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DENSITY THEOREMS FOR SAMPLING AND
INTERPOLATION IN THE BARGMANN-FOCK SPACE III

SVEIN BREKKE AND KRISTIAN SEIP

1. Introduction.

This series of papers is devoted to what we call sets of sampling and interpolation
for the Bargmann-Fock space of entire functions. Parts I and II [13, 14]
contained a complete description of sets of this kind in terms of density properties
of discrete sets in the complex plane. In this paper, Part I1I of the series, we show
that these theorems allow natural extensions when we consider values (on
a discrete set) of functions in the space as well as of their derivatives up to a certain
order.

Similar problems have been studied by many authors. The idea of derivative
sampling and interpolation is well-known from the theory of bandlimited func-
tions (see [9, p. 1571]). Sampling of the type considered in this paper has been
investigated by Unterberger, in a more general context but without sharp results
(see [15, Theorem 8.1]). An interpolation problem for H? spaces involving
derivatives was stated and solved by QGyma in [16].

We find derivative sampling and interpolation to be of particular interest in the
Bargmann-Fock space, since there is a nice interpretation in the term of “phase
space localization”; we shall comment further on this once we have stated our
theorems.

Our proof techniques are basically the same as those in [ 14] (which means that
Beurling’s ideas from [3] play a central role). We shall therefore be relatively brief
at many points and often refer to [14] and [3] for details.

2. Results.

Fora > Oletdu,({) = —:—e‘“mz dédn,{ = & + in, and define the Bargmann-Fock

space F? to be the collection of entire functions f({) for which
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1Az =11f 1,2 = ff ISP duy(l) < 0.
C

F} is a Hilbert space with reproducing kernel K(z,{) = ¢*%, i.e., for every fe F?
we have

) @) = (LK),

the inner product being defined as

L) == f Lf (09 du,(0).

The normalized reproducing kernels, k() = K(z,z) “*K(z, {) correspond, via the
Bargmann transform (see below), to the canonical coherent states of quantum
mechanics, and to Gabor wavelets in signal analysis.

Of basic importance is the fact that the translations

(TN = (TFE)Q) = &=~ f({ - 2)

act isometrically in F2. Note, e.g., that k, = T,1(1({) = 1), and observe that (1)
follows from an application of Cauchy’s formula around 0, the unitarity of the
operator T}, and the fact that T,”' = T_,.

We recall from [11] that a discrete set I' of complex numbers in a set of
sampling for F? if there exist positive numbers A and B such that

) AIfI3E Y e 1 f@P = L KALDP £ BISI

zel zel

for all fe F2. If to every I2-sequence {o;} of complex numbers there exists an
feF?2such that e 5212 f(z;) = (; T,,1) = a;for allj,I = {z,} is said to be a set
of interpolation for F2. A set of sampling corresponds, in the terminology of [5],to
a frame of coherent states.

There is a natural extension of (1) to ‘translation invariant” differentiation, to
be described next. It follows from Cauchy’s formula that evaluation of the kth
derivative at 0 is a bounded linear functional given by the formula

G) FR0) = k) ffeds

where f; is the unit vector
. o \*
filz) = <_k7) 2,

Atan arbitrary point ¢ we then associate the inner products <f, T, fi.» (instead of
the derivatives themselves). From (3) we easily find that
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k
@ TR = @) e 3 Y, (;f)(—az =0 f0(g)
j=0
so there is a one-to-one correspondence between f(z), f'(2),..., f®(z) and the
inner products {f, T fo, </ T.f1),-- . XL T fi)-

Let now I' = {z;} 2, be a sequence of distinct points from C. To this set we
associate a “multiplicity function”, v: I' > N, and we construct a sequence of
points, I',, consisting of the points from I" with each z from I" appearing v(z) times
in the sequence. If I is a subset of I', I, denotes the sequence where each point z’
from I" is listed v(z') times. We shall say that I', is a set of sampling for F2 if there
exist positive numbers A and B such that

V

© AISES 38 KAT o8 S B

for all f e F2. If to every sequence {a®} for which

u'[v] 8

JZ le®)? < o0
=1 ¥=o0

there exists an f € F2 such that (f, T fi> = o foralljand 0 < k < v(j) — 1, T, is
said to be a set of interpolation for F?.

