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TRANSITION PROBABILITIES AND TRACE FUNCTIONS
FOR C*-ALGEBRAS

R. J. ARCHBOLD and D. W. B. SOMERSET

Abstract.

Transition probabilities are used to show that certain trace functions are lower semi-continuous on
the space of closed ideals of a C*-algebra, equipped with the t,-topology. This generalizes the
well-known theorem of Dismier that the trace functions are lower semi-continuous on the spectrum
ofa C*-algebra. The result is then applied to characterize C*-algebras of Type I, (or Fell C*-algebras)
in terms of the existence of a dense ideal of elements for which the trace functions are continuous. The
points of continuity of transition probabilities are characterized, and a necessary and sufficient
condition is given for the reduced C*-algebra of a second countable r-discrete principal groupoid to
be of type I,.

1. Introduction.

In this paper we use transition probabilities for pure states of a C*-algebra to
study trace functions defined on the spectrum and on certain ideal spaces. This
approach enables us to work with an arbitrary C*-algebra, and not just with
liminal ones. We also extend the results of [6] on the continuity of transition
probabilities and illustrate these results in the case of groupoid C*-algebras.

Let 4 be a C*-algebra with spectrum A (the space of equivalence clasies of
irreducible representations of A). Suppose that (r,) is a convergent net in A and
let L be the set of limits. Dixmier [12; 3.5.9] showed that if we L then

1) liminfTrn,(a) = Trn(a) (aeA™),

where 4™ is the set of positive elements of 4 and Tr is the usual trace for positive
operators on a Hilbert space (note that values -+ co may occur in (1) and in (2)
below). In the special case where A is liminal (that is, when every irreducible
representation of A consists of compact operators), Milicic [20] extended this
result as follows:

)] lim inf Trmy(@) 2 Y. Trn(a) (ae4™)

nel
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We refer the reader to [25], [20], [19] for related convergence properties in
uniformly liminal C*-algebras and for applications to semisimple Lie groups.

One of the results of this paper (Theorem 2.4) is that (2) is valid for an arbitrary
C*-algebra. In fact, we obtain Theorem 2.4 as a corollary of a quite general lower
semi-continuity result for trace functions on the ideal space of a C*-algebra
(Theorem 2.3). Whilst the main interest of these results may lie in the case where
A contains a non-zero postliminal ideal, we note that even an antiliminal
C*-algebra may have a dense set of finite dimensional representations in A (for
example, the full C*-algebra of the free group on two generators [10] and the
rotation algebra [17], [2]). In the rest of Section 2 we use the generalized version
of (2) to give alternative proofs of some results of Fell [ 14] on finite dimensional
irreducible representations.

Once the lower semi-continuity of the trace functions has been established, it is
natural, by analogy with continuous trace C*-algebras, to look for C*-algebras
containing a dense ideal for which the trace functions are continuous, in some
appropriate sense. In Section 3, we study three possible extensions of the class of
continuous trace C*-algebras. We show that they all coincide, and that they are
precisely equal to the class of C*-algebras of Type I, studied in [24; 6.1, 6.2].
Since these are precisely the C*-algebras whose spectra satisfy Fell’s condition at
each point we will refer to them as Fell C*-algebras. It is possible to obtain still
larger classes of C*-algebras with dense ideals of elements of ‘continuous trace’ by
introducing ‘multiplicity’ integers, see [14], [25], [20]. We hope to pursue this
subject further, and one of the aims of this paper is to clarify the ‘multiplicity one’
case. In the rest of Section 3 we study first the relationship between Fell
C*-algebras and C*-algebras of generalized continuous trace (GCT C*-alge-
bras), and then the set of separated points in the spectrum of a Fell C*-algebra,
when the spectrum is compact. We give an example of a Fell C*-algebra which
does not have GCT, providing a new and simpler example of a separable, liminal
C*-algebra for which the set of non-separated points is dense in the spectrum.

