Indicator Functions in R™.

In this section we shall discuss regions in which the mass of the Laplacian of
a function is small. For an open connected subset D on the unit sphere, we define
acone K, by K, = {xeR™; x/|x| € D}. In the case m = 2, an indicator function
h¥ is continuous, see [15, p. 54]. However, the corresponding assertion for
general m is not true. The first counterexample was given by Lelong in [13].
Nevertheless, Gruman and Berndtsson have proved the following sufficient
condition for continuity of the indicator functions, see [7], [9] and also [10].

THEOREM 2.1. Let u € SH?®(R™) and let K, be a cone in R™ such that for any
DccD
Au(B(O,r)nKp)

rp(r) +m-2

lim 0.

r—o

Then h¥* is continuous in K, and there exist constants Cp. such that
¥ (x1) — BF(x2)l < CprIxy — X2
forall x,,x,eD'.

It is clear that the density assumption in Theorem 2.1 is equivalent to the
following: For any D' = < D and any x € K- one has
Au(B(rx,r)n Kp)

rp(r) +m-2

0.

lim sup

r— oo
In the following theorem we relax this condition.

THEOREM 2.2. Let ue SH?”(R™) and let K , be a cone in R™. Iffor any D' = = D
there exists a constant Cp, such.that
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Au(B(rx,r) n Kp)

rp(r) +m-2

lim sup £ Cp forall xeKp,

r—+o

then h} is continuous in K p. Furthermore, there exist constants By such that

Ixy — x,1°, f p<t;

[h¥(x1) — B¥(x2)l < Bp  |xy — xallog———, if p=1;
Ix1 — X,

'xl - XZL if p > 1

forall x{, x,eD’.

PrOOF OF THEOREM 2.2. Given D’ = < D in the unit sphere, we take subdo-
mains G’ and G in R™ such that

D cG ccGccecKpnB(0,2).

Since h¥ = lim sup, ., , 4, holds for almost all x € G, it follows by the method of
integral average used in [7] that it is enough to show the estimates

Ixy — x,/%, if p<lj

B2 — G S C Ixy — xallog——,  if p=1;
X1 — X,

|x1 - X2|, if p > 1
for such values of x; and x,. (In this proof we let C denote a generic constant
which does not depend on the points x; and x,.) Without loss of generality, we
can suppose that h¥(x,) > h¥(x,) > — o0, since the indicator function is not
identically equal to — oco. We can therefore, by the Fatou lemma, find a positive

constant ¢ depending on x, and |x, — x,| such that 46 < |x; — x,| and

lim sup

r— o

- J u,(x)dx = h¥(x3) + |xq — x|
Ty

|x —x2| <o

On the other hand, for such é we have

lim sup > u(x)dx = lim sup u,(x,) = h¥(x,).
r-*ao m Ix_xl|<d r—ow

Using the general fact lim sup 4, — lim sup B, < lim sup(4, — B,), we thus get

0 < h¥(xy) — h¥(x;) < |x; — x3| + lim sup

r—>o

j lu,(x1 + X)

Ix| <

1
TpO™
— u,(x, + x)| dx.

By the Riesz theorem there exist harmonic functions &, in G such that
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1 1
u(x) = — ZJW: Au,(y) + &,(x) forall xeG,
G

where 6, = (m — 2)mt,,form > 2,and 6, = 2x,see [16, Theorem 1.2.1']. Clearly,
the family {®,} has a uniform upper bound on any compact set in G. Moreover,
foranyéo >1landr>1

1 1 1
P = > —
- J H(x)dx 2 o J u(x)dx 2 -~ j (up(x) — Co)dx
GnB(0,9) GnB(0,9) B(0,3)
1
2 o) J u(x)dx — Co—» —Co, as r— .

