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MULTIVALUED HARMONIC MORPHISMS

SIGMUNDUR GUDMUNDSSON* and JOHN C. WOOD**

Abstract.

We define a notion of multivalued harmonic morphism & from a Riemannian manifold (M™, g,,) to
a surface N2. We show how @ defines a manifold M™ a map 7: M™ — M™, which is a local
diffeomorphism except on a closed subset E of M™, and a single valued harmonic morphism
¥ :M™ — N? covering all values of @. In the case of a space form M* we give some examples,
a classification theorem and discuss the behaviour of m on E. Higher dimensional examples are
mentioned in the last section.

1. Introduction.
In complex analysis one considers equations of the form
1.1 F(z,x) = w,

where F: N2 x M? — P2 is a non-constant holomorphic map from the product
of two Riemann surfaces M? and N2 to a Riemann surface P?,and w a fixed point
of P2, Away from points where 0F/dz = 0, (1.1) has local smooth solutions
z = ¢(x). Any such solution is holomorphic but, in general, not unique. Instead
we think of equation (1.1) as defining a “multivalued holomorphic function” z(x)
from M? to N2. Assuming that dF + 0 at points satisfying (1.1), the latter
equation defines a smooth surface

M?:={(z,x)e N* x M*|F(z,x) = w}.

This is the Riemann surface of z(x) in the sense that if 7 M? - M? denotes the
restriction of the natural projection (z, x) — x to N?, then there is a holomorphic
mapy: M2 — N2, such that any local solution z = ¢(x) of (1.1) on an open subset
U of M?, satisfies = ¢ o on n~*(U). In fact ¥ is simply the restriction of the

* Supported by the ORS and FCO award schemes. . )
** Partially supported by a CNRS grant at the Centre de Mathématiques, Ecole Polytechnique

(Palaiseau, France), the Institut des Hautes Etudes Scientifiques (Bures-Sur-Yvett/e{;rance), the
Université de Paris-Sud (Orsay, France) and by EEC contract number SCI-0105-C( >
Received July 26, 1992.



128 SIGMUNDUR GUDMUNDSSON AND JOHN C. WOOD

other natural projection (z, x) — z to M?2. The map = is locally diffeomorphic
except at the isolated points where dF/dz = 0. There it is locally of the form
z > z*, for some k e N. No local solution exists at the images of such points and
analytic continuation of a germ of a solution z = ¢(x) around such a point gives
a different germ. Examples are: M2 = N2 = P? = C (or C U {o0}) with F(z, x) =
x — 22 = 0,and M? = C\{0}, N?> = P? = C with F(z,x) = x — & = 0, defining
the multivalued holomorphic functions z = \/;, z = log x and their Riemann
surfaces, respectively.

In this paper we generalize the above situation to higher dimensions by using
the idea of a harmonic morphism. Harmonic morphisms n:(M™, g) — (N", h)
between Riemannian manifolds are maps which pull back germs of real-valued
harmonic functions on N to germs of real-valued harmonic functions on M. They
can be characterized as those harmonic maps which are horizontally conformal,
see Lemma 2.3.

Harmonic morphisms 7 : M™ — N2 to surfaces have many nice properties. For
example: (i) The condition of = being a harmonic morphism depends only on the
conformal structure of N2, so if N2 is oriented we can take it to be a Riemann
surface. (ii) Every regular fibre of such a map is a minimal submanifold of M™, see
[Bai-Eel]. (iii) Holomorphic maps from Kéhler manifolds to Riemann surfaces
are harmonic morphisms ([Fug] §11). (iv) When M? and N? are Riemann
surfaces, the harmonic morphisms ©: M? — N2 are precisely the +holomorphic
(i.e. holomorphic or antiholomorphic) maps. Harmonic morphisms can there-
fore be seen as a higher dimensional generalization of +holomorphic maps
between Riemann surfaces.

Our first observation is the following:

THEOREM 1.1. Let (M™, gy), (N2, gn) and (P2, gp) be Riemannian manifolds with
dim N? = dim P? = 2, and let G: N?> x M™ — P? be a harmonic morphism in each
variable separately. If w is a fixed point on P? and dG + 0 on G~ *(w), then any
smooth local solution ¢:U — N2, z = ¢(x) to the equation

(1.2) G(z,x) = w,
defined on an open subset U of M™, is a harmonic morphism.

In general there is not a unique solution to equation (1.2); we need the
following concept:

DEFINITION 1.2. Let (N") be the set of all closed subsets of N". By a multivalued
harmonic morphism ® from M™ to N" we shall mean a mapping &: M™ — €(N"),
such that any smooth map ¢:U — N" defined on an open subset U of M"™
satisfying ¢(x) e ®(x) for all x € U is a harmonic morphism. Such a map ¢ is called
a branch of @.
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Theorem 1.1 says that the set-valued mapping &: M™ — %(N?) with &(x) =
{ze N*| G(z,x) = w} is a multivalued harmonic morphism.

DEFINITION 1.3. We call &: M™ — €(N?) given by &(x):= {ze N?| G(z,x) =
w} the multivalued harmonic morphism defined by equation (1.2).

In the case when M™ is an open subset of R™ and N? = C, a harmonic
morphism ¢: M™ — C is simply a map satisfying;

(1.3)

and
m a 2
(1.4 2 <—a;£> =0.

For this case with m = 3, Theorem 1.1 was essentiaily observed by Jacobi, see
[Jac]. Note that for m = 2, (1.4) is equivalent to the + Cauchy-Riemann equa-
tions and implies (1.3), confirming that the harmonic morphisms ¢:M?
R? = C - C are simply the +holomorphic maps.

We next construct the “Riemannian covering manifold” of our multivalued
harmonic morphism.

THEOREM 1.4. Let (M™, gy), (N2, gx) and (P, gp) be Riemannian manifolds, and
equip the product manifold N*> x M™ with the product metric gy X gu. Further, let
G:N?2 x M™ — P2 be a harmonic morphism in each variable separately. Suppose
that for some fixed weP? dG +0 along M™:=G *(w)={(z,x)eN* x
M™|G(z,x) = w}. Then M™ is a smooth submanifold of N> x M™. Further, there
exists a smooth map m: M™ — M™ and a harmonic morphismy : M™ — N such that
any smooth local solution ¢: U =« M™ — N*to G(z,x) = w (necessarily a harmonic
morphism by Theorem 1.1) satisfies y = ¢ om on = *(U).

The maps 7 and y are the restrictions of the natural projections of N 2 x M"to
M™ 7 is a local diffeomorphism except on the branching set or envelope E:=
{(z,x)e M™| dG,, = 0}, a closed subset of M™ (see Definition 2.2 for notation). If
(29,Xo) € E then there are no local solutions z = ¢(x) to (1.2) with zo = d{(xo)-
Analytic continuation of a local solution around E = n(E) in M" can give rise to
different solutions.

REMARK 1.5. Let &: M™ — %(N?) be the multivalued harmonic morphism
defined by equation (1.2). Then our construction provides a Riemannian mani-
fold M™ a map 7:M™— M™ and a single-valued harmonic morphism
W:M™ - N2 which covers all branches ¢:U — N? of @ in the sense that
¥ = ¢on on n~Y(U). In fact M™ is the graph of @, ie. M" = {z,x)eM™|z€
P(x)}.
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In §3 we discuss a more convenient but essentially equivalent approach in the
case that M3 is a simply connected space form R3, §3 or H3. In this case, harmonic
~morphisms to Riemann surfaces N2 are given locally by non-constant holomor-
' phic maps n: N? - %5, where %, is the space of oriented geodesics in M3,
' Conversely we shall think of such a map 5 as defining a multivalued harmonic
morphism from M?> to N? and will similarly construct a covering Riemannian
- manifold M? and a single-valued harmonic morphism y : M? — N2.

Note that our restriction to space forms is not artificial: It was proved in
Corollary 4.6 of [ Bai-Woo0-3], that for other Riemannian 3-manifolds there can
(even locally) exist (up to post-composition with a weakly conformal map) at
most two harmonic morphisms to surfaces. We therefore do not expect a very
rich theory of multivalued harmonic morphisms in this case!

In §§4 and 5 we give some examples illustrating various sorts of behaviour for
the projection maps n: M®> - M? for M® = R®and S. On the way, we character-
ize an interesting class of harmonic morphisms, namely radial projections and
members of the “outer disk family”, see Theorem 4.6. Then in §6 we describe all
the possible behaviour of 7 on its branching set E.

Finally in §7 we discuss briefly some higher dimensional constructions, es-

. pecially those coming from the second author’s description of all harmonic
morphisms from open subsets of R* to a surface in terms of holomorphic
functions, see [Woo].