As in Parts I and I, we use Landau’s generalization of Beurling’s notion of
uniform densities [ 10]. We consider then uniformly discrete sets, i.e., discrete sets
I' = {z;} for which q = q(I') = inf;_;|z; — z| > 0; g will be referred to as the
separating distance of I. We assume also that sup,.v(z) < co. Fix a compact set
I of measure 1 in the complex plane, whose boundary has measure 0. Let n™(r)
and n*(r) denote respectively the smallest and largest number of points from I', to
be found in a translate of rI. We define the lower and upper uniform densities of
I, tobe

+
D~(I',) = liminf= ( ) and D*(I",) = lim sup "rz(’) :

r-+ o r— o

respectively. It was proved by Landau that these limits are independent of
I (Landau’s arguments apply since sup *(z) < o0).
Our main theorems are the following.

THEOREM2.1. Letsup, . W(z) < co. Then T is a set of sampling for FZ if and only
if I' can be expressed as a finite union of uniformly discrete sets and contains

a uniformly discrete subset I’ for which D™(I") > —
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THEOREM 2.2. Letsup,.rv(z) < oo. Then T, is aset of interpolation for F? if and

only if I is uniformly discrete and D*(I',) < 2.
n

We will need to consider the corresponding L® problem. Let then F2 denote
the Banach space consisting of those entire functions f(z) for which

£l = 11flla, 0 = SUpe 21| £(2)| < 0.

We denote that the translations T, act isometrically in FZ° as wel, and observe
that the integrals (£, T f, > are still meaningful, We say that I', is a set of sampling
for F? if there exists a positive number K such that

Ifle 2K sup  [KLT A

zel,L0SkSw(z)—1

forall f € F,”. If to every bounded sequence {a{"} there exists an f € F° such that
ATLf = aPforalljand 0 £ k < v(z;) — 1, we say that I' is a set of interpola-
tion for F.

We have then the following theorems.

THEOREM 2.3. Let sup,.rW(z) < co. Then T, is a set of sampling for FY if and

o
only if I' contains a uniformly discrete subset I'’ for which D™(I",) > -

THEOREM 2.4. Letsup,.rv(z) < co. Then T, is aset of interpolationfor F;° ifand

o
only if I' is uniformly discrete and D*(I',) < P

REMARK 1. f(x + iy), f € Ff,,, can be thought of as representing a signal s at
time x and frequency y: The transformation s+ f given by

f@) = ¥ e J " s0glx — e de,

2
with g(t) = exp< - %—) (c an appropriate constant), is a unitary map (the Bar-

gmann transform) from L*(R) into F,. It is well-known and easy to check that
the functions fi(z) are the images of the Hermite functions H,(t) under the
Bargmann transform [6, p. 39]. e "™ H,(t — y),k <n — 1, are the nfunctions b'est
localized around time x and frequency y in the following sense: T, fi is the function
in span{T,f,,}+ _, that maximizes the concentration

[ —g <zl QP dua(©)
A= T OF i@
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for any R > 0. Thus, to each point z of our discrete set I', we associate the v(z)
functions that are optimally concentrated around that point.

For more on this aspect of time-frequency (or phase space) localization, see [3,
pp. 14-18], [4, 11].

REMARK 2. It follows from Theorems 2.1 and 2.2 above that for no sequences
{t;}, {w;} of real numbers will the functions e "™ H,(t — t;),0< k <n— 1 for
some n = 0, constitute a Riesz basis for L?(R). This we pointed out in [11] for
n = 1,and we observe now that it did not help us to bring in the first few Hermite
functions. This aspect of our theorems seem to reflect in yet another way the
“Balian-Low phenomenon” (see [1]). Note, however, that Grochenig and Wal-
nut have found an interesting Riesz basis related to sampling and interpolation
[7]; this is one of many recent papers on “how to beat” the Balian-Low theorem.

ReMARK 3. In the context of bandlimited functions we may also give a descrip-
tion in terms of densities in much the same way as above with, however, two
notable differences: Firstly, we will not have the nice time-frequency interpreta-
tion, and secondly, the description will not be complete since there we may find
sets of both sampling and interpolation.

REMARK 4. The density theorems for Bergman spaces proved in [12] can be
extended to theorems similar to those stated above (this we leave to the interested
reader to verify).

REMARK 5. We may ask what happens if v(z;) > oo as |z;| - c0. Can we
construct Riesz bases if v(z;) grows sufficiently fast?

