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ZERO SETS OF FUNCTIONS IN
HARMONIC HARDY SPACES

PATRICK AHERN and WALTER RUDIN

1. Introduction.

For 0 < p < o we let h? be the space of all real-valued harmonic functions in the
open unit disc U which satisfy the growth condition

PP L
1.y lull, = sup {——f Iu(re“’)l”df)} < 00,

0sr<1 2n

and we let H?, as usual, be the Hardy space of all holomorphic f in U which satisfy
(1.1) with f in place of u.

It is well known that the zero sets Z( f) of HP-functions f are the same for all p:
If feHP for some p and f % 0 then Z(f) satisfies the Blaschke condition;
conversely, ifa set § = U satisfies the Blaschke condition then § = Z(f) for some
bounded holomorphic f. In this note we consider the analogous question for h?
and find the following answer:

THEOREM. If 0 < p < q < o0 then there is a set S < U such that
(@) S = Z(u) for some ueh®, but
(b) if veh? and Z(v) = S then v = 0.

This is reminiscent of the situation in several complex variables where the
holomorphic H?-spaces have different zero sets for different values of p [6; p.
1457].

The case p = 1 can be settled right away, and with the same S forall ¢ > 1. Let
S be the circle of radius 1/2 centered at 1/2, but without the point 1. Then S = Z(u)
if

(1.2) u(d) = Re[4/(1 — A)].

Since 2u + 1 > 0in U, and positive harmonic functions are in h', we have ue h'.
Assume now that ve h? for some q > 1. Then v = Re f for some f € HY, |f|? has
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a harmonic majorant in U, hence also in the disc D bounded by S. Therefore
f e HYD),and if Re f = 0 at every point of S, it follows from the Poisson integral
in D that Re f = 0 in D, hence also in U.

The general case of the theorem is a corollary of the more precise Theorems
A and B stated below in terms of the spaces Re H? (the real parts of HP-functions)
and GP?, where u € G, by definition, if 4 is harmonic in U and
1.3) sup(l — [A)*7 [u(d)] < co.

ieU

These spaces are related by the inclusions
1.4 ReHP c W < GP (0 <p < ).

That Re H? < kP is trivial. When 1 < p < oo, the classical theorem of Marcel
Riesz shows that Re H? = h?. But h' is larger than Re H' (even though
h' = Re HPforall p < 1),andif 0 < p < 1 there are functions in h” which lie in no
Re HY see [2; Chap. 4], for example. Another difference between h” and Re H?
(when 0 < p < 1) is that Re HP is separable whereas h? is not. This, and other
aspects of h?, are described in [7].

The difficulty in proving h” = G? occurs when p < 1, since the Poisson integral
in then not available. The first proof, given by Hardy and Littlewood [5; Th. 1]
was based on some elementary but rather complicated lemmas. Fefferman and
Stein simplified this by finding a fairly easy proof of the inequality

K
14 ———— p

(1.5) ()P = (D) Dlul dm

in which K = K(p) < oo, m is plane Lebesgue measure, and D is any disc with
center A in which uis harmonic. (See [3; p. 172], [4; p. 121]. The inequality is also
a consequence of [5; Th. 5].) To apply (1.5), pick AeU, || =1—¢> 1/2, let
D have center A, radius ¢, enlarge the domain of integration to the annulus
{A: 1 — 2e < |A| < 1}, and read off that

4K
(16) AP < =l

On the other hand, G” is larger than h” for all p. This follows, for example from
[1; Th. 5], which implies: If ¥: [0, 1) — [1, o) satisfies Y(r)  co asr [ 1, then there
is a holomorphic f in U such that | f(4)] < Y(]A]) for all Le U, but

(1.7 mein |f(re®) f

for some sequence r; ' 1. Take Y(r) = (1 — r)~'/?,let f = u + iv. Thenu and v are
in GP, but (1.7) shows that at least one of them is not in hP.
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The preceding discussion shows that Theorems A and B really give more
information than the one that we stated in this Introduction.
2. Main results.
From now on p and ¢ are fixed, 0 < p < g < 0. Choose y and 4 so that
2.1 pla<y<d<l
Choose a, 0 < o < n/2, so that, setting s = sina, ¢ = cos a, we have
(2.2) s? <y/2p,
and then put
(2.3) B = 1/pcs.
Let © be the strip consisting of all z = x + iy such that
2.9 lcy — sx| < cém/2.
Forn=0, +1, +2,..., put
2.5 E,={zeQ: x=nn/B}, E=J7 - o En
The function

2.6) &) = %
maps 2 conformally onto U. We define

2.7 S = @(E)

and can now state our results.