The idea that a multivalued harmonic morphism should be covered by
a single-valued one defined on a Riemannian manifold covering its domain, is
contained in P. Baird’s articles [Bai-1] and [Bai-2]. The present paper can be
seen as a realization of that idea. We are grateful to P. Baird and J. Eells for
comments on this work, to G. Dethloff and J. Birman for useful conversations
and to V. Parmar for help with Superpaint. The second author thanks J.-P.
Bourguignon, M. Berger and J.-M. Coron for making his year-long stay in
France possible. Both authors thank the staff of the Institut des Hautes Etudes
Scientifiques where most of this work was done.

2. The covering construction.

In this section we show explicitly how a multivalued harmonic morphism from
M™ to N2 gives to a “covering Riemannian manifold” M™, a map n: M™ - M™
and a single-valued harmonic morphism  : M™ — N2,
Throughout this paper we assume that all our objects such as manifolds,
metrics and maps are smooth, that, in the C®-category. Let M = (M™, gy),
- N =(N",gy) and P = (P?,gp) be Riemannian manifolds of dimensions m, n,
p respectively. Further let the product manifold N" x M™ be equipped with the
product metric gy X gy.
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DEFINITION 2.1. For a smooth map ¢:M™— N" and xe M™ let V¢:=
Kerdg, = T,M™and HY = (V)" < T,M" Further let C,: = {xe M™|dg,, = 0}
and M*:= M™\ C,. Then C, is called the critical set of ¢. The map ¢ is said to be
horizontally weakly conformal on M™ if there exists a function 1: M* — R* such
that A2gp(X, Y) = gn(dd(X),de(Y))forall X, Ye H?,and x e M* . If ¢ is horizon-
tally conformal, then V¢ := {V? | xe M*} and H* := {H? | xe M*} are distribu-
tions on M*, called the vertical and horizontal distributions of ¢. Setting A = 0 on
C, determines a continuous function 1: M™ — R, called the dilation of ¢, with
4% = |d¢|?/n smooth.

We shall frequently use the following fact proved independently in [Fug] and
[Ish]:

LEMMA 2.2. 4 smooth map ¢: M™ — N" is a harmonic morphism if and only if
(1) ¢ is a harmonic map, and
(2) ¢ is horizontally weakly conformal.

DErFINITION 2.3. Let G:N" x M™ — P? be a map. For ze N" and xe M™ we
denote by G,: M™ — P? and G, : N" — PP the maps given by G,:y — G(z, y) and
G.:w — G(w,x), respectively. G is said to be a harmonic morphism in each
variable separately if G,: M™ — P? and G, : N" — P? are harmonic morphisms for
every ze N" and xe M™.

REMARK 2.4. If f:U < PP — R is a function and G:N" x M™ — P? a smooth
map, then it is easily verified that

Ay x ([ 2 G)(z, %) = A(f ° G)(2) + Au(f° G:)(x)

for all (z, x)e N* x M™. Thus if G is a harmonic morphism in each variable
separately, then it is a harmonic morphism as a map from the product manifold.

Note that if n = p = 2, then the hypothesis that G,: N 2 - P? be a harmonic
morphism is equivalent to G, being weakly conformal.

We now establish a result which is actually more general than that of Theorem
1.1.

PROPOSITION 2.5. Let (M™, gy), (N2, gy) and (P2, gp) be Riemannian manifolds
and G:N? x M™ — P? a harmonic morphism in each variable separately. Let
¢:U < P2 x M™ — N2, be a local solution to the equation

2.1 G(z,x) = w,
that is,
(2.2) G(p(w, x),x) = W

for all (w, x) on some open subset U of P2 x M™ Then ¢ isa harmonic morphism in

each variable separately.



132 SIGMUNDUR GUDMUNDSSON AND JOHN C. WOOD

Proor. Let z = ¢(w,x) be a local solution to (2.1) through (wy, x,); write
2o = ¢P(wo, Xo). If we differentiate equation (2.2) with respect to w we obtain
dG,°d¢, = Idrp. Hence dG, # O for all (z, x) in some neighbourhood of (zq, x,).
Further since G, is a harmonic morphism, dG, is conformal, so d¢, is conformal.
Thus, since dim N? = dim P? = 2, ¢, is a harmonic morphism.

To prove that ¢,,: M™ — N? is a harmonic morphism, we show that it is
horizontally conformal and harmonic. Firstly, since G, is conformal and non-
constant in a neighbourhood of (z,, x¢) and our problem is local, we can without
loss of generality assume that N2 and P? are oriented and that G, is holomorphic.
Then we may choose local complex coordinates z and w on N? and P? in
neighbourhoods of z, and w, respectively, and normal coordinates x =

(x1,...,x,) centred at the point x, € M™. In a neighbourhood of (x¢, wy) a local
solution ¢ :(x, w) — z satisfies
(2.3) G(z(x, w), x) = w.

Differentiating with respect to x; gives:

0G 0z 0G
;(2'4) 73?—6—;,— + ‘a“x—l‘ =0.

"Now as noted above dG, = 0G/0z % 0, so

o __(96)' a6
ox; 0z ox;’
Since G, is a harmonic morphism it is horizontally conformal, that is
™ (0G/0x;)* = 0 at x,, thus at that point,

0z \?
(T) =0

Differentiating (2.4) with respect to x; gives:

%G (62 )2 0G 9*z  0*G

/ 22 \ox,) " oz axt | ox?

Mz

2.5)

=0.

Summing using (2.5), we have at x,,

oG . 0%z m?G
AL

! i=1

Since 0G/0z # 0 and the last term vanishes we conclude that

(2.6) Y 57=0
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At the point x,, (2.5) and (2.6) are the conditions for horizontal conformality and
harmonicity respectively. Thus by Lemma 2.2, ¢,, is a harmonic morphism.,

The proof of Theorem 1.1 is similar, except that now dG # 0 is required to
ensure that 0G/0z + 0, for if 0G/0z = 0 then by (2.4) 6G/dx; = 0 for all i, so that
dG = 0, contradicting the hypothesis.

For the map G:N? x M™— P? and a point we P?, define

M™ = M7:={(z,x)e N* x M"|G(z,x) = w},

andlety = 7y |jpm: M™ - N?and o = 7, |j7m: M™ — M™ be the restrictions of the
natural projections 7z, : N2 x. M™ — N?and n,: N> x M™ - M™ to M™. We call
the closed subset E: = {(z, x) e M™| dG, = 0} of M™ the envelope (or branching set
upstairs) of G and its image E = n(E) in M™, the geometric envelope (or branching
set downstairs). Further let F:= {(z,x)e M™|dG, = 0}.

The next result is an expanded version of Theorem 1.4, and explains how M™is
the “covering Riemannian manifold” of the multivalued harmonic morphism
defined by equation (1.2).

PROPOSITION 2.6. Let G:N? x M™ — P2 be a harmonic morphism in each
variable separately. Suppose that for some we P2, dG # 0 along M™:= G~ '(w).
Then, with notations as above,

(1) M™ is an m-dimensional minimal submanifold of N 2 x M™,

(2) m: M™ — M™ is a local diffeomorphism except on E,

3) y: M™ — N2 is a harmonic morphism with critical set F,

(@) any local solution ¢: U = M™ — N2 of equation (1.2), necessarily a harmonic
morphism by Theorem 1.1, satisfies y = ¢omonn™*(U).

Proor. First note that the tangent space of M at (z,x) is given by

T, oM = {(Z,X)e T,N* x T,M™|dG(Z,X) = 0}
= {(Z,X)e T,N? x T,M™|dG,(X) + dG.(2) = 0}.

(1) Since Gis a harmonic morphism (see Remark 2.4), it is horizontally weakly
conformal, so the fact that dG £ 0 on M™ implies that dG is surjective. It follows
from the implicit function theorem that M™ is an m-dimensional submanifold of
N? x M™ That Ni™ is minimal is a consequence of Theorem 5.2 of [Bai-Eel] as
mentioned in the introduction. .

(2) Since M™and M™ have the same dimension, we only have to show thflt dnis
surjective outside E. Let (z,x)e M™\E and let X € T, M™ be non-zero. Since G,
is a harmonic morphism, dG, + 0 means that dG; is non-singular. Let MZ =
—(dG,)~1 0 dG,(X)e T.N?, then dGy(Z) + dG,(X) = 0, s0 (Z, X)€ Tz yM" and
dn(Z, X) = X. Thus dn is surjective.
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' (3) We look first at points (z, x) € F. There the tangent space of M™ is {(0,X)e
T,N* x T,M™}, so clearly d = 0 on F.

On the other hand let (z,x)e M™\F, then we have Yy !(z)=
{(z,x)e M™|G(z,x) = w}, so that the vertical space V!, at (z,x) e M™ with
respect to ¥ is given by V¥, = {(0,X)e T, ,M™| X e VS}. Hence HY,,, =
{(Z,X)e T, yM™| X e HS=}. Given Ze T,N?, there exists exactly one X € HS-
such that dG.(X) + dG,(Z) = 0, namely X = —(dG.|yG:)" 1o dG,(Z). From this
it is clear that dy/|gy__ :HY, ., — T,N? is given by

(Z,X) = (Z, —(dG,|u8x)" ' 2 dG(Z)) — Z.