3. Preliminaries.

Let I' = {z;} and an associated “multiplicity function” v be given. We define
max(v) = sup,.r ¥(z), which for the rest of the paper is assumed to be finite. We
put

SIS = 8.(T)f = AT fidat 2;€ 1,0 S k S v(zj) — 1}
Then
ISTe)f e = sup <L TSl

zel L1 Sk=v(z)—1

and similarly,

v(z)—-1 4+
1SSz = (Z X Kf Tsz>|2) :

zel k=0
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My(T',) = My(I',,®) (p = 2 or p = o) will denote the smallest number M, such
that

£l = M, IS(T)f 1,

forall f € F7. Hence I, is a set of sampling for F* if and only if M (I',) < o0, and
itis a set of sampling for F?2 if and only if M,(I',) < o0 and 18T f 2 < oo for all
feF2

If I', is a set of interpolation for F?, a standard argument based on the closed
graph theorem [8, p. 196] shows that the interpolation can be performed in
a stable way. This means that there exists a positive number N, such that for
every IP-sequence {al} we can find an fe F? with (f, T, S = al¥ for all j and
0=k=<Wwz)—1,and

£, = N IS )1,

The smallest such N, is denoted N,(I',) = N,(I',,a),and we put N,(I',) = oo if I'is
not a set of interpolation for F?.
We recall the compactness property of F?: If { f,} is a sequence in the ball

{feFy: | fll, < R},

then there is a subsequence { f,, } converging pointwise and uniformly on com-
pact sets to some function in the ball. This is immediate from the definition of
F? and a normal family argument.

A sequence Q; of closed sets converges strongly to Q, denoted Q;— Q, if
[Q,0;]1 - 0; here [-,-] denotes the Fréchet distance between two closed sets. Q;
converges weakly to Q, denoted Q;—Q, if for every compact set
D(Q;n D) u 8D — (Q N D) u aD. (Note that in our definition of weak limits we
have eliminated an obvious error in Beurling’s notes. Unfortunately, this error
appears in [11] as well. The definition of weak limits in [11] should therefore be
replaced by the present one.)

We now extend this notion to sequences I' &’3 We assume then that the sets F w
are all uniformly discrete with a lower positive bound on their separating
distances. Then ' — T is equivalent to z{’ — z, for all k, provided the sets are
appropriately indexed, ' = {z?}, I' = {z,}. We assume such an indexation and
say that I’&?——s I, if 'Y — I and also v;(z¥) - %(z) for all k. For a umf(')rmly
discrete set I" and its associated function v we let W(I',) denote the collection of
weak limits of the translated sequences I',+z (defined as I, +z=
{'}’1+Z,'}’2+Z,...} for FV={'YI,727'“})' .

We shall need the following a generalization of Lemma 3.1 in [11].
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LEMMA 3.1. For every nonnegative integer k there is a constant C = C(a, k) such
that
IKE TSN = LTSN = Clz = { I fllo
whenever feF and |z — {| < 1.

Proor. This follows from Cauchy’s formula and the translation invariance
(see the proof of Lemma 3.1 in [11]).

The following local estimates are deduced in a similar fashion; here and in the
sequel D(z,r) denotes the disk of radius r centered at z.

LeMMA 3.2. For every f € F? and z € C we have

6) KL LA < Cylor, k) sup e 29| £(Q)
LeD(z,r)

and

) IS LA £ Cylar, k) f f N )If(C)IZ dpy(0).

We finally recall a type of estimate from [14]. Let A = {4,,,} denote a square

lattice, that is
Amn = </ Tjo(m + in)

for all integers m, n and some positive number a, o/7 is referred to as the density of
A. Z = {z,,} is uniformly close to A if there exists a positive number Q such that

®) |Zmn — Amnl < Q

for allmand n. If I', can be indexed so that it is uniformly close to a square lattice,
say I'y, = {ymn}, We associate a function g(z) defined by

1 2
©9) g9(z) = (z — 700)"" |] (1 - y,z,m ) cxp ( ?in * 37122.:)

ymn ¥ y00

where 74, is the point of I closest to 0. The technique of estimation leading to
Lemma 2.2 in [14] yields the following lemma.

LeMMA 3.3. Suppose I', can be indexed so that it is uniformly close to the square
lattice A of density o/n, and let g(z) be its associated function given by (9). Then there
exist constants C and c, depending on a, Q, g(I'), and max (v), such that for every z we
have

(10) Ie—%lzlzg(z)' < Ceclelloslzl,
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4. Proof of Theorem 2.3.

