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DAMPING OSCILLATORY INTEGRALS
WITH POLYNOMIAL PHASE

DAVID MCMICHAEL

1. Introduction.

Let 2y denote the space of real valued polynomials on R of degree at most N.
Oberlin [O2] has proved the following two theorems.

THEOREM 1. Given a positive integer N, there exists a constant Cy such that if j is
a positive integer, then

<Cy ifpePyanda <b.

b
I eip(x)' pw(x)l igyx
a

THEOREM 2. Given a positive integer N, there exists a constant Cy such that if
j=1or2,then

S Cy(1 + 5D ifpePy,a < b, and seR.

b
f ei”‘x)]p(i)(x)| Vj+is gy
a

Oberlin also conjectured that Theorem 2 holds when j is any positive integer. In
this paper we show that the conjecture is correct. In fact, we prove the following
result which generalizes both Theorem 1 and Theorem 2.

THEOREM 3. Given a positive integer N, there exists a constant Cy such that if
1. .., 0y are nonnegative real numbers with Y Y_, jou; = 1, then

b N
f e‘*"*’( [T 190G *dx| < Cu(1 + )"

a Jj=1
ifpePy,a <b,and seR, where o = Y |- ;.

As an application of Theorem 3, we obtain sharp I? — I¥" estimates for singular
convolution operators of the form
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Tf(x) = flf(x —y(@®)dt, xeR",
0

where 7y is the curve y(t) = (t,t%,...,t"), teR, n2=2.
THEOREM 4. Let T be the operator defined above. Then there is a positive

2n 1
constant C such that | Tf || .o £ C| s if and only if ———-—QLLL

p<2.
n”4+n+27=

Notice that Theorems 1-3 may be interpreted as decay estimates for oscilla-
tory integrals. For example, Theorem 2 shows that

b
J PP p" ()12 B dxf < Cy(1 + )2 141712
is satisfied uniformly for all polynomials of degree at most N. In their work on
regularity for dispersive equations, Kenig, Ponce, and Vega [KPV] have proved
a similar result which holds for a larger class of phase functions, but for which the
constant is not uniform over #y. The interested reader should also consult the
papers [CDMM, O1, S2] for further results on oscillatory integrals and singular
convolution operators.

The author would like to thank Dan Oberlin for several helpful comments and
suggestions. It should be noted that the outline of the proof of Theorem 3 is
essentially the same as that of Theorem 2 in [O2]. For completeness, we repeat
the proofs of the results from [O2] that we need.

2. Lemma A.

The key step in the proof of Theorem 3 is establishing Lemma A, which general-
izes alemma appearing in [O2]. The proof of the lemma proceeds via three steps.
The first and third steps are as in [O2], while the second step generalizes a result
in Oberlin’s paper.

LEMMA A. Given a positive integer N, there is a constant Ky such that if

r(x) = H (x— al) H [(x— a.l)z + b.r] = ﬂ gJ(x)

Jj= j=I+1

is a monic polynomial of degree at most N with the a;’s distinct and eachb; > 0, then
there is a pairwise disjoint collection {I,}" of at most Ky disjoint subintervals of
R such that

(A-1) f
R\uI,;

1/m

r(m
=Ky, 1sms<N

r
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and so that for each | there exists C = C,€(0, ), j = jie{1,2,...,J,}, and a non-
negative integer t = t; with

C
(A-2) Elx —ajl' £ r(x)| £ KyClx — ajf,
C t—1 7 t—1
(A-3) ‘E;‘x — a2 IF(¥)| = KyClx —aj' ™', and
(A-4) [F™(x)| £ KyClx —ajff ™™

Jorxeland2 <m < N.

Before proving Lemma A, we give two elementary results we will need for the
second step of the proof.

LeMMA B. Givena positive integer N, there is a constant K = K(N) so that if f is
a smooth function on R then

(%)(m—“=f—(f"i+Em fort<m<N,

where E,, may be written as the sum of at most K terms, each having the form

(f(ax))ﬂx (f(az) >ﬂz <f(az) )ﬂu

y s

f f f

where the a;’s and B;'s are positive integers, 1 So; Em— 1,1 £ K, |yl £ K, and

a1ﬁ1+...+a,ﬁ,=m.

Proor oF LEMMA B. Proceeding by induction on m, we differentiate the
induction hypothesis to obtain

(4 iy s

f

A typical term of E;, has the form

- f(aj)>ﬂj“1<f(aj+ 1)) <f(¢i) )ﬁi

(I (1
”’"( 7 77 )T

so we need only observe that a;(f; — 1) + o + 1 + Yx;afi =m + 1.

