MATH. SCAND. 73 (1993), 197-208

ON THE APPROXIMATION OF CERTAIN
INFINITE PRODUCTS

K. VAANANEN

1. Introduction.

We shall consider the infinite product

0 o) = ﬁ (1 + f—)

with certain algebraic g such that |q| > 1. The g-exponential function f is an
entire function

V)] f@=1+ Z(Z”/H(qk—l))
n=1 k=1
satisfying the functional equation

) flgz) = (1 + 2)f(2).

Already Lototsky [8] proved the irrationality of f(x), if ¢ 2 2 is a positive
integeranda % 0, —q",n = 1,2,...,is an element of an imaginary quadratic field.
Since then there are many works considering the irrationality and irrationality
measures of the values f(«), where ¢ and « are certain elements of an imaginary
quadratic field, see e.g. the papers [2],[3], [4],[5],[9],[11],[12],[13],[14], and
[15]. The works [2],[9], and [10] consider also non-archimedian case. The most
general qualitative results are those of Bézivin giving linear independence of the
values of f and its derivatives at different points. In [6] linear independence
questions of f and its derivatives at z = a with certain algebraic q and « are
considered.

Our aim in the present work is to generalize the recent results of Popov [12],
[13] and also to give non-archimedian analogues of these results. We shall use
the Newton interpolation technique applied already in many of the above
mentioned works. In particular, the Schnirelman integral is used in the
non-archimedian case to replace the complex integral.
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2. Notations and results.

Let K be an algebraic number field of degree d over Q. For every place v of K we
denote d, = [K,:Q,]. Let P = {primes p} U {oo}. If the finite place v of K lies
over the prime p, we write v| p, for infinite place v of K we write v| c0. We normalize
the absolute value | |, of K so that

(i) if v|p, then |p|, =p~?,

(ii) if v] oo, then |x|, = |x|,
where | | denotes the ordinary absolute value in R or in C. Clearly we then have
the product formula

[Tl =1

for all non-zero a € K. Further, for any vector o = (ay,...,%), o;€ K, we define
Ig‘v = max (lallu’ veey |ak|v)'
The absolute height h(a) of a € K is defined by the formula

h(@) = [Tmax (1, |of5-"),

and the absolute height h(a) of the vector o by
h(@) = [Tmax (1, |a/4).

If vis a place of K and g is a non-zero elément of K, we shall use the notation
A = AMv, q) to denote

@) A = (dlog h(g))/(d, log|ql.)-
In particular we note that A = 1if |q], < 1 for all w + v. If]q|, > 1, then the

values of f at non-zero pointsae K, + —g",n = 1,2,..., are non-zero elements
of K,. Our first results consider the approximation of these numbers by the

elements of K.

THEOREM 1. Let | |, be any valuation of K, and suppose that |q|, > 1 and A < 7/4.
Further,let « + —q",n=1,2,..., be a non-zero element of K. Then f(«) ¢ K, and
there exist effectively computable positive constants 7y, = y,(q,%,v) and
hy = hy(q, o, v) such that for any 0 e K

7 B .
|f(@) — 8] > H™ T7=ana, ~ v1toe)~ 12

where H = max (h(6), h,).

We note that in the archimedian case Theorem 1 is analogous to the result of
[13]. The following theorem considers simultaneous approximation of two
values of f and generalizes [12].



ON THE APPROXIMATION OF CERTAIN INFINITE PRODUCTS 199
THEOREM 2. Let | |, be any valuation of K, and suppose that |q|, > 1 and
A < 13/7. Suppose that a, and a, are non-zero elements of K satisfying
5) o F —qayFoq"i=1,2n=12...;meZ

Then there exist effectively computable positive constants y, = y,(g,a;,v) and
h, = hy(q, o;, v) such that for any § = (0,,0,)e K?

134 _
max | f(;) — 0y, > H™ 3-74a,  v2leg) =12
i

where H = max (h(@), h,).

Next we generalize the result given in the archimedian case in the field K = Q
as Theorem 1 of [12]. We shall prove the following .

THEOREM 3. Let| |, be any valuation of K, and suppose that |q|, > 1and A < 6/5.
Suppose that o, and o, are non-zero elements of K satisfying (5). Then there exist
effectively computable positive constants y3 = y3(g, o;, v) and hy = hs(q, o;, v) such
that for any e K

Slo2)
Slo)

where H = max (h(6), h5).