We check that some auxiliary results in Beurling’s notes (also used in [11]) can be
carried over to the present context.

LemMma 4.1. If T, is a set of sampling for F®, then I contains a uniformly discrete
subset I'" such that I, is also a set of sampling for F®.

PrOOF. As the proof of Theorem 2 in [3, p. 344], with Lemma 3.1 in place of
Bernstein’s theorem.

LemMA 4.2. TV — T, and sup;max(v;) < oo imply M,(I',) < lim inf M (')

PROOF. (See the proof of Lemma 4.2in [11].) For any ¢ > Olet f € F2 be such
that || f|l, = 1and |S(I",) fllo £ M~ + &, M = M_(I',)(which may be infinite).
We may assume that | f(0)] = 1 — e. Now consider the function f(az),a < 1. We
find that
(1 e 3| f(az)) = 3| f(az)| 73 "M

In view of Lemma 3.1, we have for |z — az| < Ce and k < max(v) (C depending
only on o and max(v)),

I<f(@a), THN — KL Thol S &

We choose 1 — a = Ce? so that for |z| 2 ¢7% — 1

e 3P| flaz)| < eSO

by (11). Thus for |z| = ¢~ 2, or what is the same, |z — az| 2 Ce, we have

K@), Tfid] < Clos Kle ™50~
by (6). Then by the assumption on the sequence, we have for sufficiently small
¢ and large j, |SI'Y)f(@ ")l S M™' + 3¢, or M (M) 2 (1 - e)(M™" + 32)
Since ¢ is arbitrary, the result follows.

There is an obvious generalization of the notion of sets of uniqueness. We shall
say that I, is a set of uniqueness for F?if S(I",)f = 0 implies that f = 0.Note that
(4) shows that this is equivalent to saying that if f ®(z) =0 for all
0<k<wz)—1,zerl, then f =0.

LeMMA 4.3. Suppose I is uniformly discrete. Then M, (T",) < © if and only if
every I'ye W(I',) is a set of uniqueness for F;".

PROOF. As the proof of Theorem 3 in [3, p. 345].
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LemMa4.4. IfM(I',,o) < co,then M (I',,a + &) < oo for all sufficiently small
e

PrOOF. As the proof of Theorem 4 in [3, p. 345].

PROOF OF THE NECESSITY PART OF THEOREM 2.3. We proceed as in the proof of
the necessity part of Theorem 2.3 in [11]; the only difference is that the poly-
nomial of Section 4 in [11] is replaced by a polynomial with zeros of order
according to the value of the multiplicity function at each point in I' n Dg. We
will not repeat the details.

PROOF OF THE SUFFICIENCY PART OF THEOREM 2.3. Our assumptions are that
I'is uniformly discrete and that D™ (I",) = f/n > a/n. The assertionis that then I’
is a set of sampling. Suppose this is not true. Then by Lemma 4.3 there is
aI''D e W(I',) such that S(I'?) f = 0 for some nonzero function f € F. We may
assume 0¢ ", £(0) % 0,and || f||, = 1. Jensen’s formula yields

X 1 2z .
(12 loglf@I< Y  volz) log@ + gL log|f(re”) d6

z;eI'®AD(0,r)

< - f Mdp 22,
o P 2
where n(p) denotes the number of points from I'? in the disk |z] < p. Let
& = (B — a)/2. According to the definition of lower uniform density there is
a positive number r, such that n(p) > p*(B — ¢) whenever p > r,. Thus from (12)
we find that
€ B—e¢
< 2 R )
log|f(O) < — =1 + =512,
Letting r - 00 we obtain a contradiction. We conclude that I', is a set of
sampling.

5. Proof of Theorem 2.4.

The following lemma follows from Lemma 5.1 in [11] since clearly I' is a set of
interpolation if I', is a set of interpolation.

LeMMA 5.1. Every set of interpolation for F° is uniformly discrete.
LEMMA 5.2. T'Y)—T, implies Noo(I',) < liminf N, (I'Y)y

ProoF. We may assume that the right-hand side is bounded, and even that
sup INw(Fﬁ"j’)l < oo by picking an appropriate subsequence. The result then
follows by the compactness property.
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Proof of the necessity. We define

Pz I,) = supe 2| f(z)],

where the supremum is taken over all functions f for which S(I',)f = 0 and
Ifllo < 1. Wemay now prove an analogue of Lemma 5.6 in [11] for p,(-,-) and
finish the proof of the necessity part of the theorem along the same lines as in
Section 5 in [11]; we omit the straightforward details.