LemMa C. Given a positive integer N, there is a constant K = K(N) so that if

- Xx-a
fe) = (x—a?+b’
withaeR and b > 0, then

xeR
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If™x)| < Klx —a|"™*Y, xeR and
If™(x) < Kb~ ™2 |x —a> <b
form=0,1,...,N.

Proor oF LemMa C. An induction argument shows that there is a constant
C = C(m)so that f™ may be written as the sum of at most C terms, each having
the form

y(x — af

[(x . a)l + b](p+m+1)/2 4

where f is a nonnegative integer no larger than C and |y| £ C. The desired
estimates follow easily from this representation.

Proor oF LEMMA A. Fix a positive integer N. We will let K denote a quantity
depending only on N, the exact value of which may increase at each occurrence.

; Ja2
Given r as in the statement of the lemma, write —= Z f;» where either
1
filx) = (in which case we say that f; is type 1) or f;(x) = _2Ax—a)
J —x—aj y / s J —(X“aj)2+bj
(when we say f; is type 2).

StEP 1. There is a constant K such that given r, we can write R as the disjoint
union of that most K subintervals {I,} such that for each  there is an integer j(l) with

If](x)l < 'fj(l)(x)L xel, 15j<J,.

PRrROOF OF STEP 1. This follows from the fact that there are at most N of the f}’s,
and that the equation |f; (x)| = [ f;,(x)| (ji # j.) can have at most six solutions.
StEP 2. There is a constant K such that given an interval I and an index j, with

IO = 1S, xe€l, 1272,

there is a subset T of I such that I\ T is the disjoint union of at most K intervals,

1 r ~
(1 —_— L | —(x)| £ , xel\I
) Kl|x — a;| r t) Ix — ajq
rim "
) —X)| = —, x€I\I, 1=mZN and
r I — ajol
pm) |1/m

r

<K, 1<mZN.

3 J )
I

Proor OF STEP 2. For ease of notation assume j, = 1. Define
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T = {xel:foreachj # 1, either [fiGl < [ f1(x)|/2N or fy(x)fi(x) = 0}.
Define sets Sj, 1 < j < J, as follows: If f; is type 1, then § ; = 0. Otherwise, set
S;={xel:|x — aj|* < b; gnd Ix < a,|* > b;} for j#1
and ’
S;={xel:|x — ay|* < by}.

Now define I = (I\ T) U (UJ25)), so that I\I = T\ (u S))-
For xeI we have

IF/r)l = (XS < NI S 2N |x —ay| 7

Also, x e T implies

' /r(x)l 2

Y fi®) Y i)

P S1fix)20 Jif1fi(x)<0
2 /i) — NIf1(I/2N = | fi(x)l/2.

Since | fi(x)| 2 |x — a;| 7! if xeI\ S, this shows that if xe T\ S, 2 T\(US;) =
I\T, then |r'/r(x)| = |x — a;|~'/2, which finishes the proof of (1).

We prove (2) by induction on m. So assume 2 < m < N and that (2) is true for
1,2,...,m — 1. By Lemma B,

ij(m-l) - (rf/r)(m—l) — r(m)/r + E,,

. where E,, is the sum of at most K terms, each having the form y[ [}, (r®//r)%s,
with y,1, a;, B; as described in the lemma. Since 1 £ «; £ m — 1, the induction
hypothesis gives

1

[

1

1
§ H(le - al),—‘”)ﬂja XEI\I:
1

and hence ) «;B; = m implies |E,| < K|x — a;| ™. Therefore (2) will be proved
once we establish

[fm Do) S Klx —ay| ™, xel\[, 12j<4,.

First observe that | /"~ V(x)| £ K|x — a;|™" follows immediately if f; is type
1, or by Lemma C if f; is type 2. If j + 1 and f; is type 1, then

"D < KIS < KL < Klx — ay) ™™

for x e I. If f; s type 2, then x e I \ S;implies |x — a;|> 2 b;or |x — a,|> < b;. In the
case that |x — a;|> 2 bj, we have | fi(x)| = |x — a; ™', and hence by Lemma C

D) < Kix — ) ™™ < KIS0 < KIA < Klx — a,| ™

1
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In the remaining case of |x — a;|> < b; and |x — a,|* < b;, Lemma C gives
£ V) £ Kby ™? < K|x —ay| ™

Hence xeI\S; 2 I\ T implies | f{" " V(x)| < K|x — a,| ™™

The proof of (3) also in inductive, and so we begin with the case m = 1. (Recall
I=( S;)u(I\T). Since |r'/r] £ N| f1| for x 1, it suffices to prove j',~|f1| <K

First observe that s, |f| < K, and in fact s |fj| < K for 1 <j < J,, since
either S; = B or [5, £ = fye-ay2<sylfjl = 2log2.

