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ON THE ULTRABORNOLOGICAL PROPERTY OF THE
VECTOR VALUED BOUNDED FUNCTION SPACE

J. C. FERRANDO*

Abstract.

IfQis aset, 2 a g-algebra of subsets of 2 and X is a normed space, we show that the space K(Z, X) of all
bounded X-countably valued Z-measurable functions on Q endowed with the supremum-norm is
ultrabornological if and only if X is ultrabornological. As a consequence, the space /,(X) of all
bounded sequences in X with the supremum-norm is ultrabornological if and only if X is ultra-
bornological.

In what follows Q will be a set, Z a g-algebra of subsets of £ and X a normed
space. By S(Z, X) we shall denote the X-valued X-simple function linear space
over the field K of the real or complex numbers. An X-valued function defined on
Qis Z-measurable if it is the pointwise limit of a sequence of X-valued Z-simple
functions. By [ (X, X) we shall represent the linear space over K of all bounded
X-valued Z-measurable functions defined on Q. Both linear spaces are supposed
provided with the norm

111 = sup {| f(@)l, 0 e 2}

On the other hand, B(Z, X) will stand for the closure of S(Z, X)in [ (Z, X). By
K(Z, X) we shall denote the (dense) subspace of [ (%, X) formed by all countably
valued functions. If X' is infinite, these two subspaces of [ (X, X) verify that
K(Z,X) < B(Z, X) only if X is finite-dimensional. Assuming that X is a Banach
space, this is an easy consequence of Mazur’s theorem, [ 1, p. 39] and Rosenthal’s
I;-theorem, [1, p. 201]. Finally, by [(X) we shall denote the linear space of all
bounded sequences in X provided with the supremum-norm.

It was been shown in [3] that the space S(Z, X) is barrelled if and only if X is
finite-dimensional, in [5] it has been proved that B(Z, X) is barrelled if and only if
X is barrelled, in [6, p. 149] it is shown that [ (X) is barrelled if and only if X is
barrelled and in [2] it has been proved that [ (2, X) is barrelled if and only if X is
barrelled.
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It is not known whether or not some of these spaces are ultrabornological
whenever X is an ultrabornological space. In what follows we shall prove that the
space K(Z, X) is ultrabornological if and only if X is ultrabornological. Then,
since I, (X) coincides with K(2V, X), it follows that this space will be ultrabor-
nological if and only if X is ultrabornological. But first of all, let us recall what is
an ultrabornological space.

Assuming that E is a Hausdorff locally convex space over K and Bis a Banach
disk, we denote by Ep the Banach space constituted by the linear hull of
B provided with the norm of the Minkowski functional of B, and by # we denote
the familly of all Banach disks in E. The space E is said to be ultrabornological,
[4, p. 70], if it is the locally convex hull of the familly {Ej, B %}.

If A < Q, e(A) will stand for the indicator function of A.

Before we start our discussion, we must take into account the two following
observations:

a) K(Z, X) is a dense subspace of I,(Z, X).

b) If fe K(Z, X) and {x,} is the bounded sequence of its different values, then
fY(x,)eZ for all neN.

Indeed, if fel (Z,X), f is the pointwise limit of a sequence of Z-simple
functions and hence f(Q) is norm separable. If (x,) is a dense sequence in f(£2),
givene > 0and neN, we set E,:= {weQ: | f(w) — x,|| < &}. Since, as it can be
easily proven, o — || f(w) — x,| is a scalar Z-measurable function, then E,e X
for each neN. Defining g(w) = x, if weE,\U{E;, 1 <i<n—1} we have
geK(Z,X) and |f—g| <e which shows a). On the other hand, if
feK(Z, X)\S(Z, X), setting Y:= sp{f(£2)} and choosing a weak*-total sequence
{yrjeN} in Y* then A4,;:={weQ, yif(®w)=yfx,}eX, consequently,
f™1(x,) = n {4, .je N} e Z. This shows b).

LeMMA 1. Let {A,,ne N} be a sequence of non empty pairwise disjoint elements
of Z. If V is an absolutely convex subset of K(Z, X) which meets each Banach space
E generated by a Banach disk of K(Z, X) in aneighbourhood of the originin E, there
exists anme N such that V absorbs the closed unit ball of K(Z/ U {As,n > m}, X).

PROOF. If the property is not true ¥ does not absorb the closed unit ball
of K(Z/u{A,n> p},X) for each peN. Hence, for each peN there is
f,€K(Z/u{A,n > p}, X) such that || f,|| = 1 andf,,épV

As (f,) is a bounded sequence in K(Z, X), the series Z & f; converges in the
completion I, (Z, X) of K(Z, X) to some h, for each tel I Clearly, h, takes at most
countably many values since for each w € Q2 the sum Z &, fi(w) is finite. Hence,

he(w)e X for each weQ and h;e K(Z, X). This proves that the Banach disk

1
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{ Z &S le B,‘} of I, (Z, X)is contained in K(Z. X). From this we obtaina ke N

i=1

such that f, e kV, a contradiction.

THEOREM 1. Let V be an absolutely convex subset of K(Z, X) which meets each
Banach space E generated by a Banach disk of K(Z, X) in a neighbourhood of the
originin E. If X is ultrabornological, then V absorbs the closed unit ball of S(Z, X).