Proof of the sufficiency. As in [14], we may assume that I', is uniformly close to
a square lattice A of density f/z, with § < aand D™(I',) = B/r. Let g; denote the
function g in (9) associated with I', — z;, and put n = ¥(z;). In order to construct
an interpolation formula, we define first

1 |
'l’j,k(z) = (‘E,‘) ngi(lzzk :

z

We observe that

L, j=i,k=m
Wi Tefm? = {0, j=i,m<korj+im<uz)

If we define

¢j,n = ll’j,n

Gik=Vin— Y ViwTfudbip k=n—1..0,

m=k+1
we have therefore
2; 1, j=i k=m

(13) (i Jm') = {0, otherwise.

From Lemma 3.3 it is easy to see that these functions enjoy estimates of the form

(14) e—%|z|2 |¢j,k(z)| é Cec[z—z_,-l loglz—z;l,
with ¢ as in Lemma 3.3 and C a constant depending on @, ¢, B, and n. For given
a = {a¥} e1*, we may interpolate with help of the formula

vz -1

(15) Q=3 % aleu)

which by some straightforward estimates (using (14)) provides a solution to the
interpolation problem; see [14] for details.
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6. Proofs in the L? case.
We outline the proofs of the L? theorems.

LeEMMA 6.1. There exists a positive constant B such that

v(iz)—1

> ¥ KETAIP <BIfI}

zell k=0
for all f € F? if and only if T can be expressed as a finite union of uniformly discrete
sets.

Proor. The sufficiency follows from (7) and the necessity is a consequence of
Lemma 7.1 in [11].

LEMMA 6.2. If T is a set of sampling for F2, then I contains a uniformly discrete
set that is also a set of sampling.

ProoF. For ¢ > 0 we construct (as we may) a uniformly discrete subset I'"" of
I such that d({,I"") < ¢ for each {eI". We have then I' = U .(I" n D({', £)). By
the preceding lemma there is a uniform bound, say P, on the number of points in
'nD(,¢),e < 1/2.

Proceeding as in the proof of Lemma 3.1 we easily deduce the estimate

(16) KA Tefiol = KA Tefiol | = CIE = jL@ ) If@)I* dua(2),

which holds for, say, |{ — {'| < 1/2, C depending only on « and k. We square this
inequality and sum over I', (for each { e I" we pick some point {'e " n D({, ¢)):

v@) -1

Y X AKLTN - KAT P sCe? ) ¥ J‘I |f@)? dpa(z)
tervo-1J Joe,

tel’ k=0
< max(v)PCe* || f 3.
This gives us
v(z)~1 % v(z)—1 3
(Z Y K£ Eﬁ&lz) - (Z 2 K£ TZ'fk>I2) = e/max(VPC | f 12,

lel' k=0 tel' k=0

and hence
IST)fll2 = PIST) SN2 + Cell fll2-

The proof is finished since the choice of ¢ is at our disposal.

We omit the proof of the next lemma; see Lemma 7.3 in[11] and Lemma 5.2 in
this paper.
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LeMMA 6.3. If ry—r,,inf;q('’) > 0, and sup; max(v;) < oo, then My(I',) <
lim inf M(I'$)).

LEMMA 6.4. Suppose I', is a set of sampling for F?. If any point from I, is removed
(thus reducing the multiplicity of one of the points of ' by one), the sequence remains
a set of sampling for F2.

PROOF. Inview of Lemma 6.2, we may assume that I' is uniformly discrete. It is
easy to see that we must have D™ (I',) > 0; in fact, by some arguments from [11]
we know that D™(I',) 2 a/x. This implies that D ~(I') > 0 by the assumption that
max(v) < co. Since the removal of a vector from a frame leaves either a frame or
an incomplete set (see [5, p. 360]), we need to show that I', remains a set of
uniqueness after one point has been removed. Assume this is not true. Then for
some (o€ I there is a function g, € F2 with

_ 1’ Z=§o,k=V(Co)“1
95'(2) = {0, zeN\{Lo), k < v(2).