Now suppose j + 1and S; # 0. Then | f;(x)| < 2|x — a,| ™" implies s, |f;| <
fx-a,i2<b,2b /> = 4. Thus

*) j Ifil£K, 1£j5J,.
S;

Finally, I\T< U4, U;, where

Uj:={xel:|f;(x)) > | fi(x)|/2N and f; f;(x) < 0}.
Hence it suffices to prove

**) L.Ifll =K, j+1

Write [y, [fil = fu,ns, [fil + Jups, 1fil. We may use (*) to see that the first
integral is bounded by K. For the second, it suffices to bound _[ ups, 1x —ail” tdx.
We now assume that a; < a;, the case a; > a; being similar.

If xe U;\S;, then

Ix —as| 7! S 1/ S 2N|fi(x)| < 4Nlx —a;| ™"

Also, xeU; implies fi(x)fi(x) <0, and hence U; < (ay,a;). Thus a; —a, =
(@; - x) + (x — a;) £@N + 1)(x — a) for xeU;\S;. Hence juj\s. Ix —a,|™ !
dx £ 3 (4N + 1)/(a; — a;) = 4N + 1. This finishes the proof of (3) in the case
m=1,

Let us now suppose that m = 2 and that (3) holds for 1,2,...,m — 1. By
Lemma B, it suffices to prove

L | @) |Biim
) f I1 <K
rj=11 T
and
®) J.Jf}"'””l”"' <K,
I

where a;, ;,1 are as in Lemma B.
If we define p; = m/a;p;, then Y 1/p; = 1. Therefore the generalized Holder
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inequality and the induction hypothesis, together with the facts that 1 < «; <
m— 1and ! £ K, imply

1 ! 1/pj
J [« rifiim < T < f (r(“f’/rll/“f> <K
I 1 T -

To prove (5), we first consider (recall again [ = (U S;) U (I\T))

J |f}(m~l)|l/m=J. If;'(m—l)lllm'i'J‘ Ifj(m~1)|1/m=:A +B,
S; Si\S; 5;nS;

J

where f; is type 2. Since xeI\S; implies |f;(x)| = |x — a;| ™", and | f{" " V(x)| <
K|x — aj|~™ follows from Lemma C, we have

D)l S 16" S LAIMx), xel\S;.
Thus 4 < fs.s, 11l £ K by (¥).
Also,

B< f LAy pim < Kf DI dx,
S; {lx—a;|2<bj}

and hence Lemma C gives B < K {(jy_a,2<s,b; '/* < K. Thus

(***) J‘ lfj(m—l)Il/m § K.
S;

It remains to estimate [;,7|f™~V|"/™ Since I\T € U;4 U; and | £~ V(x)| <
Ifil™(x) on I\ S}, it suffices to consider

- - -1
J If-'i(m l)lllm — J lf}(m 1)'l/m + j |fj(m l)l jm
U; U\Sy U;inS;

= f /1l +J LD,
v s,

The first integral is appropriately bounded by (**), while the second integral has
already been estimated by (***). This concludes the proof of Step 2.

STEP 3. There exists a constant K such that given an interval I and an index jo
such that | f;(x)| £ | £, ()| for xeI,1 £ j £ J,, we may write I as the disjoint union
of at most K intervals {I,} such that for each | there are C = C(l)&(0, ) and
t = t(l)e N with

e~ af <)l S KClx = . xel,

PRrOOF OF STEP 3. Assume j, = 1. Recall r(x) = 12gj(x). Since J, £ N, it is

1
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enough to show the following: there are absolute constants P and B such that
given g; we can write I as the union of at most P subintervals I, and on each I,
either

3-1) there exists C > 0 with C/B < |g;| < BC
or

(3-2) x —ay|/B < g £ Blx —a,

or

(3-3) Ix — as|*/B < |g;l < Blx — a,|*.

The proof of the following lemma is elementary.

LeMMA. Suppose x,aq,a;eRand |x — aq| £ 2|x — ajl. If |la; — a;l/2 £ |x — a4,
then |x —ay|/2 = |x —a;| £3|x —ay|. If lay —ajl/2>|x —a,|, then |a; — a;|/3 £
|x — a;] < 3l|a; — a;l/2.

Suppose first that f;is type 1. Then | f;| < | fi| onlimplies|x — a| < 2|x — aj| =

2|g;(x)| on I. Thus the above lemma gives subintervals of I on which (3-1) or (3-2)
hold.