Transition probabilities for pure states of a C*-algebra play an important role
in our approach to Section 2. They are also related to Fell’s condition in [6]. In
Section 4, we continue the study of their continuity properties. We recall from
[29] the definition of the transition probability {¢,y> for a pair (¢,¥) in
P(A) x P(A) (where P(A) is the set of pure states of A4). If the Gelfand-Naimark-
Segal representations n, and =, are inequivalent then (¢, = 0. On the other
hand, if n, ~ =, then there exists an irreducible representations = of 4 and unit
vectors ¢ and n in the Hilbert space H, such that ¢ = {n(.)¢ &) and
¥ = (n(.)n,n). In this case {¢p, P> = |[<&,nd|%. Let T: P(A) x P(A) — [0,1] be
defined by

T(¢,¥) = {d,¥> (9, ¥ € P(A4)).
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As observed in [6; p. 8, Remark 2], T is upper semi-continuous for the product
w*-topology on P(4) x P(A) and hence is continuous at points (¢, ) for which
{¢,¥> = 0. Itis this fact which is the key to our results in Section 2. In Theorem
4.1 we give a complete description of the set of points of continuity for 7

In Theorem 4.2 we consider the restriction Ty of T to R(A), the subset of
P(A4) x P(A) consisting of those pairs (¢, ) such that r, and T, are equivalent. It
was shown in [6; Theorem 2.3] that T, is continuous (for the product w*-topol-
ogy) if and only if every = in A satisfies Fell’s condition. Here we localize this
result by showing that if (¢, y) € R(4) then T; is continuous at (¢, ) if and only if
either (¢, > = 0 or =, satisfies Fell’s condition.

In Section 5 we investigate a class of C*-algebras which illustrate the results of
Sections 3 and 4, namely the reduced C*-algebras of separated topological
equivalence relations. These are a special class of groupoid C*-algebras for which
the theory can be developed topologically, without recourse to integration [26].
A separated topological equivalence relation R is equipped with two topologies,
one finer than the other. We show that the Fell points in the spectrum of the
reduced C*-algebra of R correspond exactly to those points of R where the two
topologies coincide. We conclude, as a consequence, that the C*-algebra is a Fell
C*-algebra if and only if these two topologies are equal. This extends the results
of [22], [23] in a special case. (In [22], [23] a characterization is given of
continuous trace C*-algebras in the class of principal groupoid C*-algebras with
twists.) The results of Section 5 were obtained jointly with Mark Priest, and we
are grateful for his permission to include them in this paper.

In the rest of this section we establish some more notation and prove some
preliminary lemmas.

Let A be a C*-algebra with Banach dual A* equipped with the w*-topology.
Let S(A) denote the state space of A and for ¢ € S(4) let {n,, Hy, , | be the usual
GNS triple associated with ¢ (see Section 5). If 7 is an irreducible representation
of 4 we shall adopt the common practice of using the same symbol to denote the
corresponding equivalence class in A. Thus n; ~ 7, (as irreducible representa-
tions)means 7; = 7, (in A). We shall denote by 8: P(4) — 4 the continuous, open
mapping given by ¢ — =, (see [12; 3.4.11]). Recall that pure states ¢ and i are
said to be equivalent if n, and m, are equivalent.

By an ideal of A we shall always mean a two-sided ideal. The set Id (4) of all
closed ideals of 4 can be equipped with strong and weak topologies, 7, and 1,,.
The precise definition and origins of these topologies are described in [3; Section
2]. The main features are that a net (I,) is t,-convergent to [ in 1d(A)if and only if
la+ L| — [la + I|| forall a 4, whilst a base for 7,,is given by the family of sets of
the form

U(F) = {IeId(A):J$IforallJeF}
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where F is a finite set (possibly empty) of closed ideals of A. The method of proof
of [3; 3.5b)] shows that the functions I — ||a + I|| (a € A) are lower semi-continu-
ous on (Id(A), 7,,). As a matter of fact it is easy to show that the t,,-topology is the
weakest topology with respect to which all these functions are lower semi-
continuous. The space (Id(4), t,) is compact and Hausdorff whilst (Id(4),7,,) is
compact but not usually Hausdorff. The restriction of 7,, to Prim(4) (the set of
primitive ideals of A4) coincides with the Jacobson topology. This will be the
default topology on Prim (4). The only topology which we shall use on 4 will be
the Jacobson topology. If L is a non-empty subset of Prim (4) we will let ker L be
equal to () P.