B0 T)

Here the constant Co > 0is a common upper bound of u, in B(0, d)for allr > 1.1t
follows from Theorem 4.1.9 in [11] that {®,} forms a normal family in G. So for
any r > 1 and small |x; — x,| we have

1
Tpo™

j 1D,(x1 + x) = B(x2 + x)|dx = Clx; — X,|.
|x|<é

Applying the triangle inequality and changing the order of integration, we find
that h¥(x,) — h¥*(x,) can be estimated by

C
Clx; — x,| + limsupa—m ~rAu,(y) J

r—o
yeG |x| <&

1 1

— —-| dx.
Xy +x—y" 2 |xg+x—y"?

To study this upper limit we first observe that it is majorized by the sum

Ay + Ay + A + Ay + AT + A5 + A7,

where
C 1
L < S S— IV
4; hlisfp > J Au,(y) J o x 2
yeG |x] <8
ly—x;1 <28
C 1
"= i —dx,
A lu’rﬁlp " f du,(y) J Nt X % — 2
Ix|<é

yeG
2|y —xjl <lx1—x2|
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" __ 1 C 1
A} = lim sup o J du,(y) j b+ x— 2 dx,

r—o
yeG Ix|<é
402 2|y—x4l <|x1 —x2]

C
" 2
A" =lim supé—m Au,(y)
r— o
yeG |x|<é
2|y —x1] 2 |x1 —x2|
2|y —x2| 2 |x1 —x2|

1 1 ldx
o +x—y""2  Ixg+x—ym |

We estimate these seven upper limits separately. First we have

. C 1
Aléhmsup-ag j Au,(y) ‘[ITJI;—_—Z—dw

r— o
yeG lw] <368
ly—x1]1<28

Au(B(rxy,26r) n G)

< C6* ™limsup I Au,(y) = C52~™lim sup

pr)+m—2
r-ow r

r-—o

yeG
ly—x11<2é

Au(B (r%, r) N G)
§ Clim sup 2p(2dr) +m- 269(26r)rp(26r) =p(r) im sup rl’(') Ea—

r—+o r—oo
S G £ Clxy — x,f,
and similarly
Ay = Clxy — x,/°.

Next, it follows from 4 < |x; — x,| that

4 m—2
A} £ lim sup£ Au(y) —_ dx
row OO Ix1 — x|

yeG |x|<d
2]y x| <|xy —x2|

= Climsup |x; — x> ™" J Au,(y) £ Clx; — x5/,

r—= o

yeG
2|y =x1| <|x1—x2]
and similarly

A'2§C]x1 —X2p.
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To handle A7 we choose an integer K, such that K;log2 = log(jx; — x,|/49).
We then get

. 1
1 < Climsup I —Au,
' Ix; — ™2 )

r—+o
yeG
4652y —x1|<|xy —x3|
Ks
< Climsup ),

J‘ ok+1 m-2
E— Au,
roo k=1 (le —x2|> )

yeG
|21 —x2| S 2K+ 1y — x| <2|xy — x|

K» Qk+1 m—2 Au<B<rx1,|—x—l—§;—)fAr)mG)
=C <————> lim sup

k=1 \1x1 — X3 reo pptm=2
X ox, — x,
1 2
s Ckzl Skp S Clxy — x,/%,

and similarly
2 = Clxy — x,f”.

Now, using the inequality |} ™™ — a2 ™™ < (m — 2)|o; — op| (0; ™™ + a3 ~™) for
positive numbers a; and «,, we can estimate A” by

lim sup Cha x| J Au,(y) J‘

r—o 5”‘
yeG |x|<é
2|y—n élxn—le
2|ly—x2|2|x1—x2
1 1
X — + — )dx
<|x2+x—yl"' P A x =" ‘)
< Clyy — ol f L du0)
< Clx; — x,|limsup —— 4u,l
! 2 r—o le_y'm !

yeG
2|y —x1]2lx1 —x2|

1
——— du,(y).
x; — )

+ C|x; — x,|lim sup j |

r— oo
yeG
2|y —x2| 2 |x1—x2|
By symmetry we only need to estimate the first of these two limits. Let K be the
least integer such that K |x; — x,| = 4. Splitting the domain of integration into
S;US,...USk_;, where S,=Gn{y, klx;—x] £2ly—xi<k+1)
Ix; — x,|}, we can majorize it by a sum
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K-1