Now if f;is type 2, then b; < g; < 2b; on the interval (a; — \/-b—,-, a; + \/b—,-). On
I\(a; — \/b}, a; + /b;), we have
P — a7t S 1 S 1A S 2% —ay| 7,

and hence |x — a;| £ 2|x — a;|. Since (x — a;)* < g;(x) < 2(x — a;)* on this set,
the lemma gives

(x —a1)*/4 £ (x — a;)* £ gj(x) £2(x — a))* £ 18(x — a,)?
ifla; — a;|/2 < |x — a,], while
(as — 3)*/9 = (x — a)? S g,(x) < 20x — @) < 9@y — a)?/2

if |a; — a;|/2 > |x — ay|. This completes the proof of Step 3 and Lemma A.

3. Theorem 3.

Following [02], we begin the proof with some reductions. Again K denotes
aconstant depending only on N. We may assume that ¢ < 1,since thecase s = 1
(whichimplies«; = 1and a; = Oforj # 1)reduces tothej = 1case of Theorem 2.
A scaling argument shows that we may assume p’ to be monic. Then an approxi-
mation argument shows that it is enough to prove Theorem 3 under the addi-
tional assumption that r(x):= p'(x) satisfies the other hypotheses of Lemma A.
Finally, let
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TP 0e)s
FO)= e

Note that

G+1 "
. p p
F = F(Z ] p(,') - -,‘>a

p

from which itis clear that pe 2 implies that F has as most K critical points. Thus
is suffices to consider the case where p/, F(x) — (1 + |s|)° %, and |p"/(p")?| —
1/(1 + |s]) are of constant sign on I := (a, b).

’" 1

n2 é
(r) 1+ sl
After the change of variable u = p(x), the integral in Theorem 2 becomes

Case 1.

onl.

f ei(u +sloglp’(p~ L)) (F(p— 1 (u))l +is du.
J

Assume first that F(x) < (1 + |s[)° ! on I. Van der Corput’s Lemma (see [S2])
the gives

f ei(u+slog|p'(p' Lw)h (F(p— 1(u))1 +is gy
J

i)

d )
< K("F”L“’m + L,E(F(P“l(“)))lm

du

sk+ Ko+ | ro-w)
J u

S K+ K1+ [sDIFllp=a = K(1 + |s])°.
Now assume that F(x) = (1 + |s|)” ! on I. Then

P 1.0
H|P | = (Hlp(i)laj)l/U-a)—l

e A ) A L TIpp \Mra -
< (I—“pmi J)l/(l )(T =(1+ 1s]) _|_I;I_I;._

ay/(1~a)

ay\ 1/(1—0) p(.i)
) =+ 0TI

»

7

’

=1 +1s))” <H

Choose intervals {I,} as in Lemma A with r = p". Then
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1+is
I P <H [ p(ﬁ(x)l%) dx
JAY®) )

U |21 =0) pO a1 =)
s(1+ ]sl)”f [T S+ )
nul, 14 Lay(\uly)
ARG
where 1/q; = (j — 1)a;/(1 — o), since Y, 1/q; = 1. Now i—, _=1and
G |1G-1) -

for2 < j < N Lemma A gives [;.1,|— < K, which shows that

’

1+is
f P (l“[ | p(i)(x)|af> dx
I,

Fix [. By Lemma A there exists C > 0, te N, and ae R such that
” t—1
1 > p(x)l> Clx — a| 1

1+1s = [(@@)| = K(Clx —af)> ~ KClx—af*"
for xe I n I,. Hence by (A-4),

[MpP0r _  TIClx — a7ty

1469 N Clx — af

~ K . K
T (Clx—afthTe = (1 +s)te

= K(1 +Is)”.

IF(x)| =

Another appeal to van der Corput’s Lemma then shows that

1+is
J P (H l p(i) (x)rn) dx
Inl

which finishes the proof of Case 1.

pll 1
= on
P~ 1+1sl

Choose intervals {I,} as in Lemma A with r = p’. If F(x) = (1 + |s|)° ! on I,

then as in Case 1 we have

S K1 + sy,

Case 2. L

aj/(1—0)

s

U)
[Tipr < + s T2

while if F(x) < (1 + |s)°" !, then

s

P
®)?

T2 < S i < 1+ b

Therefore Lemma A gives

P = (1 + Isl)” —”7]-
14
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1+is
J r®) < H | p(i) (x)l”) dx
NI,

Now we consider I n I;. The Case 2 hypothesis and Lemma A give

KClx —a'"! K
(Clx —al® ~ Clx—al*?’