> H~@=5na; ~ vaost) 172

v

-0

In the following result we consider the approximation of f%(a)/f(),
i=1,2,...,k — 1, where k 2 2 is a natural number. To formulate our result we
define 4 and B by the formulae

A=k+3(k—1)/r%, B=(k—1)k?2 -3/

THEOREM 4. Let| |, be any valuation of K, and suppose that |q|, > 1 and|q|,, + 1
for all wloo. Let also A + B — AA > 0. If a satisfies the conditions of Theorem 1,
then there exist effectively computable positive constants y4 = y4(q,®,v,k) and
hy = h4(q,, v, k) such that for any § = (0,,...,0,_,)e K***

) o
max /) -6 >H ‘(Ti%)%ﬁ:"“(:zsllfﬁﬂﬂ,
i f (a) v
where H = max (h(@), h,).
REMARK. If « = —1, then we can replace 4 and B above by

A=(k+1)2+3k—1)/r% B=(k— 1)(k+1)/2—3/n?.
In the case k =2 Theorem 4 is essentially Theorem 2 of [6]. Since

f'(@/f(2)= Y (¢" + 2)~ %, this case has some interesting corollaries on the
n=1
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@

approximation of certain numbers, e.g. the numbers Y (¢"—1)"%,¢=2,3,...,

n=1
have anirrationality measure <(1/2 — 1/ ™! ~ 2,51,and the number } F, !,

n=1
where F, denotes the nth Fibonacci number, has 6/(1 — 3/n%) ~ 8,62 as
a measure of approximation by the elements of O(\/g), see [6].

3. The asymptotic estimate for the remainder term.

Let | |, be a valuation of K. If v| P we shall consider all the elements of K as
elements of Cp (C,, = C) given by a corresponding embedding of K in Cp. For
lq, > 1 the function f(z) is then an entire function in Cp.

All our resuts will be corollaries of one general result. To prove this we suppose
in the following that for some ke N ay,.. ., are non-zero elements of K satisfy-

ing
(6) o+ —q" 0 Faq",n=12..,meZ
ij=1,2,.. ki%j.

If v| 0, we define the complex integral

f(2)dz
n k n
e zé(n+1) l—[ (Z + qv+1) H I’[ 7 — (Xq

v=0

1
I(’)_—Z_;I—l—

’

whered = OQor l,and R = |g|** 1 *9"*! We assume that k 2 2if§ = 0. For finite
v we use the Schnirelman integral

I(k,n) = j f(z)zdz
6(n+1) l’[ (Z + qv+1) I_[ H (Z - alqv)

i=1v=

For the basic properties of this integral we refer to [1].

In the following we shall need an asymptotic estimate for these integrals. We
note that ¢y, ¢,, ... denote effectively computable positive constants independent
of n. Also the constants in O (n — o0) are effectively computable.

LemMMA 1. If |q], > 1, then
IIv(k, n), = |q| (k+1+8)n2/2+0(n)

ProoF. If v| oo, then Lemma 1 follows from Lemma 2 of [12].
If v|p, then
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n k n
[T+ HIT Il - wg) =
v=0 i=1v=0

n k n
Z(k+1)(n+l) l—l (1 + qv+l/z) I“[ H (1 . al.q"/z) =
i i=1v=0

v=0
2D 4w, (2),

where [w,(2)|, < |ql, **° V" forall |z|, = Rand n 2 c,. By using this notation we

now have

I(k,n) = J J(e)zdz J J(ew(z2)z dz = I(1) + I(2), say.

L&+ 1+0)(n+1) - Z(k+1+6)(n+1)(1 + w,,(z))

O,R O,R

The results of [1] imply with (2) the formula

k+1+d)@m+1)-1

I(1) = Res, - f(z)z " *F1+I0*D) = H @ -1
v=1
Thus
7 |, = |q|‘(k+1+6)(n+1)((k+1 +am+1)-1)2

On the other hand, since by (3)

*k+1+d)n

f(z/q(k+l+¢7)n) = f(z)q(k+1+6)n((k+1+6)n+l)/2 % I—[ (Z + qv)—l’

v=1

it follows from (7) that

W)z . |
su S UMl lgl;™* sup [,
e | ZEF IO L, 2), lzlo = lalo

for all n = c,. We thus have, for all n 2 ¢,
(K, ), = [H(D)], = lg], &+ *+ o720,

This proves Lemma 1.

4. Approximation forms.

We first define for each ne N the polynomials Bj(q) needed in the following
consideration. Let

n

Big= ]I mﬂ—n/@¥¢-4xv=Lz“qm

p=n-v+1

Bl(g) = 1.
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In[7],p. 157, Gelfond proves that B)(q) € Z[ q]. Further, we have an upper bound
2" for the lengths of B}, see [13].