I 1
Clx; — x> ™lim Y Fjdu,(y).

r-wo k=1
Sk

Write T, = S, U S,... U S;. Application of the Abel transformation, see [18, p.
3], then yields that this sum is estimated by

K-2 1 1
_ 2—m1~ _
Clry = x;"mlimsup 3 (k'"“ *k+ 1)"'*‘” Al

Ti

+Clxy — x2|2—mlimsup—(—lz—_-lle_—l—- f Au(y)

r—w Y,

k-2 1 Clx; —x)2™™
< Clxe — xa2°™ S i 4 Clxi = %"
< Clxy — x5 k;k'"“,ri?pj w0) + — =i

Tx

K-2 1

SClxy —x 2™ Y ”k;,‘((k + 1)x; — x5 ™72 + Clxy — x;

Xy — x,7, if p<l;
£C — X|log——, f p=1;
S Cyba—xllog——, il p=1;

le—"le, 1fp>1.

Hence the proof of Theorem 2.2 is complete.

Now we shall show that there exists a subharmonic function with our condi-
tionin Theorem 2.2, but not the condition in Theorem 2.1. We need the following
two lemmas.

LemMA 2.3. Let ue SH?™(R™) be RG in R™ and let Ah* be a continuous function
in R™\{0}. Then there exists a constant C such that
Au(B(rx,r))

Snimez = ChP™? for x| 21

lim sup

In particular, for 0 < p < 2 the above left-hand side must be bounded.
This lemma follows by the straight forward computation.

LemMma 2.4. [17, Theorem 1.3.1]. For any plurisubharmonic function g in
C" = R2"which is at most of normal type with respect to the order p, there exists an
entire function f satisfying the condition
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grx) _ loglf(rx)
r° rf

0, as r—- o

in LL (R?").
ExaMPLE 2.5. By Lemma 2.4 there exists an entire function f of normal type
with respect to the order p(r) = 1 such that

loglfel | 0 o v
r 3

u(x) =
in L (R?*). So h*(x) = |x|, and by Theorem 1.3 we see that the function
u = log|f] is RG in R?". It then follows from Lemma 2.3 that there exists
a constant C > 0 such that

Au(B
lim sup%‘2 £ C forany xeR?",
That is, the condition in Theorem 2.2 holds. But, since h}¥(x) = |x| is not plurihar-
monic in R?"\{0}, it follows from Corollary 4.12 in [14] that

lim sup %ﬂl > 0.

r—w
Finally for RG functions we get one characteristic of continuous indicators.

THEOREM 2.6. Let ue SH?®™(R™) be RG in the cone K . Then h is continuous in
K if and only if the equality

o1 Au(B (r%,r))
Jé"'l lim ————=———%%dé|=0

lim sup pCETE)

810 xeD’ r— oo

0

holds for any D' = = D.

ProOF. We first show the sufficiency. Given D' < < D, by the generalized
Jensen formula, we obtain that

2a 2b 1
m - m— Au,(B(x,9))
e |10 o1 [ 2426
a b 82
S — dy— — f u(y)d
S 2 = Dan w0y = G e ey
asly—x|S2a bs|y—-x|sS2b

forany x € D’ and small constantsa > 2b > 0. Since the function uis RG in K p, u,

1
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converges to kY in the distribution sense, and hence the limit lim, _, ,, 4u,(B(x, §))
exists for almost all §. Letting r - co in the above equality, and using the
Lebesgue dominated convergence theorem, we have

1 1
_ * .t *
@™ = 1)a™ J h¥(y)dy @™ — 1)b" J hE(y) dyl
as|y-x|<2a bs|y—-x|=2b
2a 2a
1 m 1 (.. (6r)"® Au(B(rx,or))
S j o' rh:?o Au,(B(x,0))dd = — }112 570 (Grpen a2 dé

b

{ 2a Au(B(r%,r))
= —J‘é"_’ Iim —————2% 6.
m

pr)+m—2
r— o r

b

Since A} is subharmonic, we get, letting b — 0, that

N
(2" — 1)a"

j hi(y)dy — hi(x)

agly-x|<2a

1 2a Au(B(r—;i,r))
< —sup jﬁ”"‘ lim —>-——22.(§

= ppr)+m-2

MTyy xeD’
V]

r—ow

for any xeD'. It then follows from the assumption that the integral in the
absolute value sign converges to h}¥ uniformly in D’ as a — 0. But this integral is
a continuous function of x, it follows that A} is itself continuous in D', and hence
in D. By the positive homogeneity the continuity holds in the cone K.