PeL
A closed ideal I of A4 is said to be primal if whenever n = 2 and J,, J,,...,J, are

closed ideals of 4 with zero product then J; < I for ar least one value of i. Primal
ideals have been found to arise naturally in the theory of limits of factorial states
[5]. We denote by Primal(A) (respectively Primal’(A)) (respectively MinPri-
mal(A)) the set of all primal (respectively proper primal) (respectively minimal
primal) ideals of A. Let Sub(A4) denote the 7,-closure of MinPrimal(A) in Pri-
mal’(A). Sub(A) is a natural base-space for a C*-bundle representation of A4 (see
[3], [7] for investigations in the case when Sub(A) is equal to MinPrimal(A4)).

We shall use 4 to denote A itself (if 4 is unital) or 4 + C1 (if 4 is non-unital and
1 is an adjoined identity).

For a Hilbert space H we denote by L(H) (respectively LC(H)) the C*-algebra
of all bounded (respectively compact) linear operators on H. If ¢ is a unit vector in
H, the associated vector state w, is defined by

wy(T) = <T¢E, &) (TeL(H)).

We now prove some lemmas on convergence in the 7,, and 7,-topologies. The
first extends [3; Proposition 3.2].

LEMMA 1.1. Let A be a C*-algebra and let (I,) be a net in 1d(A) which is
1,,~convergent to a proper ideal in 1d(A). Let L be the set of t,-limits of (I,) in
Prim(A) and set I = ker L. For J e1d(A) the following are equivalent:

(i) I, = J (zy),

(i) J=2 I

Proor. (i) = (i) If I, - J(z,) then I, — P(t,) for each PePrim(4/J), so
Prim(4/J) = L. Hence J 2 I.

(ii) = (i) Itissufficient to show that I, — I (z,,). To do thisit is sufficient to show
that whenever K eId(A4) with I $ K then I, is eventually in the set

X = {Reld(4):R 2 K}
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(since sets of this type form a sub-base for the 7,,-topology). If I 3 K then there is
a Pe Lsuch that P 2 K, so X isa 7,-open neighbourhood of P. Since I, - P(z,),
I, is eventually in X, as required.

LEMMA 1.2. Let A be a C*-algebra and let (I,) and (J,) be nets in 1d(A) with
I, < J, for eacha. Let 1, J € 1d(A) and suppose that I, — I(t,) and J, - J(z,,). Then
IcJ.

Proor. If ae A then
la+ J| <liminflla 4+ J,|| £lim la + L| = ||a + I|.
Hence I = J.

COROLLARY 1.3. Let A be a C*-algebra and let (1) be a net in 1d(A) which is
T-convergent to a proper ideal J in Id(A). Let L be the set of t,-limits of (I,) in
Prim(A) and set I = ker L. Then J = I.

Proof. Sincel, - J(z,,),J 2 I by Lemma 1.1. Since I, — I (z,,) (by Lemma 1.1),
I2J by Lemma 1.2.

Recall that a point in a topological space is a cluster point of a net if it is a limit
of a subnet of the original net. The following result may be regarded as a general-
ization of [14; Theorem 2.1].

LeMMA 1.4. Let A be a C*-algebra and let (I,) be a net in 1d(A) which is
t,,~convergent to a proper ideal of A. The following conditions are equivalent:

(i) (1) is Ts-convergent,

(il) every t,-cluster point of (I,) is a t,,-limit,

(iii) every primitive t,,-cluster point of (I,) is a t,-limit.

ProOF. Let L be the set of primitive t,,-limits of (I,) and set I = ker L.

(i) = (i) Assuming (i), I, — I(t;) by Corollary 1.3. Suppose that (Is) is any
subnet of (I,) and that () is t,,-convergent to an ideal J € Id(4). Since Iy — (ty),it
follows from Lemma 1.2 (applied to (I;)) that I < J. By Lemma 1.1, I, - J ().

(i) = (iii) This is immediate.

(iif) = (i) Let (I5) be any subnet of (I,). The z,-compactness of 1d(A) implies
that (I5) has a subnet (I,) which is t,-convergent to some Je& Id(A). The set of
primitive z,,-limits of (,) is exactly L, by assumption, so by applying Corollary 1.3
to (I,) we obtain that J = I. It follows that I, — I(z,).