Since dG, |46- and dG, are conformal, this shows that y is horizontally confor-

mal.
As regards the harmonicity of , note that i is the composition of the inclusion
i and the projection 7,,

' Yy:M™ —5 M™ x N* %2, N2,
‘Now the composition law for the tension field (see [Eel-Sam]) is:
() = trace Vdn,(di, di) + dn,(z(i)).

The first term is zero since 7, is totally geodesic; also M™ is minimal in N2 x M™
so that (i) = 0. Hence ¥ is harmonic, and since horizontally weakly conformal,
a harmonic morphism.

(4) To say that ¢ is a local solution on U = M™, means that G(¢(x), x) = w for
all xe U. Thus (¢(x), x) € M™ and Y($(x), x) = P(x), i.e. y = ¢pom on =~ 1(V).

REMARKS 2.7. (i) For an interpretation of the last result in terms of the
multivalued harmonic morphism @: M™ — €(N") defined by equation (2.1) see
. Remarks 1.5. Following on from that, we shall call M™ the covering manifold,
n the projection and  the covering harmonic morphism of the multivalued
harmonic morphism defined by equation (2.1). :
. (i) If (M™, gy,)is real analytic, then E is a real-analytic subset of M™. Further,
,analytic continuation of a branch ¢ of @ (i.e. local solution of (2.1)) clearly gives
another one. We might therefore hope to construct M™ by analytic continuation
.of branches of @ in the manner of §16.A. of [Ahl-Sar]. However this procedure
cannot give the envelopes E and E since analytic continuation in M™ to a point on
the envelope E is not, in general, possible. Our procedure, gives the whole of the
covering manifold M™.
(iii) For a geometrical interpretation of the envelope E see Remarks 3.3 (i) and
6.3.
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Regarding the various dilations and their behaviour near £ and F’ s let (z,x)e
M™ lie outside the two disjoint subsets £ and F of Nf™ and let (Z, X) e HY, ... Then
there exists a local solution ¢ : U = M™ — N2, such that xe U and ¥ =gdomon
anappropriate open neighbourhood ¥V of (z, x). For the tangent maps we have the
following commutative diagram:

(Z,X)eHY,

dTClH}‘,,x) / w

XeHS-=H¢ 2, ZeT,N

For the dilation 44(x)e R* we have 44 *1X| = |Z|. From the above diagram it is
easy to see that the dilation 4, of  and the conformality factor Ax,, of dm| HY,
satisfy: '

1 _ A
V14 3(x) 1+ 43x)
From these last equations, we can see how the functions A, and 1, behave near
the envelope E and near F. As(z, x) - E, then Azg(2,x) = O confirming that points
of E are critical points of 7, the dilation of any local solution must tend to infinity
but the dilation A, stays finite and is, in fact, 1 on E. On the other hand at a point
(z,x) of F, the dilation of ¥ and of any local solution ¢ is zero, these having branch
points, but = is a local diffeomorphism with 4,,(z,x) = 1.

(2.7) Ar,(z,x) = €(0.1) and Ay(z,x) = €(0,1).

REMARK 2.8. For later use, note that = maps the fibre y ~!(z) isometrically on
to the fibre ¢ ~1(z), and at a point (z, x) € E, (Ker dn), ) = HY, ), so that = has
rank m — 2 at (z, x).

3. Multivalued harmonic morphisms from 3-dimensional space forms.

In [Bai-Woo-3] it is noted that, if M is a space form, then there exist locally
many harmonic morphisms from M3 to a surface. On the other hand, it was
shown in [Bai-Woo0-3] that if M3 does not have constant curvature, there are at
most two. Here we develop a theory of multivalued harmonic morphisms from
such a space form in a related, but slightly different, fashion to that of §2. It will be
convenient to have both desciptions when presenting examples later on.

Let M? be a simply-connected space form, that is, R3, S3or H>. Thgn G s, the
space of oriented geodesics of M3, is a complex manifold of dimension 2. For
example the space %gs can be identified with the tangent bundlt? of the ?-sphsre
TS%. As in [Hit], a point (y,c)e T S? corresponds to the onen'ted line with
direction y € S2 and “origin” ce T,Sz, this giving the point on the line nearest to
the origin 0 R3. Similarly, since every oriented geodesic of S 3 corresponds to an

1
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oriented 2-plane of R* through the origin, %ss can be identified with the Grass-
mannian G,(R*) of such 2-planes. The space G,(R*) can then be identified with
S? x 52, see [Hof-Oss]. Finally %5 can be identified with S2 x §2\ 4, where 4 is
the diagonal in $2 x §2, for this see [Bai-Woo0-2].

Nowlet ¢: U = M? - N? be a non-constant harmonic morphism from a convex
open subset U of M? to a Riemann surface N2. We can assume without loss of
generality that ¢ is surjective and has connected fibres; indeed, an arbitrary
non-constant harmonic morphism can be factorized into the composition of such
amap and a weakly conformal map between surfaces — for this see Theorem 2.20
of [Bai-Wo00-2]. Then we can define a map n: N2 — %, by setting 5(z) to be the
oriented geodesic containing the geodesic segment ¢ ~1(z) endowed with the
orientation which, together with the lift of the orientation of N2 to the horizontal
spaces, gives the standard one on M. Because of the conformality of the foliation
whose leaves are the fibres of ¢, # is holomorphic, see Proposition 2.4 and Lemma
2.7 of [Bai-Woo0-2].

Lemma 3.1. Every non-constant harmonic morphism up to post-composition
with weakly conformal maps N? — N2, arises in this way for a suitable
7:N? > Gy

Conversely, let n: N2 — 9,3 be a non-constant holomorphic map. Then every
smooth map ¢:U — N%, from an open subset U of M3 such that
¢~ Y2) = n(z) n U (or equivalently, writing z = ¢(x), such that

(3.1) xen(z)

where x € U and ze N?) is a submersive harmonic morphism. We call such a map
¢ a local solution to i (or to (3.1)). Thus a local solution has fibres given by #.
However, since any x € U may lie on several geodesies #(z), local solutions are not,
in general, unique. We therefore make a similar construction to that in Proposi-
tion 2.4:

THEOREM 3.2. Let n:N? - %ys be a non-constant holomorphic map. Set
M?3:={(z,x)e N> x M*|xen(z)} and let n: M - M?> and \y: M* — N? be the
natural projections (z, x) — z respectively. Then

(1) M?3 is a 3-dimensional submanifold of N* x M?,

(2) m is a local diffeomorphism except on a real-analytic subset E of M*, called
the envelope,

(3) ¥ is a submersive harmonic morphism,

(4) any local solution ¢:U = M>® — N2 to  satisfies y = ¢pon on n~*(U).

Proor. This can be given an invariant proof, but it is useful to demonstrate the
construction in the case of M3 = R?; the S* and H? cases are similar.
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Given a non-constant holomorphicmap #: N? - %, = TS2, we can write nas
n(z) = (¥(2), c(2)), where y: N 25 8%sa holomorphic map and cis a holomorphic
vector field along y. If 6: §2 — C U {00} is the stereographic projection from the
south pole (0,0, —1)eS?, setting g = 6oy and h = do,° c gives meromorphic
functions g, h: N> > C U {00} such that

(3.2 h is finite if g is, and lim h(z)/g*(z) is finite if g(z,) = co.

x=zo

Then by [Bai-Woo-1], condition (3.1) is equivalent to:
(33 Glzx):=(1—g*@)x;, +i(l + g*(2)x; — 29(z)x3 — 2h(z) = 0.

To make sense of this equation at a pole zo € N* of g we must divide through by
g%(z) and treat it as a limit. Away from the poles of g, G defines a map
52 x R* - C which is a harmonic morphism in each variable separately. In
a neighbourhood of a pole of g we replace G by G/g? and the same is true. Then
our Theorem follows by applying Proposition 2.6 (with w = 0) “locally”.

REMARKS 3.3. (i) By the multivalued harmonic morphism defined by n we mean

the set valued map @: M> — G(N?) with &(x): = {ze N?| xen(z)}. Then we have
constructed a Riemannian manifold M3, a map n: M® - M? and a harmonic
morphism v : M3 — N2 which covers every value of @. As before we call M? the
covering manifold, n the projection and  the covering harmonic morphism of
the multivalued harmonic morphism .
(ii) The geometric envelope E can be interpreted as the envelope of the paramet-
rized family of geodesies {n(z)|z€ N?} in a classical sense, namely, the points
where geodesies “get infinitesimally close for adjacent values of the parameter”
(cf. [Bru-Gib]). In particular, at such points, the family of geodesies does not, in
general, form a smooth foliation (see §6 especially Remark 6.3). In contrast, if
(20, Xo) ¢ E, then the geodesies #(z) for z close to z, do form a smooth foliation near
xoand a local solution ¢ to  is given by the natural projection of this foliation (cf.
[Woo] Proposition 2.1).