LEMMA 2. There exists a denominator

Q(k,n) = q(k+1+2&)n2/2+0(n)( ﬁ (qu _ 1)) 11‘1 { 2n+1

n=1

( 1l (a.-—a»)(ﬁ (o +q““)) 1l (a.-qﬂ—a,-)(ozi——a,»qﬂ)ﬂ
it

j=1p=1
such that for |q|, > 1 we have
k
Qk, mL,(k,n) = 6P + ), Pif (o),
i=1

where 6P, P,e Z[q,a,,...,0,] are polynomials satisfying
deg, {6Py, P;} < (k* + 1 + 26)n%/2 + O(n),
deg, {0Py, P.} < O(n).
ProoOF. At first we use (3) to replace f(z) in I (k, n) by

f(Z) — q~(n+1)(n+2)/2f(zq—n—1) ﬁ (Z + qv+1)‘

v=0

The application of residue theorem or its analogue in C,, see Adams [1], then
implies

k n
q"‘“""”’/zl,,(k,n) — 5Resz=0f(zq~n—1)z—6(n+ 1) H 1_[ (Z . aiqv)—l +
4 i=1v=0

k n
Res, g flzg™" 1)z 720" D H H - og") ' =

M=
M=

i=1v=0 1pu=
4 k n
6 q“""“’(l’[ @ -1 )H [T —@a)™ot +
gto=n v=1 = =0
k n n
2 2 flg ™" D (g) MY H [1 (g’ — ") =
i=1v=0 j=1 u=0
(FADE A (0]
o k n
S Z (__l)k(n+l)qu)1(n,v.a')<n (qv_ 1)—1) I‘I n —ai,y—1 +
gtao=n v=1 i=1v=0

k n
.=Zl flo)o 20T D=m 5 (=1 7°g®*™VB;(g) x

v=0
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n n—v k
(U(q—l) )(Ho(a +q*tY” )l_[ (o — )"

JFi
-1

{ Iv] (0:q" — o) "I:[: (o; — “jQ")} >

where

0y(n,,0) = —o(n + 1) — knfn + 1)2 — Yoy,

wy(mv) =n*2 —(k+ 14 8nv + (k + )22 + 3n/2 — (k + 1 + 26)v/2 + 1.
Here o (n,v,0) —(n+ 1(n+2)2= —(k +3)n*/2+ 0(n), and w,(n,v) —
(n+ D+ 2)/22 —(k + 1+ 26)n%/2 + O(n). Therefore it is clear that

k
Qk,n)l(k,n) = 6Py + Y P.f(a),
i=1

where Pie Z[q,a,...,04], i = 0,1,..., k.
The estimate for deg, is obvious. All we need to do is to estimate deg,. The
degree of Q(k,n) in g satisfies

@®) deg, Qk,n) = (k* + k + 2 + 20)n%/2 + O(n).

Since I,(k,n) is a sum of rational expressions, where g appears only in the
denominator polynomials having deg, at least (k + 1)n?/2 + O(n), it follows that
the degrees of 6P, and P;, i = 1,...,k, satisfy the required bound. Thus our
Lemma 2 is true.

Let us denote
k
R(k,n) = Q(k,m,(k,n) = 6Py + Y. P:f(o).
i=1

The above lemmas imply now the following result.
Lemma 3. If |g|, > 1, then
IRk, n)l, = lql,"** ",
where b = (1 + 28)k + & — 1)/2. Further, for any place w of K, we have
max (|6Poly., [Pil,) < 3" max (1, lql,,)™* * *" max (1, eul,,) ",
where a = (k* + 1 + 20)/2, and 5(w) = 1 for w|oo, 6(w) = 0 for w|p.

Next, to prove our Theorem 4, we give a result obtained by Bundschuh and
Viinidnen [6]. There we have an approximation form
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k-1
Ry(k,n) = iZ:O Pifa), PieZ[g,q],

with the properties given in

LemMa 4. If |q|, > 1 and |q],, + 1 for all w| oo, then

[Ry(k, n)l, = |g|, >+ Otlosm,
where by = (k — 1)(k/2 — 3rn~2). Further, for any place w of K, we have
~ max|P, < ™" max(1, |g},)"" * O"'¢" max (1, |of,,)°",

wherea; =k + 3(k — )2,

We note that the proof of this result uses considerations like above applied to
the integral

1 f(z)dz

it [ (@ = 20z + 47

2mi

or its p-adic analogue.

5. Proof of the theorems.

We shall obtain all our resuits from a general theorem, Theorem A below, for
which we make the following

Assumption A. vis a place of K, g e K satisfies |g|, > 1,and ¢ = («;,...,%,)isan
element of K*. Further, for some ke N, fi,..., f; are elements of K, having the
following properties: For each n = ¢, there exists a linear form

k
r(n) = po + Z pr.f, Pi€Ziq,a],
i=1
such that
® laly " < ()], < laly " <o

with some constant B > 0. For any place w of K the coefficients p;,i = 0,1,...,k,
satisfy the inequalities
(10) max |pil,, £ ™" max (1, |q},,)*" * " max (1, |al,, )",

where a constant 4 > 0.

