ON THE ULTRABORNOLOGICAL PROPERTY OF THE VECTOR VALUED BOUNDED FUNCTION SPACE

J. C. FERRANDO*

Abstract.

If Ω is a set, Σ a σ -algebra of subsets of Ω and X is a normed space, we show that the space $K(\Sigma, X)$ of all bounded X-countably valued Σ -measurable functions on Ω endowed with the supremum-norm is ultrabornological if and only if X is ultrabornological. As a consequence, the space $l_{\infty}(X)$ of all bounded sequences in X with the supremum-norm is ultrabornological if and only if X is ultrabornological.

In what follows Ω will be a set, Σ a σ -algebra of subsets of Ω and X a normed space. By $S(\Sigma,X)$ we shall denote the X-valued Σ -simple function linear space over the field K of the real or complex numbers. An X-valued function defined on Ω is Σ -measurable if it is the pointwise limit of a sequence of X-valued Σ -simple functions. By $l_{\infty}(\Sigma,X)$ we shall represent the linear space over K of all bounded X-valued Σ -measurable functions defined on Ω . Both linear spaces are supposed provided with the norm

$$||f|| = \sup\{||f(\omega)||, \omega \in \Omega\}$$

On the other hand, $B(\Sigma, X)$ will stand for the closure of $S(\Sigma, X)$ in $l_{\infty}(\Sigma, X)$. By $K(\Sigma, X)$ we shall denote the (dense) subspace of $l_{\infty}(\Sigma, X)$ formed by all countably valued functions. If Σ is infinite, these two subspaces of $l_{\infty}(\Sigma, X)$ verify that $K(\Sigma, X) \subseteq B(\Sigma, X)$ only if X is finite-dimensional. Assuming that X is a Banach space, this is an easy consequence of Mazur's theorem, [1, p. 39] and Rosenthal's l_1 -theorem, [1, p. 201]. Finally, by $l_{\infty}(X)$ we shall denote the linear space of all bounded sequences in X provided with the supremum-norm.

It was been shown in [3] that the space $S(\Sigma, X)$ is barrelled if and only if X is finite-dimensional, in [5] it has been proved that $B(\Sigma, X)$ is barrelled if and only if X is barrelled, in [6, p. 149] it is shown that $l_{\infty}(X)$ is barrelled if and only if X is barrelled and in [2] it has been proved that $l_{\infty}(\Sigma, X)$ is barrelled if and only if X is barrelled.

^{*} This paper has been supported in part by DGICYT grant PB91-0407. Received August 21, 1992.

It is not known whether or not some of these spaces are ultrabornological whenever X is an ultrabornological space. In what follows we shall prove that the space $K(\Sigma, X)$ is ultrabornological if and only if X is ultrabornological. Then, since $l_{\infty}(X)$ coincides with $K(2^{\mathbb{N}}, X)$, it follows that this space will be ultrabornological if and only if X is ultrabornological. But first of all, let us recall what is an ultrabornological space.

Assuming that E is a Hausdorff locally convex space over K and B is a Banach disk, we denote by E_B the Banach space constituted by the linear hull of B provided with the norm of the Minkowski functional of B, and by B we denote the family of all Banach disks in E. The space E is said to be ultrabornological. [4, p. 70], if it is the locally convex hull of the family $\{E_R, B \in \mathcal{B}\}$.

If $A \subseteq \Omega$, e(A) will stand for the indicator function of A.

Before we start our discussion, we must take into account the two following observations:

- a) $K(\Sigma, X)$ is a dense subspace of $l_{\infty}(\Sigma, X)$.
- b) If $f \in K(\Sigma, X)$ and $\{x_n\}$ is the bounded sequence of its different values, then $f^{-1}(x_n) \in \Sigma$ for all $n \in \mathbb{N}$.