It is useful to note that, under conditions (i) and (ii) below, a multivalued
harmonic morphism defined by 7 and a multivalued harmonic morphism defined
by a harmonic morphism G in each variable separately, are locally the same
thing. For let G:N? x M® > P? be a harmonic morphism in each variable
separately. Let we P and suppose that (i) dG, # Oforall(z,x)e M =G l(W)' Let
(29,X0) € M3. Then there is a neighbourhood U of xo and a holomorphlc. map
1:V < N* - %,,, defined on a neighbourhood V of zo, such that (z) is the
goedesic containing {xeU|G(z,x) = w}. Assuming that (i) n is non-constant, the
constructions of Theorem 3.1 and Proposition 2.4 then coincide. We shall find
both approaches useful in the sequel.
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4. Multivalued harmonic morphisms from R3,

As explained in §3, given a surjective submersive harmonic morphism
¢:U < R® - N? with connected fibres from a convex open subset of R3 to
a Riemann surface N2, we obtain a non-constant holomorphic map 7: N2 — %ps.
The map 5 can be represented by two meromorphic functions g,h on N2
satisfying conditions (3.2). Conversely, such a pair (g, h) determines n and thus
a multivalued harmonic morphism. We can therefore carry out the construction
of Theorem 3.1 to obtain a 3-dimensional Riemannian manifold R® covering R3
(or a subset thereof) and a harmonic morphism  : R — N2, such that every local
solution to (3.1) with xe R® and ze N?, is covered by y. Indeed R3 is the
submanifold of N2 x R3 given by equation (3.3) away from poles of g and, as
usual, the covering map 7 : R - R3 and the harmonic morphism ¢ : R> - N2 are
the restrictions of the canonical projections. We note the following:

PROPOSITION 4.1. The harmonic morphism y: R®> » N2 is a trivial principal
R-bundle over N2.

Proor. First note that the fibre of  at ze N? is the line {z} x L, = N* x R3,
where L, is the line in R® defined by #(z). As in §3, for each ze N2, let
YWz) = 6~ o g(z)and ¢(z) = do, ! > h(z). Then L, is the line in R? with direction y(z)
and “origin” ¢(z) € T,,,S*. Now we can define the action of teR on R3 to be the
translation through ty(z), so y:R3>— N2 is a principal R-bundle. Further
(z,t) > c(z) + ty(z) provides a global trivialization of it.

For the sake of examples, note that we have the following explicit formulae:

29 1—|gP?
1+1g1?" 1+ (g

h — hg? hg + hg )
c=2 , eC x R=R3.
((1 +191%? > —(1 + 1g1?)?

Further, the envelope E, and so E = dn(E), is determined by solving the equations

y=a“(g)=< )er R = R3,

@.1) . G(z,x) =0,
0G
4.2) E(z, x)=0

simultaneously with the usual replacement of G by G/g? near the poles of g. We
can now give some examples. For some of these examples the projection = is
a branched covering in the following sense (note that most authors require
further conditions on a branched covering, cf. [Rol]):
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DEFINITION 4.2. We call a smooth map 7: M — M? a branched covering if it is
a local diffeomorphism except on a submanifold £ of M? of codimension 2.
Furthermore, we say that n is branched at p € E with branching order k if there exist
local coordinates (z,£)e C x R centred on p and (w,t)eC x R centred on n(p)
such that = has the form

4.3) (@1 = (25).

ExampLE 4.3. (Orthogonal Projection). Let M*=R3 N2=C and
g,h:C — C be given by g:z + 0 and h:z — z/2. Then equation (3.3) becomes
Xy + ix, — z = 0. This has a global solution the single -valued harmonic mor-
phism z = x; + ix, which is an orthogonal projection. This means that the
covering manifold R3 = {(z,(x1,x,,%3))€C x R3|x, + ix, = z} is a 3-dimen-
sional subspace of R%. The envelope E = R is the empty set. The covering
harmonic morphism y : R* — C can be thought of as an orthogonal projection
R3 — R?, where the metric on the horizontal spaces has been multiplied by the
constant factor 2.

ExXAMPLE 4.4. (Radial Projection). Let M> = R3, N2 =Cu {0} = $? and
g,h:Cu{w} - Cu{co} be given by g:z— z and h:z + 0. Equation (4.1)
becomes

4.4) (g — ix5)z% 4 2x3z — (x; + ix;) = 0.

Solving this equation gives two local solutions g~ ! o z* : R*\{0} — S? given by

x — =+ x/|x| which are radial projection and its negative, well-known harmonic

morphisms, see [Fug]. We can think of (4.4) as defining a multivalued harmonic

morphism z(x), 2-valued away from 0, with these local solutions as branches.
It is easily seen that the covering manifold is

R3 = {(,x)eS* x R¥|x=tv forsome teR},
that is, the tautological bundle over S% this has an explicit trivialization
52 x R — R? given by (v, ) — (v, tv). The covering harmonic morphism ¥ is the
projection map of this bundle. The projection = : R* — R* is a double cover with
(v, x) = n(—v, x) except on the envelope E = S? x {0}. This means that the
geometric envelope E is the single point {0}. Thus on passing from R3 to R3 the
origin 0e R3 is “blown up” to an S

EXAMPLE 4.5. (The Outer Disk Family). Let M° = R®, N* = Cu{eo} = §°
and g,h:Cu {o} - Cu{oo} be given by g:z > z and h:zirz for some
reR*. Equation (3.3) is now:

4.5) (1 — 2%)x, + i(1 + z%)x, — 2zx3 — 2irz =0.

We can think of this as defining a multivalued harmonic morphism z(x) which is
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2-valued except on the zero set of the discriminant of this quadratic equation in
z where the two values coincide. This set gives the geometric envelope
E={xeR3|x?+ x3=r* and x3=0}. It is the circle of radius r in the
(x4, X3)-plane, whose centre is the origin 0 € R3. In this case £ = n~!(E), and £ is
also a circle. Outside E equation (3.3) has the two solutions:

(4.6) b st it JXE+ X+ X2 — 1 + 2irx,

X — ixy

If we choose / to be the principal square root (\/;F 1= \/ﬁe“” 2, where
fe(—mn,m)) on C\R,, then we obtain two harmonic morphisms z and
z;” defined on R3\D,, where D,:= {xeR3|x? + x5 < r? and x5 = 0} is the disk
in the (x,, x,)-plane with E asits boundary. For every (x,, x,, x3) € R*\ D, we have

zr+(x1,x2sx3) =2z, (—X1,X2, —X3)

so z; and z, are, up to isometries of R*\D, and S?, the same map. We call
{z;} :R*\D, —» S?|reR*} the outer disk family.
The map (y,c): $%2 — TS? = (C x R)? is given by

s 2z 1—z)? 2irz
0r9:e 1(Z)H((l+|z|2’1+|z12)’<1+|z|2’0>)'

In spherical polar coordinates (6, t) e [0,2n] x [ —n/2,7/2] — (e®cost,sint)e S,
this reads

(7,¢):(0,t) — ((€ cost,sin t), (ire’ cos t, 0)).
The covering manifold R3 is therefore parametrized by
(8,t,5) — ((€® cost,sint),(ire’’ cos t,0) + s(e” cos t, sin t))
where 0 €[0,2n],te [ —n/2,n/2] and se R. The fibre of z," at (¢” cos t, sint) e S? is
4.7 s > L(0,t,s):= (irecost,sint), seR™,

and the fibres of z;” are given by the same formula with se R ™. Note that z;" and
z; map a point (ire cost, 0) + s(e” cost,sint)e R*\D,, to (e’ cos t,sin ) e S so
they are both surjective.

Note that as r — 0, L(0, t, s) — s(e’ cos t, sin t), which shows that the foliation of
half-lines given by the fibres of z,* approaches the corresponding foliation for the
radial projection.

Let (x,0) be an arbitrary point in C x R. Then for |x| <r setting
t = cos 1 (|x|/r), we see that the fibres f*and f* of z," in the upper and lower half
spaces, with boundaries df* = df" = (x, 0) are orthogonal to the radius from (0, 0)
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to (x,0) and make an angle ¢ with the (x,, x,)-plane. As |x| increases from 0 to rt
decreases from 7/2 to 0. The fibres through a point (x,0) with |x| > r lie in the
(x1,x2)-plane and are tangent to the envelope E. Note that the direction of the
fibres changes discontinuously as we cross the disk D,.

Keeping x fixed and letting r — oo, we have that t — n;/2. In this sense the
foliation of z," approaches the corresponding one for the orthogonal projection.
Thus the outer disk family “interpolates” between the radial projection and
orthogonal projection.