2. The lower semi-continuity of the trace on Id(4).

In this section we show that the trace-evaluation functions are lower semi-
continuous on (Id(4), 7,,), Theorem 2.3, and derive some consequences, among
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them the generalization of Milicic’s result (see Introduction) to arbitrary
C*-algebras, Theorem 2.4.

We need the following well-known lemma, which may be proved by a routine
induction on M (we omit the details). Alternatively it is possible to give an
operator-theoretic proof by considering the matrix (<£;, £;>), as was pointed out
to us by J. Spielberg. This latter argument is given in [9] with a reference to an
unpublished paper of Haagerup.

LeMMA 2.1. Given a positive integer M and 8, > 0, there exists 6, > 0 (depend-
ing only on M and d,) such that whenever 1 < m < M and &,,&,,. .., ¢, are unit
vectors in a Hilbert space H satisfying

K&l <61 (i F))
then there exists an orthonormal system {f,9,,...,N,} in H such that
i —&ill <do (1=iZm)

DEFINITION. If A is a C*-algebra, J is a closed ideal in 4 and ae A*, define
Try(a + J) to be Tr ny(a + J) where n; is the reduced atomic representation of
AlJ [24, 4.3.7].
Equivalently, Tr;(a + J)= Y, Tra(a + J). Define f,:1d(4) - [0, 0] by

ae(A/N)N
fl)=Tr(a+J) (J+4)
and let f,(4) = 0.

LEMMA 2.2. Let A be a C*-algebra, andlet ac A* . If P € Prim(A) and n€ A with
P = kern then

fa(P) = Trn(a).

ProoF. Since f,(P) = Tr n(a), we may suppose that Tr n(a) < co. In this case
n(a) is compact. Let ¢ be an irreducible representation of A4/P and let @ be the
canonical isomorphism of 7(4) onto A/P. Then either o o @ annihilates LC(H,) or
else o o @ is equivalent to the identity representation of n(A4) [24; 6.1.4]. Thus

fo(P) = Z Tro(a + P) = Z Tr(o o ®)(n(a)) = Tr n(a).

ae(A/P)N ae(A/P)N

It follows from Lemma 2.2 that if I eId(4) and I # A then
=% fuP)

PePrim(A/1)

We shall use this fact often in the sequel, without further mention.
We now prove the main theorem of this section.
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THEOREM 2.3. Let A be a C*-algebra. For each ac A* the function f, is lower
semi-continuous on (1d(A), 7,,).

ProoF. If a =0 then f, = 0. We may suppose, therefore, that a + 0. Since
fo 2 0and f,(4) =0, f, is lower semi-continuous at A4.

Suppose that I is a proper, closed ideal of 4, that a e R, and that f,(I) > a. We
seek a 1,,-neighbourhood W of I in Id(A4) such that
) ) >a (JeW).

There is a finite set {n,...,n,} of inequivalent irreducible representations of
A/I such that

Y Traa)>a (1<i<n)
i=1

For each i = 1,...,n there exists an orthonormal set {¢{:1 <k <m;} in H,,
such that

INgE

@ Y (@)D 60y =+ e
k=1

1

It

forsomee>0.For1 £i<nand1 <k <mlet
9 = <m0, 60D e P(A)
and let ) = ¢?(a). Let B and ¢, be positive numbers such that

&
3) ﬂ+81M=7{

where M = m, + m, + ... + m,. Let 6o = B(2M ||al))”". From Lemma 2.1 we
can obtain &, corresponding to M and d,.

Whenever (k,i) % (p,j) the transition probability <¢{’,¢9) is zero and so
(@9, ¢9) is a point of continuity for T, see Section 1. So there exists an open
neighbourhood N of 0 in A* such that whenever (k, i) ¥ (p.)) and

be(@® + N)n P(4), ye(@) + N)nP(4)

then {¢, Y >!/? < 6.
Let N, = N {peA*:|p(a)| < &} andfor 1 Si<nand | Sk < mlet

Ui = (¢ + Ny) 0 P(A).

Then ¥, = A", 6(U, ) is an open neighbourhood of m;in A (1 < i < ). Since Viis
open, there exists a closed ideal J; of 4 such that V; = J(1 Li<n). Let



88 R. J. ARCHBOLD AND D. B. W. SOMERSET

W= {Jeld(4):J 2J(1 i< n)},

a 7,,~open neighbourhood of I in Id(4).