Proor. If V does not absorb the unit sphere of S(Z,X), there is some
f1€8(Z, X)with || f;|| = 1such that f; ¢2V. Let {Q, ;,Q, ,,...,Q 4} be a par-
tition of 2 by non-empty sets of 2 such that f; takes a different constant value in
each Q, ; with 1 < i < k(1). Since S(Z, X) is the topological direct sum of the
subspaces S(Z/9, ;, X),1 < i < k(1), thereissome m(1)e {1,2,...,k(1)} such that
V does not absorb the unit sphere of S(X/Q; ), X). Hence, there is some
f2€8(Z/Q4 muy, X) with || f5]| = 1 such that f,44V. Then, we choose a finite
partition {Q; 1,25 3,. .., 23 x2)} Of Q4 ) by non-empty sets of X such that f is
constant in each set 2, ;, 1 < i < k(2) and takes a different value. This way we
obtain a normalized sequence (f,) of 2-simple functions and a sequence (£2, ;)
of sets in X such that, for each neN.

(@) supp fo+1 S Cnmm

(ii) f, is constant in Q,

(i) 2n+ 1 men+1) S Cnmew

@iv) f,é2nV
Now set E,: = Q, . and define P:= ﬂ E,.
i=1

Suppose first that P is not empty. If x, denotes the constant value of f, in E,,
define hj(w) = f;(w)if w ¢ P and h;(w) = x; if w € P for each je N. Then, we write
g;j:= h; — x;e(P)for each je N. Notice that suppg, < E,_; \ P foreachne N and
N {E,\P,neN} = Q. Since x — e(P)x is an isometry from X into K(Z, X), the
ultrabornological property of X leads to the existence of some re N such that
x;e(P)erV for each ie N. Hence, x,e(P)enV for each n = r and, consequently,
g;¢jV for each j > r. If P = @, then for each je N define g;(w) = fj(w) for all
we. So g;¢jV for each jeN.

Asinbothcases ||g;| < 1foreachjeN and each point w € Q2 belongs at most to
finitely many supports of functions of the sequence (g;), we proceed as in the end

of the proof of Lemma 1 to show that {Z $igr+ j,éeB,l} is a Banach disk of
ji=1

1,(Z, X) contained in K(Z, X). Again this yields some integer g > r such that
d,€qV, a contradiction.

THEOREM 2. K(Z, X) is ultrabornological if and only if X is an ultrabornological
space.
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PROOF. Assume that X is ultrabornological but K (Z, X)is not and let V be an
absolutely convex set in K(Z, X), meeting each Banach space E generated by
a Banach disk of K(Z, X) in a neighbourhood of the origin in E, which is not
a neighbourhood of the origin in K(Z, X). There is some f, € K(Z,X) with
|fil = 1 such that f; ¢2V. We proceed by recurrence.

There is a partition {Q; ;i€ N} of 2 by non-empty sets of X such that f, is
constant in each set Q, ;. Then, by Lemma 1, there is an n;€ N such that V does
absorb the closed unit ball of K(Z/U {Q; ,, n > n,}, X). Consequently, V does
not absorb the unit sphere of K(X/U {Qy ,n < 1}, X). Let Q, := U {Q, ,,n < n,}
and choose some f;,e€K(Z/Q;,X) with | f,] =1 such that f,¢3V. Then we
choose a partition {Q, ;,ie N} of @, formed by non-empty sets of £ such that f; is
constant in each €, ; and use Lemma 1 again to obtain an n,eN such that
V absorbs the closed unit ball of K(Z/u {Q,,, n> n,},X). Define Q,:= u
{Q,,;,i < n,}. This way we obtain a normalized sequence (f,) of functions of
K(Z, X) and a sequence (Q,) of sets in X satisfying for each ne N the following
properties

() supp fo+1 € @,

(i) e(2,)fn€S(Z/2 X)

(iii) Q,.+, < Q,

(v) fud(n + 1)V

For eachjeN we set g;:= f; — e(Q;) f;. Clearly, e(2;) f;€ S(2, X) for each j N
and taking into account the previous theorem, there is not loss of genrality in
assuming that e(2;) f; V for each je N. This implies that g;¢jV for eachjeN.

It is clear that supp g; N suppg; = @ if i % j, and it is not difficult to see from
this fact that the closed linear span [g;]in [, (Z, X) of the sequence (g;) is a copy of
¢, which is contained in K(Z, X). Now this leads to the existence of some ke N
such that g, e kV, a contradiction.

If K(Z,X) is ultrabornological, X is ultrabornological, since the map
8,:K(Z, X) > e(2)X defined by 5,,(f) = f(w)e(R)is a continuous projection for
each we Q.

COROLLARY 1. Suppose that every linear functional on l,(Z,X ) whi'ch is
bounded on every Banach disk of 1,,(Z, X) and vanishes on K(Z,X)is identlcall.y
zero. Then the space | (Z, X) is ultrabornological if and only if X is ultrabornologi-
cal.

Proor. If X is ultrabornological, this is a consequence of the previqus theorefn
and of §35.7.(5) of [4] since, as we have noticed above, K(Z,X) is dense. in
1,(Z, X). On the other hand, if [, (%, X) is ultrabornological, the same reasoning
as above shows that X is ultrabornological.
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COROLLARY 2. 1 (X)is ultrabornological if and only if X is an ultrabornological
space.

Proor. This is also an obvious consequence of Theorem 2, since this space
coincides with the space K(2", X).
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