Itis f,asily seen that = is a branched covering with branching order 2 on the
circle E.

It follows from Proposition 4.1 that the covering manifold R? is homeomor-
phic to 5% x R. This can also be seen directly as follows: The map
L*:8? x R* > R®\D, given by (4.6) is a homeomorphism, and so is
L™:8? x R~ - R®\D, given by the same formula. Extending these maps con-
tinuously to S? x {0} and glueing them together along this manifold gives
a homeomorphism L:S? x R - R We can thus think of R as being obtained
by glueing the two copies of R*\D, across D, in an analogous way to that used in
Riemann surface theory, the disk D, playing the role of a cut joining two branch
points. Indeed 6D, = E and D, is a Seifert surface in the sence of [Rol] where this
procedure of glueing across a Seifert surface to obtain a branched covering is
discussed. Note finally that the covering harmonic morphism y : R® — §2 is, via
the homeomorphism L, just natural projection S? x R — S2, showing how the
two branches zF can be glued together to form y.

Note that the solution z; : R3\D, — §? of (4.5) satisfies the following proper-
ties:

(1) it is surjective,

(2) it has connected fibres, and

(3) no two fibres are parallel as oriented line segments.

This is also true for the radial projections of Example 4.4. The following result
shows that, up to equivalence, any harmonic morphism satisfying these condi-
tions is one of these two examples.

THEOREM 4.6. Let ¢: U — N? be a harmonic morphism from an open subset of
R3 to a closed Riemann surface, satisfying conditions (4.8). Then N 2 is conformally
equivalent to S and, up to isometries of R® and conformal transformations of 8%,
¢ is a restriction of radial projection or a solution to (4.5) on a suitable domain U.

ReMARK. Conditions (2) and (3) can be replaced by the more general confii—
tions: (2) for each z e N2, ¢~ !(z)is contained in a single oriented line L, of R*with
the correct orientation induced on each component, (3) no two lines L, are
parallel as oriented lines.
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Proor. Condition (2) (or (2)) implies that ¢ is submersive, otherwise by
[Bai-Wo00-2], it would be locally of the form p o ¢ where @ is submersive and p of
the form z — z*. Such a composition clearly does not have connected fibres.
Then, as in§3, we obtain a holomorphicmap n: N? —» % withn(z) n U = ¢~ 1(2)
(or n(z) = L, in the case of condition (2)'). From the interpretation of g as giving,
via stereographic projection o, the direction of the fibres, condition (3) or (3) tells
us that 6" *og: N? — §? is injective and holomorphic, so bijective. Thus, up to
composition with a conformal transformation, N> = S and g is the identity map
g(z) = z. Since h represents the holomorphic vector field ¢ on S, h(z) must be
given by a quadratic polynomial in z. This can be written in the form

h(z) = <v(z), P,

where v(z):= (1 — z%,i(1 + z%),2z) for some p of C* where {,). denotes the
symmetric bilinear inner product on C* given by {z, w) : = z,w; + z,w; + z3w;.
Then equation (4.1) can be written in the neat form

(4.9) {v(2),x — pyc = 0.

Choose 4eS0O(3), such that 4-Im(p) = (0,0,r) for some r = 0. Then, on ap-
plying A, equation (4.9) becomes:

(4.10) (A v(z), A-(x — Re(p)) + (0,0,ir)>c = 0.

Now#:Cu {0} = §%2 — Q, given by #: z +— [v(z)] is simply the standard identi-
fication of §* = Cu {0} with the quadratic Q,:= {[z,,2,,23]€CP?|z? +
22 + z3 = 0} as in [Hof-Oss]. The linear map A defines an isometry Q, — Q,
which via the identification ¢ defines conformal map B =9~ o Ao #:5% — §?,
which is in fact an isometry. Setting B:= n~(4) where SU(2) % SO(3) is the
standard double cover, gives a matrix B of the form

a b
B=(—5 d)’

so that B:z — (az + b)/(—bz + a@). Thus A-i(z) = #(B(z)). Set w:= B(z) and
y:= A-(x — Re(p)). Then equation (4.10) reads {v(w),y + (0,0,ir))c = 0, which
isequation (4.5)forr > 0, or(4.4)for r = 0. In the latter case it is clear that ¢ must
be a restriction of radial projection or its negative. (For a more explicit proof see
[Gud]).

REMARKS 4.7. (i) Whether a solution to (4.5) on a given domain U satisfies
conditions (1), (2) and (3) of (4.8) depends on the domain. For example if we
choose a different square root in Example 4.3, for instance the one defined on
C\Rg, then we obtain different harmonic morphisms
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2+ 2—.
37,37 :R3\C, » §2

where C,:= {xeR*|r? < x? + x and x; = 0}. We call {87 :R3\C, - $%|re
R*} the inner disk family. 21 : R*\ C; — S is the map described in Example 2.9 of
[Ber-Cam-Dav], and in [Bai-1], [Bai-Wo0-1] as the disk example. The image
¥ (R*\C,) = S* of 3" is the upper hemisphere, so 3, is not surjective. Note that,
in contrast to the outer disk family, the direction of the fibres of 7 changes
continuously when crossing the disk D, but discontinuously when crossing C,,
this being another possible Seifert surface for the branched covering n: R* — R3.
More generally, we can find solutions to (4.8) on R*\ S, for any Seifert surface S,,
i.e. any surface with boundary the envelope E, the resulting harmonic morphisms
having very different properties according as S, is bounded or not.

(ii) On the way we have shown that,if N> = 52, g(z) = zand h(z) is a quadratic
polynomial in z, then (3.3) has solutions satisfying conditions (4.8). This is not
true, for example if N? = §2, g(z) = z and h(z) = z* (k Z 3). In this case (3.3) can
have no solution which is a surjective harmonic morphism to §2, since h cannot
represent a vector field at z = oo; indeed only quadratic polynomials in z define
vector fields globally on S2.

ExampLE4.8, Let M3 = R} N2 = Candg,h:C — Cbegivenbyg:z — zand
h:z +— z*/2 for some k = 3. Then G:C x R® - C is given by G:(z,x) — z* +
(; — ix3)z® + 2x32 — (x; + ix,). The projection x is therefore a k-fold covering
of R? except on the envelope E. As before one could use the map (y,¢):C -
TS? to get a parametrization of R® which we know by Proposition 4.1 is
homeomorphic to C x R = R3.

We are mainly interested in the geometric envelope E R3, for w{xich we give
a complete parametrization for any k 2 3. As before the envelope E is given by
solving two simultaneous equations:

(410) G(Za x) = _Zk - (x1 - ixZ)Zz - ZX3Z + (xl + ixz) = 0
and
(4.11) %—G—(z, x) = —kz*71 = 2(x; — ix;)z — 2x3 = 0.

z

It is easily shown that the geometric envelope E = n(ﬁ).lieski_n1 the union of
(k — 1) 2-planes in C x R given by P,:= spang{(0,1),e"™ " 0)}, where
ne{0,1,...,k —2}. Forne{0,1,...,2k — 3} define7,:C x C x R->C x CxR
by

T,:(z, w, x) = (&% Dz, (—~ 1)rein®®= Dy, (—1)"x),
n-* E s

then {z,|ne{0,1,...,2k — 3}} is a cyclic group of isometries of C x C x R of

1
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order 2(k — 1). Easy calculations show that pe E n P, if and only if 7,(p)e E n
Pumoak 1y This means that if one knows the part of the geometric envelope in
the plane P, = C x R, then one obtains the rest by applying the maps 1, to
E N P,. One can show that E n P, is parametrized by (x, y): R = R? with

(x) 0 = 1 <(k — 2kt —
y) 21+ t?) 2(1 — k)t :

In particular, E consists of 2(k — 1) such curves meeting at the origin, and so is
not a manifold, not even topologically. It follows that £ cannot be a manifold at
the origin. For the details of the above computations, see [Gud].

5. Multivalued harmonic morphisms from S> and H>.

Recall from §3 that a surjective submersive harmonic morphism from a convex
open subset U of S? to a Riemann surface determines a non-constant holomor-
phicmap 7:N? > %5 = G,(R*) = §? x S2. The components of § are meromor-
phic functions f, g on N2,

Conversely, such a pair f,g determines a map n so we can carry out the
construction of Theorem 3.1 to obtain a 3-dimensional Riemannian manifold §3
(or a subset thereof) and a harmonic morphism v : §* — N2 such that every local
solution to (3.1) with xe S® and z e N? is covered by y. In terms of f and g, the
condition x € n(z) reads

(5.1) @), x)=0
where
(5.2) Ei=s(f,9):=1+ fg,i1 — fg), f — g, —i(f + 9)).

Here {, )¢ denotes the symmetric C-bilinear inner product on C* given by
{(Z,W) =2z Wy + ZaWy + Z3W3 + ZgWy.