THEOREM A. Let the conditions of Assumption A be valid. Suppose that
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A+ B—AA > 0. Then there exist positive constants I'y = I'\(q,a,k,v) and
H; = Hi(q, 2, k,v) such that for any 8 = (0,,...,6,)e K*
A+ B)d
max |f; — 0], > H~ G+ 5-t4; - T1os )™ 172,

where H = max (h(0), H,).

k
ProOF. By denoting 4 = po + Y. pif;, fi = 6, + &, i = 1,..., k, we obtain
i=1

k
4 =rn) — Z Di&i.
i=1

We now assume that
(1 1) max If; -_ eilu = max |8i|u < |q|v—(A+B)n2—1n

with some Te N, n 2 ¢g, which we specify later. By (9) and (10) we then have

k
2 Pii
i=1
for any © = c,3. Therefore, by (9),
(12 0 < |4], < 220 Ir(n), < 2% g, e

Since 0 + 4€ K, we have

- 2 -
< oy lgl 7B e < r(n)),.

v

[Tiat =1

by the product formula. This together with (10) and (12) imply (for any x = 0 we
denote log, x = logmax(1, x))
d, d,
—\(=Bn* + cgm)loglgl, + 3(v)log2 ) = —rlog|4l. =

d

- —di—loglAlw ) 7’"(5(w)ncl4 + (An? + cion)log+ Iqlw +
w¥v w¥v

cynlog |, + log. |8l,) 2 — logh(8) — An®logh(g) +

4

y An?loglql, — c1sn.

This leads to an inequality
—n? (%(A + B)loglgl, — Alogh(q)> 2 —logh(f) — cyen

or
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d
(13) —n*(A+ B - lA)-‘—l'ilog lql, = —~logh() — cyen.
We now assume that T = ¢, 5 fulfils the condition
d
A+ B— lA)—dllog lgl, > ci6-

Then we fix our parameter n in such a way that n is the smallest integer (> 1)
satisfying

(14) logH £ (n* —tn)(A + B — AA)%”—loglql,,,

where H = max (h(f), H,) is large enough to make n satisfy n = c¢5 and n > 2. By
these choices we have a contradiction in (13). Therefore our assumption (11) is
not valid and thus

max |_f; _ 0ilv > Iqu—(A+B)n2—tn > Iqlv—(A+B)((n—l)z—t(n-l))—c”n.
From our choice of n (see (14)) it now follows that
—(A + B)(n — 1)> — o(n — 1)) log|gl, — ¢;7nloglgl, >

(A + B)dlogH

“ AT B e, Crelog B

This estimate implies the truth of Theorem A.

Ifay,...,a are elements of K satisfying (6), then Lemma 3 implies Assumption
A for the numbers f; = f(«;), i = 1,...,k, where

A= (k*+3)/2, B=3k/2,a = (a,...,0)

(we use Lemma 3 with § = 1). Suppose that 4 + B — A4 > 0. Then Theorem
A gives

_ (k2+3k+3)d
max | f(o;) — 6], > H™ ®ZF3k+3-07+3)Ad,
i

—Ty(logH)~1/2

If we choose here k = 1 and k = 2, we have our Theorem 1 and 2, respectively.

REMARK. Of course one would expect that the exponent of H above becomes
better with greater k. Unfortunately it is not so and therefore we give our results
only in the cases k = 1 and k = 2. The reason for this situation is perhaps too
strong growth of our denominator Q(k, n).

To prove Theorem 3 we apply Lemma 3 with § = 0. This implies Assumption
A for the numbers f; = f(o;+,)/f(21),i = 1,...,k — 1, where
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A=+ 1)/2,B=(k—1)/2,¢ = (a,...,%).
We choose here k = 2 and apply Theorem A. This gives immediately Theorem 3.

Lemma 4 gives us Assumption A for the numbers f;= fOa)/f(x),
i=1,...,k— 1, where

A=k+3(k—1)/n*B=k~— 1)k2-3/na=a0,
and where ¢;n are replaced by c;nlogn. If A + B — 14 > 0, then Theorem A can
be used to produce the estimate
@)
——ff((";) > H™ G D=3k 60—, ~ T i,
o v

where H = max (h(8), H,), and I'y and H, are positive constants independent of
0. We have to change only slightly the proof of Theorem A, since ¢;n are replaced
by ¢;nlogn. Thus Theorem 4 is true.

max — 6;

i

If o = —1, then this consideration can be improved to give our Remark after
Theorem 4. We need only to use the better values

A=+ 1)/2 + 3k —1)/n%, B =(k — 1)(k + 1)/2 — 3/n?)
of the constants 4 and B, see [6].

REMARK. We note that in the case 4 = 1 the main part of the power of H in
these boundsis — 1 — t(k)/(k — 1), where t(k) goes to 2 + 6/n? in the general case,
and to 1 + 6/n% in the case « = — 1, when k grows.
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