We put g(z) = (z — {o)go(z), and observe that clearly g(z)/(z — {) € F? for arbit-
rary { e I'. We then argue as in the proof of Lemma 6.2 in [13] in order to obtain
a contradiction.

The following lemma is an immediate consequence.

LEMMA 6.5. If T, is a set of interpolation for FZ, there is a nonzero function in
ge F? with S(T',)g = 0.

PROOF. A set of interpolation that is also a set of uniqueness, is necessarily a set
of sampling. This is impossible in view of the preceding lemma.

Proof of the necessity part of Theorem 2.1. We argue as in [13]: Consider, by
Lemma 6.2, a uniformly discrete set I' for which I', is a set of sampling for F2.
Lemma 6.3 and the fact that all sets in W(I',) are uniformly discrete imply that
W(I',) consists only of sets of sampling. By Lemma 6.4 we have that every set of
sampling for F?2 is a set of uniqueness for F;°. For suppose I', is a set of sampling
for F2 and that S(I',)g = 0 for some ge F°. Then the function

g(2)
(z—z)z — 2,) ’

)=

23,2, €T, belongs to F2 and has zeros of order at least ¥(z) at every point z of
I" except at z, and z,, where the zeros are of order at least v(z;) — 1 and v(z;) — 1,

respectively. This contradicts Lemma 6.4.
Thus every set in W(I',) is a set of uniqueness for F,”. It follows from Lemma
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4.3 that I', is also a set of sampling for F°, and thus by Theorem 2.3,
D (I',) > o/m.

Proof of the necessity part of Theorem 2.2. For z e C we now define

p2(z,T,) = supe™ 21| f(2),
S

where f ranges over those functions f for which S(I",)f = Oand || f||, < 1. With
help of this notion and Lemma 6.5 we may proceed as in Section 7 of [13]. We
omit the straightforward details.

Proof of the sufficiency part of Theorem 2.1. In view of Lemma 6.1, we need to
show that there exists a positive constant 4 so that

ISz 41112

for all e F2. We could have applied the techniques of [14], but we will give an
alternate argument which is less computational and of a somewhat more general
nature. Similar considerations appear in Section 6 in [12].

Let F=° = {ge F®: ¢34 |¢(z)] - 0 as |z| - O}; F° is clearly a closed sub-
space of F. Suppose I" is uniformly discrete and D™ (I',) = B/n > a/n. Then I', is
a set of sampling for F%,, if, say, ¢ = (8 — «)/2. This means that the transform-
ation S,,.(I',)f is a bounded invertible mapping from F%;? onto a closed
subspace of the sequence space cy; denote this subspace by a,. Then any bounded

linear functional ¢ on F%? induces a bounded linear functional on a, by
&(é) = ¢(Sa+e(rv)_1€)a
with | @]l £ M (I',)||¢|l. For arbitrary {eC we let ¢, denote the normalized
functional of point evaluation at {,i.e.,
ate 2
of) = e 2 S

Trivially, [|¢|| = 1. By the above reasoning, and since the dual space of ¢, is ',
there exists for each { a sequence of numbers {g; ,({)} such that

ate viz)—1
(17) e T =3 Y gD T fdare
zjel' k=0
with
v(zj) -1
Z Z lgj.k(C)I < M = Moo(rv’a + 8)9
zjel k=0

Now let f e F2. We apply (17) to the function
fiold) = ea(fz—mz)f(z)
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which is seen to belong to F%:2. Thus,

ate

ate vz -1

(18) e T =F ¥ g0 foe T fidure.

zjel' k=0

A little computation shows that
oo Ty fidane = e 2O Roal=Ga-Bngp g
where
h(z) = & 5%(T2, f)(2).
Using (3) twice we find that
k (k .
KBy fidare = (@ + kN7 ) (l)ek =z S TE e
i=0
Hence

k
[ ferer T fidawel S Cll, o, ) 20 R20 7 10— 2 F L T2 fidal.
i=0

Inserting this into (18) and applying the Cauchy-Schwarz inequality to the sum,
we obtain

R v(zj)—1 2 k _
e PO SCME Y Y et E Y | — i PETI (L T 0Dl
zjel k=0 =0

We integrate with respect to area measure over C and arrive at the required
estimate.

Proof of the sufficiency part of Theorem 2.2. We apply formula (15)and proceed
as in the corresponding part in [14].
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