Note that if P:= {poles of f} U {poles of g} then setting G(z, x):= (&(z), x),
G:(N?\P) x §* - C is a harmonic morphism in each variable separately. The
manifold $* is the submanifold of N? x S* given by equation (5.1) away from
poles of f or g. As before, dividing by f and/or g yields an equation valid near
such poles.

PROPOSITION 5.1. For any meromorphic functions f, g on a Riemann surface N2,
the covering harmonic morphism \ :(z, x) — z is a principal S*-bundle over N* of
degree d = deg f — degg.

ProoF. The fibres of i are closed geodesics of $° all of length 27, indeed
¥~ 1z) = {z} x C,,where C, is the great circle of S* given by equation (5.1). Such
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fibres have a natural orientation, so that, together with Re &(z) and Im &(z), they
give an oriented basis for {z} x S° We define the action of ¢ € S! on each fibre of
§3 as rotation through +6. Thus y: 8% - N2isa principal bundle.

Regarding the degree, let us form the associated R%-bundle, i : R* — N2, given
as for S® by equation (5.1) but with x € R4; this is naturally oriented and y: §3 —
N?is its unit circle bundle. Regarding the degree of ¥, note that by Lemma 5.2,
Re &*/|Re &*| defines a section of  : §* — §? away from zeros of fand g. We may
calculate the degree of the bundle i : § — S? as the obstruction to extending
Re &*/|Re &Y over those zeros, see [Ste]. Checking orientation, it is seen that
a zero of f of order k and a zero of g of order I (possibly at the same point)
contributes k and —, respectively, to this obstruction, hence the result.

LEMMA 5.2. For the above situation, set

NN OV PR S U I SO S S R
f'”fs(f’ g‘) (f a”(f+g')’1+fg" ’(1 fé))'

Then Re &* and Im &* form an oriented basis for the associated R*-bundle j : R* —
N2, away from zeros of f and g.

Proor. First note that from equation (5.1) it follows that Re & and Im ¢ form
a basis for the horizontal space HY of i at z. It is easily shown that this basis is
oriented.

Next, a short calculation shows that (& &) = (f,ﬁi) =0, so that {Re¢*,
Im &1 is an orthogonal basis for the vertical space V¥ of y: R* — N2,

Finally, a lengthy calculation (done using REDUCE) shows that the determi-
nant of the matrix, made up of the four vectors Re &, Im & Re &* and Im &' is
positive, so that Re &£ and Im &* is an oriented basis for the vertical space V¥ of
¥: R* - N? as claimed.

REMARK. The map §f : B* - N?is itself a harmonic morphism. In fact it is the
harmonic morphism covering the local solutions ¢ : U = R* - N? of (5.1), where
now x e R* and ze N2. These are all harmonic morphisms with fibres which are
parts of planes through the origin, see §7.

In the following examples it is convenient to write wy 1= X; + iX, W21 = X3 +
ix4, so that equation (5.1) reads:

(5.3) wy + f(2)g(2)W; — g(@)w; + f(@)W, = 0.

EXAMPLE 5.3. Let M3 = S3,N2=Cu {0} =S* andlctf,g':Cu {0} =>Cu
{oo} be given by g:z — z* (ke N*) and f:z > 0. Then equation (5.3) reads

(54) wy — ZkW2 =0.
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In the case k > 1 we can think of this as defining a multivalued harmonic
morphism z(w,, w,) on S> that is k-valued except on the circles w; = Oand w, =90
which thus form the geometric envelope E. By Proposition 5.1, the covering
harmonic morphism ¥ :5> — 52 is an S! bundle of degree —k. This can be
described as the projection of a lens space L(k, 1), see [Ste] §26. Indeed, we have
the following diagram:

§3 = Lk, 1)
"/ \
$}oU & 8?2
H\ Sz 2
S2

The projection = is a k-sheeted branched covering, branched over the circles
E:w; =0, w, =0 of S>. The outer square commutes. For any local solution
¢:U c 8% > 8% = Cu {0}, (wy, w,) > z the top triangle commutes on 7~ *(U).
If we add in the map z +— z* and the Hopf map H we see that the bottom triangle
commutes on U and we are led to Baird’s description of { as obtained from H by
simultaneously cutting and pasting k copies of S> and §2, see Example 2.5 of
[Bai-2].

In the case k = 1, equation (5.4) has a unique solution z = w,/w,, defined
globally on the whole of $3. The geometric envelope E is empty and : §° — §% is
a diffeomorphism, so that S is diffeomorphic to the 3-sphere. It follows from
equations (2.7) that the metric on $° is obtained from the standard one on S by
multiplying lengths by \/g on the horizontal spaces, thus $* is homothetic to
a Berger sphere and : §° — S? is a Hopf map from this deformed sphere.

EXAMPLE 5.4. Let M* =53 N>=Cu {0} =S5 and let f,g:CuU {0} —»
Cu {00} be given by f:z +> 1/2* (keN*) and g:z — oo. Then equation (5.3)
reads:

1
?WI—W2=0.

If k = 1, this has the unique solution z = W,/w,, the conjugate Hopf map H. For
general k, the covering harmonic morphism ¢ : § — $2 has degree + k, so again
§3 is diffeomorphic to a lens space L(k, 1) and we obtain a similar description to
that of Example 5.3 replacing H by H.

EXAMPLE 5.5. Let M® =83, N2=Cu {0} = 5% and let f,g:Cu {0} >
. Cu{w} begiven by f:z +— —z,and g:z > z, then equation (5.3) becomes:
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Wwiz? + (wy + Wy)z —w; =0.

This can be thought of as defining a multivalued harmonic morphism 2(wy,w,)
which is 2-valued except at the poles (0,0,0, +1), cf. Example 4.4. Solving this
equation gives two solutions ¢*:5%\{(0,0,0,1), (0,0,0, — 1)} - 82, with
pE(x)=0"tozE(x)= i(xl,xz,x3)/\/m The harmonic morphism
¢* can be described as orthogonal projection along geodesics through the poles
(0,0,0, +1) to the equatorial great sphere. It is a sort of radial projection in the
sense of [Bai-Woo-2]. It can be shown that §? is isometric to §2 x S*, equipped
with a warped product metric. The projection n:$* = 52 x §! - §2 collapses
5% x {£ m/2} to the poles, but is otherwise a 2: 1 covering. The covering har-
monic morphism ¥ : §? x S* — $? is the natural projection confirming that it is
an S*-bundle of degree 0.

REMARK 5.6. Note that Examples 5.3, 5.4 and 5.5 give explicit examples of
how any topological S'-bundle over S? can be given a metric such that its
projection map y : § — §2 is a harmonic morphism. It is a general result of Baird
and the second author that the natural projection of any S!-bundle over a surface
or, more generally, of any Seifert fibre space without reflections, is a harmonic
morphism with respect to suitable metrics. Conversely, given any non-constant
harmonic morphism from a closed 3-manifold to a surface the fibres of ¢ give M
the structure of a Seifert space without reflections. For this see [Bai-Wo0-3].

ExaMPLE 5.7. Let M3 = S%and N> = Cu {00} = S?andlet f,g:C U {0} -
Cu {0} be given by f:z > z% and g:z > z. Then (5.3) defines a multivalued
harmonic morphism, 3-valued outside E where two of the three values coincide.
By Proposition 5.2, the covering harmonic morphism y : §? > §%isan S'-bundle
of degree one, so S is diffeomorphic to 3. The envelope E is given by solving
simultaneously the equations

0G
= - = 0,
G(z,x) =0 and o (z,x)

where ze N2 and x e §* and G(z, x) = {&(2), x). Short calculations show that the
geometric envelope E = n(E) is given by:

8|wy|* + 20wy )*—1=0 and Imww;=0.

It follows that E is a (2, 6)-link on the torus given by:

[%lie(o, 1),

Thus 7: §% — §3 exhibits an S° as a 3-sheeted branched cover of (another) 53
branched over this (2, 6)-link.

|W1|2 =
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Further investigation shows that this is a irregular branched cover (i.e. the
group of covering transformations of the associated unbranched cover does not
act transitively on the fibres) with each connected component of E covered by
two circles, one of which belongs to E. Near a point of the latter, = exhibits
branching of order 2 i.e. it has the form (z, t) — (z2,t) in some suitable coor-
dinates (cf. §6). That such a branched cover must be homeomorphic to S* follows
from the work of J. M. Montesinos [Mon]. Using his move D, one can reduce the
(2, 6)-link to a pair of unlinked circles for which we know that the branched cover
must be an S3. We thank Joan Birman for instruction in this matter.

The case M3 = H? can be treated similarly: we give no examples here.