For the necessity we also start from the first equality in the proof, and similar to
the above proof, we can get that for any D' < = D

{ 4 Au(B(r%,r))
——sup jé"" lim ——>——-22 (4§

MTpy xep r-+o rp(r)+m—2
(V]
1
<sup|——— h*(y)dy — h¥
= e e j F0Ydy =

as|y—-x|<2a

< sup sup|hi(x + y) — hi(x).

|yl < 2a xeD’

The required result then follows from the uniform continuity of h¥.
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3. Final Remarks on Limit Sets.

In [6] Azarin generalized the concept of indicator functions, and first studied the
limit sets for subharmonic functions of proximate order p(r)in R™. For a function
ue SHP"(R™), the limit set L(u) consists of all subharmoonic functions which are
limits in Ll (R™) of subsequences u,,— o0, as r; - . For the corresponding
positive measure Au, the limit set L(4u) is defined as the set of all measures in R™
which are limits, in the distribution sense, of subsequences Au, 88 T —> 00, The
structure of limit sets has been completely described by Hormander and Sigur-
dssonin [12]. In view of Theorem 1.3 we have that a function uis RG in R™if and
only if the limit set L(u) only contains the indicator function kY. Therefore, if u is
a RG function then L(4u) is a singleton. Azarin has proved the converse implica-
tion for non-integer order p and a weak result for integer p, see [6]. Our theorem
1.4implies now that uis a RG function in R™ if and only if L(4u) only contains the
one element Ah¥.

It is also clear that the relation L(u + v) = L(u) + L(v) holds for all
ve SHP®(R™), if uis a RG function. In fact, by a slight modification of the proof of
Theorem S in [8], we have the converse assertion.

THEOREM 3.1. Let ue SH?®(R™). Then u is RG in R™ if and only if the equality
L(u + v) = L(u) + L(v)
holds for any ve SH?"(R™).

We know that an indicator function in RZ must be locally bounded. But it is
easy to find a limit set in which there exists a subharmonic function with
non-empty polar set. Moreover, the following example gives a limit set with
functions which are finite everywhere, but not locally bounded. Let p(r) = 1/2
and M = {g,(rx)/r¥;r > 0} U {0}, where

> lo X, —k P 42+ .. +x5 +e ) —logk™t +e7Y)
go(x) = Z g(\/( 1 ) 2 . 2 '

k=1

Choose a constant C such that go(x) < C|x|* for all xe R*". It is clear that M is
a compact set of plurisubharmonic functions g in R?", such that g(0) =0,
g(x) £ C|x|* and g(r,x)/r} € M for all r, > 0. By Theorem 1.2.1 in [17] we know
that M is a subset of some limit set. Hence this limit set contains functions which
are finite everywhere, but not locally bounded. Now our results are

THEOREM 3.2. Let ue SH?™(R™). Then we have
(1) L(u) consists of functions with finite values at the point xo € R™ if and only if
the inequality
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1

f——————“ u;f,,x_"; N 45 < w
[4]

holds for any pe L(Au).
(2) L(u) consists of locally bounded functions if and only if the function

1

B(x, 6
Fy(x) = Jﬁ%ﬁl do
o
is locally bounded for each ue L{Au).
(3) L(u) consists of continuous functions in the domain D < < R™ if and only if

.0
lim sup J”—(?;f’f—’fmda =0
310 xeD

0

for all pe L{4u).
(4) L(u) consists of harmonic functions if and only if L(Au) is a singleton with the
measure identically zero as element.

The proof of Theorem 3.2 is essentially the same as the proofs given before and
is therefore omitted.
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