Indeed, if $f \in l_{\infty}(\Sigma, X)$, f is the pointwise limit of a sequence of Σ -simple functions and hence $f(\Omega)$ is norm separable. If (x_n) is a dense sequence in $f(\Omega)$, given $\varepsilon > 0$ and $n \in \mathbb{N}$, we set $E_n := \{ \omega \in \Omega : || f(\omega) - x_n || < \varepsilon \}$. Since, as it can be easily proven, $\omega \to ||f(\omega) - x_n||$ is a scalar Σ -measurable function, then $E_n \in \Sigma$ for each $n \in \mathbb{N}$. Defining $g(\omega) = x_n$ if $\omega \in E_n \setminus \bigcup \{E_i, 1 \le i \le n-1\}$ we have $g \in K(\Sigma, X)$ and $||f - g|| < \varepsilon$, which shows a). On the other hand, if $f \in K(\Sigma, X) \setminus S(\Sigma, X)$, setting $Y := \sup\{f(\Omega)\}\$ and choosing a weak*-total sequence $\{y_i^*, j \in \mathbb{N}\}\$ in Y^* , then $A_{n,j} := \{\omega \in \Omega, y_i^* f(\omega) = y_i^* x_n\} \in \Sigma$, consequently, $f^{-1}(x_n) = \bigcap \{A_{n,i}, j \in \mathbb{N}\} \in \Sigma$. This shows b).

LEMMA 1. Let $\{A_n, n \in \mathbb{N}\}$ be a sequence of non empty pairwise disjoint elements of Σ . If V is an absolutely convex subset of $K(\Sigma,X)$ which meets each Banach space E generated by a Banach disk of $K(\Sigma,X)$ in a neighbourhood of the origin in E, there exists an $m \in \mathbb{N}$ such that V absorbs the closed unit ball of $K(\Sigma/\cup\{A_n,n>m\},X)$.

PROOF. If the property is not true V does not absorb the closed unit ball of $K(\Sigma/\cup\{A_n,n>p\},X)$ for each $p\in\mathbb{N}$. Hence, for each $p\in\mathbb{N}$ there is $f_p \in K(\Sigma/\cup \{A_n, n > p\}, X)$ such that $||f_p|| = 1$ and $f_p \notin pV$.

As (f_p) is a bounded sequence in $K(\Sigma, X)$, the series $\sum_{i=1}^{\infty} \xi_i f_i$ converges in the completion $l_{\infty}(\Sigma, \hat{X})$ of $K(\Sigma, X)$ to some h_{ξ} for each $\xi \in l_1$. Clearly, h_{ξ} takes at most countably many values since for each $\omega \in \Omega$ the sum $\sum_{i=1}^{\infty} \xi_i f_i(\omega)$ is finite. Hence, $h_{\xi}(\omega) \in X$ for each $\omega \in \Omega$ and $h_{\xi} \in K(\Sigma, X)$. This proves that the Banach disk

 $\left\{\sum_{i=1}^{\infty} \xi_i f_i, \xi \in B_{l_1}\right\} \text{ of } l_{\infty}(\Sigma, \hat{X}) \text{ is contained in } K(\Sigma, X). \text{ From this we obtain a } k \in \mathbb{N} \text{ such that } f_k \in kV, \text{ a contradiction.}$

THEOREM 1. Let V be an absolutely convex subset of $K(\Sigma, X)$ which meets each Banach space E generated by a Banach disk of $K(\Sigma, X)$ in a neighbourhood of the origin in E. If X is ultrabornological, then V absorbs the closed unit ball of $S(\Sigma, X)$.

PROOF. If V does not absorb the unit sphere of $S(\Sigma, X)$, there is some $f_1 \in S(\Sigma, X)$ with $||f_1|| = 1$ such that $f_1 \notin 2V$. Let $\{\Omega_{1,1}, \Omega_{1,2}, \ldots, \Omega_{1,k(1)}\}$ be a partition of Ω by non-empty sets of Σ such that f_1 takes a different constant value in each $\Omega_{1,i}$ with $1 \le i \le k(1)$. Since $S(\Sigma, X)$ is the topological direct sum of the subspaces $S(\Sigma/\Omega_{1,i}, X)$, $1 \le i \le k(1)$, there is some $m(1) \in \{1, 2, \ldots, k(1)\}$ such that V does not absorb the unit sphere of $S(\Sigma/\Omega_{1,m(1)}, X)$. Hence, there is some $f_2 \in S(\Sigma/\Omega_{1,m(1)}, X)$ with $||f_2|| = 1$ such that $f_2 \notin 4V$. Then, we choose a finite partition $\{\Omega_{2,1}, \Omega_{2,2}, \ldots, \Omega_{2,k(2)}\}$ of $\Omega_{1,m(1)}$ by non-empty sets of Σ such that f_2 is constant in each set $\Omega_{2,1}$, $1 \le i \le k(2)$ and takes a different value. This way we obtain a normalized sequence (f_n) of Σ -simple functions and a sequence $(\Omega_{n,m(n)})$ of sets in Σ such that, for each $n \in \mathbb{N}$.