6. The behaviour of © on the envelope, for M> = R3, 3 and H>.

Let M3 be a 3-dimensional simply-connected space form R3, S or H? and let
1: N? - %, be a non-constant holomorphic map from a Riemann surface to the
space of oriented geodesics of M3. Let @ be the multivalued harmonic morphism
from M? to N2 defined by # (see Remark 3.3(i)) with covering manifold M3 and
projection 7: M3 - M?3. In this section we discuss the form of the projection
7 near to a point on the envelope E. Recall from §3 that E is the real analytic
subset of M3 where = fails to be a local diffeomorphism. As usual we write
E = dn(E) for the geometric envelope.

DEFINITION 6.1. A non-constant holomorphic map #:N? — % is called
a generalized radial projection if all geodesics 7(z), where z € N2, pass through the
same point x, € M>.

Note that: (i) by Theorem 4.7. of [ Bai-Wo00-2], any local solution of a general-
ized radial projection n will be a radial projection, or the restriction thereof, up to
post-composition with conformal mappings, (i) £ is always of (not necessarily
pure) dimension 2 containing one or two spheres corresponding to the blow-ups
of each point through which all the geodesics pass through together with the
geodesics 7(z) corresponding to the zeros of dn (if any).

The examples in §§4 and 5 exhibit three sorts of behaviour:

(A) Examples 4.4 and 5.5 are generalized radial projections, E is 2-dimen-
sional and 7 collapses each connected component of E to a single point. Note that
this is not a branched covering in the sense of Definition 4.2.

(B) In Examples 4.5, 5.3, 5.4 and 5.7 E and E are 1-dimensional submanifolds,
and near E, n has the simple branching form:

6.1 (z,)eC x R+— (Z5,)eC x R

for some ke{2,3,...} with respect to suitable coordinates (z,t) on M?3 and (w, 1)
on M3, with t a coordinate along E or E and z (resp. w) transverse to E (resp. E).



MULTIVALUED HARMONIC MORPHISMS 149

Indeed k = 2 in Examples 4.4 and 5.7 and in Examples 5.3 and 5.4 an arbitrary
value of k can be obtaintzd. In particular, these examples are branched coverings.

(C) In Example 4.8, E and E are not submanifolds but consist of smooth arcs
meeting at the origin. This isolated point will be called an exceptional point (see
below); the canonical form (6.1) does not apply at such a point and = is not
a branched cover in the sense of Definition 4.2.

We shall show that these three types of behaviour of 7 are the only ones
possible: So let (zo, Xo) be a point of M? thus x,e M? is a point on the geodesic
n(zo) of M>. Let = Z, ., be a (small) smooth surface in M?® which passes
through x, and is perpendicular to the geodesic 7(z,). We call £ a slice for n at
(20,X0). Give X the orientation which together with that of #(z,) gives the
orientation of M>. Note that, in general, X cannot be chosen to cut all geodesics
#(z) for z near z, orthogonally but it does cut such geodesics transversally for zin
some neighbourhood U, of z,. The metric on X induced from M? and its
orientation define a canonical almost complex structure J§ on X given on each
tangent space by rotation through +m/2. This is, of course, integrable. By
construction, for ze U,,, the geodesic (z) intersects X in a unique point x(z) of
M?3. We thus obtain a “slice map” x*: U, — Z, with x*(z) = (z) n Z. The follow-
ing makes precise Remark 3.3(ii), for justification see below.

REMARK 6.2. The slice map x* is singular at a point ze U, if and only if x*(z)
lies in the envelope E.

Now set £:= {(z, x(z)) e N?> x M®|z€U,}. Clearly £'is a surface in M? and
7 maps 5 to Z. This map is a local diffeomorphism except at envelope points
(z,x)e E n £, where it has rank 0. Let #7(z):= {(z,x) e M?| xen(z)}. By Remark
2.8, maps 7(z) to n(z) isometrically. Note that, in contrast to {n(z)| ze N*} which
may not form a foliation at envelope points, the family of geodesics {fi(z) | ze N 2
gives a conformal foliation of N? even at envelope points. The map :U,, —» £
defined by B(z) = (z, x*(2)) is diffeomorphic and defines a slice of the foliation
{ii(z)| z€ U,,}. Note that o § = x” showing that dx* is singular if and only ifdn is
singular at B(z) and this holds if and only if x*(z) = n(B(2)) € E, justifying Remark
6.2,

We now choose local coordinates for £ and X as follows: For Z, let w be~a. local
complex coordinate with respect to the almost complex structure J. 2. For Z ident-
ify U,, = N? with an open subset U, of C via a complex chart on the Riemann
surface N2, such that z, e N? corresponds to 0e C. By a slight abuse of notation
we shall denote either a point of U,, = N 2 or its local coordinatein Uy < C by z.
Then writing z = u + iv, the map f: U — £ defined above, defines local coor-
dinates for £ 5

We now study the form of IT:= n|s: $ ¥ in our coordinates on ¥ ar?d z.

LEMMA 6.3. The projection IT: £ - X is, in the above local coordinates, given by

1



150 SIGMUNDUR GUDMUNDSSON AND JOHN C. WOOD

wollof:Uy — C, z — w(z), where w(z) satisfies the following partial differential
equation:

ow 3_

6.2) ¥l + A(2) — —0,

for some smooth complex-valued function A on £ with A(0) =

ProoOF. We must express holomorphicity of # in terms of the map z — w(z).
To do this let J¥ denote the rotation by + /2 in the normal space H, to #(z) at
II(B(z)). Then from the description of the complex structure on s, see for
example [Hit] or §2A of [Bai-Woo0-2], holomorphicity of # implies that

ox* w, 0
6.3) JV( p» ) J; JV(“E“—> for all ze U,,

where A" T, 2 — H, is orthogonal projection (thus .#" gives the normal compo-
nent of a tangent vector). Otherwise said, if we set J: = A"~ 1o JHo A forze U,,
then JZ is an almost complex structure on 7, X and (6.3) reads

ox* ox®

4 S =R

6.4) ov 2 ou”
Equivalently, x*/0z s of type (0, 1) in (T,Z, JZ). To express this analytically, note
that clearly, JZ is smoothly varying with z and coincides with the almost complex
structure J§ at z = 0. Thus for small z, the (1, 0) co-vectors for J are the complex
multiples of dw + A(z)dw, where A:U, — C is some smooth function with
A@0) = 0. Then the holomorphicity condition (6.4) reads

(dw + A(2)dw) (%) = 0, which is just (6.2).

To study the envelope in our coordinates we need:

LEMMA 6.4. For small z, the point of £ with coordinate z lies on the envelope E if
and only if ow/0z = 0.

Proor. Since n maps #(z) to n(z) isometrically, dx is singular if and only if dIT
is. The Jacobian determinant of I, with respect to our local coordinates, is

6w

wf
0z

Since A(0) = 0, 1 — |A(z)|? remains non-zero near 0. This means that the Jac-
obian determinant is zero if and only if ow/0z = 0 as required.

=1 - 14@)P) |5

We can now use the above lemmas to study the behaviour of  near a point on
the envelope. First we find the form of IT = =]z in our local coordinates:
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PROPOSITION 6.5. Near a point (zo, xo) on the envelope E, the map w IT oi: U, -
C is either

(1) constant, or

(2) a branched covering of the form z — w(z), where

6.5 w(z) = az* + 0(z[**"), with xe C\ {0} and k = 2.

ProOF. From Lemma 6.3 it is clear that either w = 0, or the leading term wy, of
the Taylor series of w in z and 7 satisfies dw,/0Z = 0 and so is of the form az*.

We call the integer k in Proposition 6.5 the branching order of x at (zo, xo). Itis
clearly independent of the choice of 2. We are now ready for our description of I1.

THEOREM 6.6. Let 7:N* - %y be a non-constant holomorphic map. Then
either:

(1) n is a generalized radial projection, or

(2) Eisananalytic set of pure dimension 1 and thereiis a set S of isolated points of
E, such that E\ S consists of smooth arcs along which the branching order k of m is
constant. Near a point of such an arc, II is a branched cover with the simple
branching form (6.1).