THEOREM A. S = Z(ug) for some uo € Re HP.

THEOREM B. If ve G? and Z(v) > S then v = 0.

3. Proof of Theorem A.

Define f in Q by

(3.1) f@) =ie”#,
put u = Re f, uy = uc® . Then

(3.2 u(z) = e’ sin fx

so that E = Z(u), hence S = Z(u° @) = Z(uo)-
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We have to show that uoe Re H”.
Let ¥ be the harmonic function defined by

(3.3) Y(z) =exp<x +%Y)'008(y——z—x).
By (2.4), cos (y - S-x) > cos(dn/2) > 0 in @, so that

(3.4) log¥(2) > x + ~z— v + log cos(67/2)

in Q. On the other hand, (3.1), (2.3), and (2.4) show that

oy = (S )y <X Om
(3.5) ploglfl—pﬂy—(c + s)y< . +x + P

It follows from (3.4) and (3.5) that there is a constant K < oo such that
(3.6) [fIP <Ky in Q.

If we now put fy = fo® ™!, then Ky o &~ ! is a harmonic majorant of | f,|? in
U. Hence f, € H®. Since uy = Re f,, the proof is complete.

4. Proof of Theorem B.
Suppose now that ve G? and v(4) = O for all A€ S. Put
4.1) w=ypod

where @: Q — U is given by (2.6). Then Z(w) contains every segment E, asin (2.5).
We have to conclude that this forces w = 0.
Define

4.2) Q, = {z:|cy — sx| < cyn/2}.

This is a strip whose closure lies in Q. We need an upper bound (namely (4.7)) for
the growth of [w(z)| as z —» oo within Q,. This, followed by an application of the
reflection principle and an argument of the Phragment-Lindel6f type, will lead to
the desired conclusion.

The map &(z) = A can be written in the form

ef— 1

43 =
“3 A e+1

where
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cx + S Ccy — S§X
AL Aty

4.4 T=e""z/cd = s 3

A simple calculation leads from (4.3) to

14+ A4  cosh(Re1)

“3) 1—A1 " cos(Imt)

In Q,, |Im | <yn/20, so that cos (Im 1) is bounded below by a positive constant.
Another calculation, using (4.4) and (2.4), shows that in Q
Iyl | em
4. Ret < — + —.
(4.6) IRe] csd + 2s
If we combine these estimates with the fact that veGY i.e., that
[(A))? = O((1 — AH)~ 1), we obtain

4.7 Iw(z)| < K exp(ly|/csdg) in Q..

7

A look at Fig. 1 will clarify the next step.
The line y = (my/2) — (sx/c) intersects the real axis at

4.8) X=Xy = E;Sl > csnp = n/P,

using (2,2) and (2.3). The inequality x, > m/8 shows that the reflections of Q, in
the segments E, cover the plane. Since w(z) = Ofor all z € E, and for all n, it follows

1



214 PATRICK AHERN AND WALTER RUDIN

that w extends to a harmonic function in the whole plane, which we still denote by
w, and that

4.9) w(%,y) =0

for all integers k and all real y. Moreover, the extended function stil satisfies (4.7).
To finish, we apply the Phragmen-Lindelof technique to the function w in the
strip
(4.10) T={z0Zx<n/B}.
Note that w = 0 on the edges of .
Since gd > p, there exists t such that

(4.11) i <<=
For ¢ > 0 define
(4.1 wi(z) = w(z) — &(e” + e~ ) cos <t <x - 2—1;?> ) .

The last cosine is =cos(tn/2f8) > 0 in X, because t < f.

The first inequality in (4.11), combined with the estimate (4.7), shows now that
w,(z) < O for all ze X for which |y| is sufficiently large. It also follows from (4.12)
that w,(z) < 0 on the edges of . Since w, is harmonic, the maximum principle
shows now that w,(z) < 0 for all ze . Hence, letting ¢ | 0, w(z) £ 0.

The same argument, applied to —win place of w, gives w(z) = 0. So w(z) = Ofor
all zeZ, hence everywhere.
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