- (i) supp $f_{n+1} \subseteq \Omega_{n,m(n)}$
- (ii) f_n is constant in $\Omega_{n,m(n)}$
- (iii) $\Omega_{n+1,m(n+1)} \subseteq \Omega_{n,m(n)}$
- (iv) $f_n \notin 2nV$

Now set
$$E_n := \Omega_{n,m(n)}$$
 and define $P := \bigcap_{i=1}^{\infty} E_n$.

Suppose first that P is not empty. If x_n denotes the constant value of f_n in E_n , define $h_j(\omega) = f_j(\omega)$ if $\omega \notin P$ and $h_j(\omega) = x_j$ if $\omega \in P$ for each $j \in \mathbb{N}$. Then, we write $g_j := h_j - x_j e(P)$ for each $j \in \mathbb{N}$. Notice that supp $g_n \subseteq E_{n-1} \setminus P$ for each $n \in \mathbb{N}$ and $\cap \{E_n \setminus P, n \in \mathbb{N}\} = \emptyset$. Since $x \to e(P)x$ is an isometry from X into $K(\Sigma, X)$, the ultrabornological property of X leads to the existence of some $r \in \mathbb{N}$ such that $x_i e(P) \in rV$ for each $i \in \mathbb{N}$. Hence, $x_n e(P) \in nV$ for each $n \ge r$ and, consequently, $g_j \notin jV$ for each $j \ge r$. If $P = \emptyset$, then for each $j \in \mathbb{N}$ define $g_j(\omega) = f_j(\omega)$ for all $\omega \in \Omega$. So $g_j \notin jV$ for each $j \in \mathbb{N}$.

As in both cases $\|g_j\| \leq 1$ for each $j \in \mathbb{N}$ and each point $\omega \in \Omega$ belongs at most to finitely many supports of functions of the sequence (g_j) , we proceed as in the end of the proof of Lemma 1 to show that $\left\{\sum_{j=1}^{\infty} \xi_j g_{r+j}, \xi \in B_{l_1} \right\}$ is a Banach disk of $l_{\infty}(\Sigma, \hat{X})$ contained in $K(\Sigma, X)$. Again this yields some integer q > r such that $g_q \in qV$, a contradiction.

THEOREM 2. $K(\Sigma, X)$ is ultrabornological if and only if X is an ultrabornological space.

PROOF. Assume that X is ultrabornological but $K(\Sigma, X)$ is not and let V be an absolutely convex set in $K(\Sigma, X)$, meeting each Banach space E generated by a Banach disk of $K(\Sigma, X)$ in a neighbourhood of the origin in E, which is not a neighbourhood of the origin in $K(\Sigma, X)$. There is some $f_1 \in K(\Sigma, X)$ with $||f_1|| = 1$ such that $f_1 \notin 2V$. We proceed by recurrence.

There is a partition $\{\Omega_{1,i}, i \in \mathbb{N}\}$ of Ω by non-empty sets of Σ such that f_1 is constant in each set $\Omega_{1,i}$. Then, by Lemma 1, there is an $n_i \in \mathbb{N}$ such that V does absorb the closed unit ball of $K(\Sigma/\cup\{\Omega_{1,n},n>n_1\},X)$. Consequently, V does not absorb the unit sphere of $K(\Sigma/\cup\{\Omega_{1,n},n\leq n_1\},X)$. Let $\Omega_1:=\cup\{\Omega_{1,n},n\leq n_1\}$ and choose some $f_2\in K(\Sigma/\Omega_1,X)$ with $\|f_2\|=1$ such that $f_2\notin 3V$. Then we choose a partition $\{\Omega_{2,i},i\in\mathbb{N}\}$ of Ω_1 formed by non-empty sets of Σ such that f_2 is constant in each $\Omega_{2,i}$, and use Lemma 1 again to obtain an $n_2\in\mathbb{N}$ such that V absorbs the closed unit ball of $K(\Sigma/\cup\{\Omega_{2,n},n>n_2\},X)$. Define $\Omega_2:=\cup\{\Omega_{2,i},i\leq n_2\}$. This way we obtain a normalized sequence (f_n) of functions of $K(\Sigma,X)$ and a sequence (Ω_n) of sets in Σ satisfying for each $n\in\mathbb{N}$ the following properties