£ [TIp21 < K( + [sl)".

Il

=

! é’ p:z
L+1s| = [(p)
or

1+|sl 1/t +1)
— < K| —
x-asx(t)

for some aeR, teN, C > 0. Since
[T1p9r < KTI(Clx — a7+ 4y = KColx — aft* D771,

we have

WDjai < G|y _ @+ 1)a—1 a
[Tip?) =le-a|§xc_gﬂym+n}Kc Ix — af dx < K(1 + [s])".

This finishes the proof of Case 2 and Theorem 3.

InI,

4. Theorem 4.
Forn = 2, let y(t) = (t,t%,...,t") for te R, and define the operator T by

Tf(x) = flf (x —y(t)dt, xeR"
0

An interesting problem is to find the type set of T. That is, we wish to determine
for which points (1/p, 1/g)e [0, 1] x [0, 1] it is true that T is a bounded operator
from I? to 4.

Three necessary conditions are known. A theorem of Hérmander [H] implies
that (1/p, 1/q) is in the type set of T only if p < g. In [O2], Oberlin observed that
estimating the norms of f and Tf when f is the characteristic function of a small
ball shows that (1/p, 1/q) must lie on or above the line joining P; = (1,1) and
P, = (n/(2n — 1), (n — 1)/(2n — 1)), and hence by duality also on or above the line
joining P, = (0,0) and P,. The third necessary condition is an observation due to
Anthony Carbery and Michael Christ. They noted that comparing the norms of
f and Tf when f is the characteristic function of a small box of dimension
8 x 6% x ... x 8" shows that (1/p, 1/q) must lie on or above the line joining P; =
(n* = n+2)/n* +n), (n—1)/n+ 1) and P, =(2/(n + 1), 2n — 2)/(n* + n)).
To summarize, (1/p, 1/q) must lie in the triangle PoP, P, if n =2, and the
trapezoid Py P, P3P, if n = 3.
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Figure 1.

Now let us consider the hypotheses known to be sufficient for (1/p, 1/g) to be in
the type set of T. Since Tf = u* f where u is a finite measure, the type set always
contains the closed segment Py P;.

For n = 2, an argument involving Stein’s analytic interpolation theorem [S1]
and van der Corput’s Lemma may be used to prove that T is a bounded operator
from I? to I when p = 3/2 (cf. [L,S2]). An application of the Riesz-Thorin
Interpolation Theorem [Z] then shows that the necessary triangle P, P; P, is also
sufficient.

For n = 3, Oberlin [O1] has proved that the necessary trapezoid is sufficient.
Whether the trapezoid is sufficient for n = 4 is unknown.

The proof of Theorem 4 is modeled on the n = 2 case. Theorem 3 provides
a substitute for van der Corput’s Lemma, allowing us to obtain the sharp I? — I’
result for all n.

PRrOOF OF THEOREM 4. Define the family of distributions D, on R by

1
(D, @) = TJ(M@M’ du, Rz> —1
2

and then by analytic continuation as in [GS] to an entire family of distributions.
We now define an analytic family of operators by
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1

<Dz,. .. ,<D,,f(x — () — i ujy(j’(t))> > dt, xeR™

j=2

Lf(x) = f

[}
The change of variables y = y(r) + Y ", u;y”(t) shows that
ITf = = C Al fll, Rz =0,

where C, has no worse than exponential growth in |3z|.
n(n+ 1)

n+2m-1

transform of D, in [GS] gives

1 . n . 2/(n2+n—2)—is
T.f(&) = C.f() L e"“"’( [1 If')'“’(t)l) dr.
j=2

Thus with p(t):= &-y(t), we see that

1 n
IT.f (O £ C.11(©) L e'r® (HIPU’(t)IZ""“"‘”
2

Now pe 2, for all £€R", so we may apply Theorem 3 to obtain |T, f(&)| £
C.|/(¢). Hence by the Plancherel Theorem

Ifz=— + is, a computation using the formula for the Fourier

L+i(n2 +n—2)s/2
) a.

nn+ 1)
T, 2 < 2 ‘R - T T T,
ITf e S Col ey B = = o=
Since T is a constant multiple of T_,, analytic interpolation implies
2n(n + 1)
< =,
1Tflle £ Clfllees P 2 +n+2

An application of the Riesz-Thorin Theorem finishes the proof of the suffi-
ciency of the hypotheses in Theorem 4. The necessity of the hypotheses follows
from the requirement that (1/p, 1/p) lie inside the trapezoid PoP; P3P,.

NOTE ADDED IN PROOF. Yibiao Pan has independently proved Oberlin’s conjec-
ture.
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