PrOOF. We shall show that the analytic set E is of pure dimension 1 unless  is
a generalized radial projection. First note that E cannot contain any isolated
points for, suppose that U is a small neighbourhood of such a point (zg, o).
Choose slices X, < U for (zo,x)e M*nU. Then II:%, , - Z, . has
a branch point for x = x, but not for x #+ x,. This is clearly impossible for
topological reasons. First we show that E cannot be of dimension 3. For in this
case all slice maps x* would have to be singular at all points of their domains and
so constant. Thus n would be constant in contradiction to hypothesis;

Next, suppose that E is of dimension 2. Then we shall show that E must be
perpendicular to all the geodesics #(z) for (z, x) € E. To see this consider a point
(20,%o) € E. Note that by Lemmas 6.3 and 6.4, unless 7 is a~generalized radial
projection, (zo, Xo) is an isolated point of £, ., N E. Thus, if E'is of dimension 2,
it must be tangent to £, at (zo, Xo), otherwise it will intersect 2, x, in more
than one point. Thus E must be horizontal at (z,, x,), and similarly at any of its
points (z, x). But then, since by Remark 2.8, Ker dn; ,, is the horizontal space,
d(n|3) = 0 and so n|gis locally constant. This means that all the geodesics 1(z) f(?r
(z,x) in a connected component of E go through the same point and so 7 s
a generalized radial projection. ~ ) )

Hence, unless 7 is a generalized radial projection, E is of pure dlmenm.on 1.1t
therefore consists of smooth arcs meeting in a set (possibly empty) of 1solat_ed
points. Call a point of E exceptional if either it is such a meeting point or '(z, x) lies
on a smooth arc of £ which is horizontal at (z, x). By real-analyticity, either the



152 SIGMUNDUR GUDMUNDSSON AND JOHN C. WOOD

exception points are isolated or there is a whole smooth arc y of them. In the latter
case, d(n|,) = 0 and so each geodesic 7(z) for (z, x) € y goes through the point 7(y).
By holomorphicity of # (see Lemma 4.4 of [Bai-Wo0-2]) this implies that all
geodesics go through n(y), so # is again a generalized radial projection.

Thus, unless 7 is a generalized radial projection, the exceptional points of E are
isolated. Let y be an arc of E without exceptional points and let (zo, Xo) €7. Then
since E is not horizontal at (z,, x), y crosses the slice Z(25.xo) transversally. Then,
for topological reasons, the branching order of 7 at (z, x) is constant along y, and
we clearly obtain the canonical form (6.1).

REMARK 6.7. In the case M3 = R® and away from the poles of g, E is given by
equations (4.1) and (4.2). (For notation and explanations see the proof of
Theorem 3.2.) Then a short calculation shows that the exceptional points are
a subset of the points of E where 62 G/dz* is zero. For instance, in Example 4.5,

(6.6) G(z,x) = (1 — z%)x; + i(1 + z%)x; — 2zx3 — 2h(2),

where h(z) = 2irz (r > 0), so that 82G/dz% = 2(—x; + ix,), which is never zero
on E. Hence, there are no exceptional points and the branching along E is
everywhere of the form (6.1) with branching order k = 2. Similarly with M3 = §3,
in Examples 5.3, 5.4, 5.7, there are no exceptional points, and n exhibits the
branching (6.1). In Example 4.8 however, we have (6.6) with h(z) = z* (k > 2) so
that 32G/0z2 = 0 at the origin. As we have seen, the origin is indeed an excep-
tional point, £ not being a submanifold at this point.

7. Multivalued harmonic morphisms from higher dimensional manifolds.

In §3 we described the correspondence of [Bai-Woo0-2], between non-constant
holomorphic maps 7: N? — %, from Riemann surfaces to the space of oriented
geodesics of a 3-dimensional space form and locally defined (or multivalued)
harmonic morphisms from M?® to N2. For higher dimensions we have the
following version:

Let M™ be a simply-connected m-dimensional space form and let %~ denote
the space of oriented totally geodesic submanifolds of M™ of dimension (m — 2).
Then %, is again naturally a complex manifold, with dimc(%ym) =m — 1.
Given a non-constant holomorphic map 7: N2 — %,m, any locally defined map
¢:U c M™ > N2, z = ¢(x) satisfying the condition xen(z) is a submersive
harmonic morphism, with totally geodesic fibres and every such harmonic
morphism is locally given by such a map n. We can think of # as defining
a multivalued harmonic morphism. So again we may carry out the construction
of §3 to obtain a map n: M™ — M™, and a submersive harmonic morphism with
totally geodesic fibres i : M™ — N2 covering all local solutions.

Now we consider the case M™ = R™ Let 43 denote the submanifold of all
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(m — 2)-planes through the origin, then e\ ¥3m can be identified with the
tautological bundle of the complex quadric Om-2:={[zy,...,2n]€ cpm1
Y z? = 0} minus the zero section.

Indeed an (m — 2)-dimensional affine subspace which does not go through the
origin is given by an equation of the form (cf. [Bai-Woo-1] §2)

(7.1) Ex)=1

where x € R™ and Ce C™ is isotropic, i.e. ) ¢ = 0. A holomorphic map 7: N? —
%ym With 1(2) € 9. for isolated points z, at most, can therefore be represented by
a meromorphic map {: N? — (C U {oo})" satisfying:

(1) ¢ is never zero,

(2) Y& =0,and

(3) no component of ¢ is identically co.

If, on the other hand, 5(z) € 43 for more than an isolated number of values of z,
then, by meromorphicity, 7(z) € 43 for all z. Now an (m — 2)-plane through the
origin is given by an equation of the form

&x>=0

where x & R™ and ¢ is isotropic, so a holomorphic map , can be represented by
a holomorphic map [¢]: N? - Q,,_,, and the condition x € 5(z) reads:

(7.2) G(z,x) = (¢(2),x) =0

where ze N? and xeR™. The construction of Theorem 3.1 in both cases gives
a m-dimensional manifold R™, a map n:R™ » R™ and a submersive harmonic
morphism y : R™ — N with totally geodesic fibres which is a fibre bundle over
N? with fibres isometric to R™ 2.

In the case that M™ = S™, we may identify a totally geodesic submanifold of
dimension (m — 2) in S™ with an (m — 1)-dimensional subspace of R™*!. Hence
Gsm = G,(R™*1) = Q,._, and 5 can again be represented by a holomorphic map
[¢1:N? > Q,,_,. The condition x e 5(z) again reads

(7.2 Gz, x) = (&(2),x) =0

but with ze N? and xe ™ Then the construction of Theorem 3.1 gives a fibre
bundle y : §" — N2 over N2 with fibres isometric to ™~ 2. Note that all holomor-
phic maps [¢]:N? - Q,,_; can be written in terms of (m — 1) independent
meromorphic functions on N2, see [Hof-Oss]. ‘
We now discuss from our point of view a construction of harmonic morphls_ms
from open subsets of R* to surfaces, due to the second author [Woo]. (1'\ version
of this construction can be given for any anti-self-dual Einstein 4-manifold.)
Recall that an orthogonal complex structure on R* is a choice‘of a consta}nt
complex structure J on each tangent space of R* which is an isometry with
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respect to the Euclidean metric. Equivalently, an orthogonal complex structure
is just a Kihler structure on R* equipped with the standard metric. The set of
such J’s can be identified with S2. Now for any Riemann surface P?, let
G:5? x R* - P? be a smooth map such that:

(1) For each xe R*, G,:5? - P? is holomorphic, and

(2) foreach J €S2, G,: R* - P?is holomorphic with respect to the orthogonal

complex structure defined by J.

By [Fug] G is a harmonic morphism in each variable separately. Thus by

Theorem 1.1. any local solution J: U = R* — §? to the equation

(7.3) G(J,x) = constant

is a harmonic morphism. (Further, by [Woo], any submersive harmonic mor-
phism arises this way, up to a post-composition with a conformal map.) We can
therefore carry out the construction of Theorem 3.1 to obtain a map n: R* — R*
and a harmonic morphism  : R* - S? covering any local solution of (7.3).

To find examples note that if u = 6(J)e C L {c0} is not infinite (¢:S* > C U
{00} being stereographic projection as usual), complex coordinates on (C2, J) are
given by (z; — uZ,,z, + puz,), see §13.64 of [Bes]. It follows that any G satisfying
(1) and (2) above is given by

G(ﬂ,(ZbZZ)) = T(”’zl - ”Z—Z’ZZ + ”z-l)y

where ¥ is a holomorphic function of three complex variables.

We give some examples to show that the geometric envelope E = R* can be of
dimension 0, 1 or 2. For all our examples, the equation G(u,(z4,z,)) =0 is
a second order polynomial in u with coefficients which are functions of z; and z,.
This means that E is given by the equation d = 0, where d is the discriminant of
this polynomial.

ExaMPLE 7.1. If we choose ¥:C3 — C, ¥: (i, (wy, w;)) — w3 + w2, then E =
{0} = R% and E = §? x {0} = §? x R*, so E has dimension 0.

EXAMPLE 7.2. With the choice of #: C3 - C, ¥: (i, (W, W3)) — wiw, — u, we
have E = {(¢”,0)eR*|0eR} and £ = §2 x E~ 5% x §',so dimE = 1.

Example 7.3. For ¥:C3 - C, ¥:(u,(wy,w,)) — w? + w3 — p, one easily sees
that E = {(xy,...,x4)€R*||x|> = 1/2, x;x4 = X,X3}, which is a 2-dimensional
submanifold of R*. One can furthermore show that E is a 2-dimensional sub-
manifold of $2 x R.

Similar examples for $* and H* will arise from the work of P. Baird [Bai-3],
where a more explicit version of [Woo] is given for these 4-manifolds.
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