- (i) supp $f_{n+1} \subseteq \Omega_n$
- (ii) $e(\Omega_n) f_n \in S(\Sigma/\Omega_n, X)$
- (iii) $\Omega_{n+1} \subseteq \Omega_n$
- (iv) $f_n \notin (n+1)V$

For each $j \in \mathbb{N}$ we set $g_j := f_j - e(\Omega_j) f_j$. Clearly, $e(\Omega_j) f_j \in S(\Sigma, X)$ for each $j \in \mathbb{N}$ and taking into account the previous theorem, there is not loss of genrality in assuming that $e(\Omega_j) f_j \in V$ for each $j \in \mathbb{N}$. This implies that $g_j \notin jV$ for each $j \in \mathbb{N}$.

It is clear that supp $g_i \cap \text{supp } g_j = \emptyset$ if $i \neq j$, and it is not difficult to see from this fact that the closed linear span $[g_j]$ in $l_{\infty}(\Sigma, \hat{X})$ of the sequence (g_j) is a copy of c_0 which is contained in $K(\Sigma, X)$. Now this leads to the existence of some $k \in \mathbb{N}$ such that $g_k \in kV$, a contradiction.

If $K(\Sigma,X)$ is ultrabornological, X is ultrabornological, since the map $\delta_{\omega}: K(\Sigma,X) \to e(\Omega)X$ defined by $\delta_{\omega}(f) = f(\omega)e(\Omega)$ is a continuous projection for each $\omega \in \Omega$.

COROLLARY 1. Suppose that every linear functional on $l_{\infty}(\Sigma, X)$ which is bounded on every Banach disk of $l_{\infty}(\Sigma, X)$ and vanishes on $K(\Sigma, X)$ is identically zero. Then the space $l_{\infty}(\Sigma, X)$ is ultrabornological if and only if X is ultrabornological.

PROOF. If X is ultrabornological, this is a consequence of the previous theorem and of §35.7.(5) of [4] since, as we have noticed above, $K(\Sigma, X)$ is dense in $l_{\infty}(\Sigma, X)$. On the other hand, if $l_{\infty}(\Sigma, X)$ is ultrabornological, the same reasoning as above shows that X is ultrabornological.

COROLLARY 2. $l_{\infty}(X)$ is ultrabornological if and only if X is an ultrabornological space.

PROOF. This is also an obvious consequence of Theorem 2, since this space coincides with the space $K(2^{N}, X)$.

ACKNOWLEDGEMENT. The author is very grateful to the referee.

REFERENCES

- 1. J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, GTM No. 92, 1984.
- 2. J. C. Ferrando, On the barrelledness of the vector valued bounded function space, J. Math. Anal. Appl., to appear.
- 3. J. Freniche, Barrelledness of the space of vector values and simple functions, Math. Ann. 267 (1984), 479-486.
- 4. G. Köthe, Topological Vector Spaces, II, Springer-Verlag, 1979.
- 5. J. Mendoza, 1982 Barrelledness conditions on $S(\Sigma, E)$ and $B(\Sigma, E)$, Math. Ann. 261 (1982), 11-22.
- P. Pérez Carreras and J. Bonet, Barrelled Locally Convex Spaces, Notas de Matemática No. 131, North Holland, 1987.

E. U. INFORMÁTICA
DEPTO. MATEMÁTICA APLICADA
UNIVERSIDAD POLITÉCNICA DE VALENCIA
APARTADO 22012. E-46071 VALENCIA
SPAIN