Let J e W. Since J $ J; there exists o; € ¥; such that 6,(J) = {0} or, equivalently,
0.€(4/0)" (1 £i<n). Let ne{0y,0,,...,0,}. By re-ordering if necessary, we
may suppose thatn = 6, ~ 0, ~ ... ~ g,and n & o,for s > r. To establish (1) it
suffices, by (2), to show that

()] Tr(n(a)) > ( i mz A"’)

i=1k=
(note that {5y, 0,,...,0,} partitions into at most n blocks of equivalent represen-
tations and that each block contributes a summand like Tr(r(a)) the the express-
ion f,(J)).

Sinceo;€ V;(1 £ i < r)thereexistin H, unit vectors &, ;(1 < k < m;) such that if
bk = <n(.) &k i then @y ;e Uy . Hence if (k, i) # (p,j) then {¢y;. ;0% <
6y andso <&, &p 0l < 64.Sincem; + ... + m, £ M, it follows from Lemma 2.1
that there exist orthonormal vectors #, ;in H, (1 £ i <r,1 < k < m;) such that
7,i — &ill < 0. Hence

©) 13 3 (@) — )] S 2ollall M = B
Since ¢ ; — ¢’ e Ny,
© 13§ @uile) =200 <eum

It follows from (5), (6) and (3) that

Trn(a) = i % (@) N i> Mii )

i=1k=1
><Z A“’)—— B—e M
i=1k=1

m;
=< y (z))__g_
i=1k=1 n

It is easy to show that the t,-topology is actually the weakest topology with
respect to which all the functions f, are lower semi-continuous.

The next theorem generalizes [20; Lemma 8] from the liminal to the general
case.

™M~

W

as required by (4).
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THEOREM 2.4. Let A be a C*-algebra and let (n,) be a convergent net in A. Let
L be the set of limits of (n,). Then, in the extended interval [0, 0],

liminf Trr,(a) 2 ) Trn(a) (acA™).
nel
PROOF. Let aecA™. Since L is closed there exists an ideal J such that
= (4/J)". Hence

1) fald) = Y. Trn(a).
nel
Since 7, — nfor all me L we have ker n, — ker n (t,,) for all = € L and so ker m, > J
(tw), by Lemma 1.1. By Theorem 2.3 and equation (1):
lim inf fy(kern,) = Y Trn(a).

nel

By Lemma 2.2
Jfalker n,) = Tr(m,(a)).

The proof of Theorem 2.4 given above does not use Milicic’s special case.
Indeed, the whole thrust of our approach has been to show how transition
probabilities allow one to work in complete generality. Nevertheless, it is poss-
ible to give an alternative proof of Theorem 2.4 by using Milicic’s result. This
requires some care since A may not have a non-zero liminal ideal (even if the
equivalence classes of finite dimensional, irreducible representations are dense in
A). We outline the argument.

Fix ae A" and suppose that the inequality in Theorem 2.4 fails. Then, writing
I = lim inf Tr =,(a), we have 0 < [ < oo (note that if [ = 0 then Tr n(a) = 0 for all
ne L by [12;3.5.9]). There exists a subnet ()ger of (n,) such that

(i) lim Tr mg(a) = 1,

(i) 0 < Trmga) <1+ 1forall ferl.

Let L, be the set of limits of (n;) and let J be the closed ideal of 4 such that Aant
is the closure of {r,: e I'}. Then (4/J)" 2 Lo = L. Forne(4/J)" we have that
Trn(a) £ I + 1by(ii)and [12;3.5.9]. Thusa + J € I where I is the liminal ideal of
A/J defined by

I = {xe A/J :n(x)e LC(H,) for all me(4/))"}.

Workingin (4/J)", we have that nz I for all B, and that [ n Lo is non-empty (for
otherwise n(a) = 0 for all n e L). Writing b = a + J and applying Milicic’s result
to the net (nz) in I, we obtain
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I =1im Tr ng(b) = Tr n(b)

nelnLo

=Y Trab) 2 Y Tra(a) >,

nelo neL

which is a contradiction.

The next result is essentially a combination of Lemma 2.4 and Corollary 1
from [14; Section 10]. The original proofs involve polynomial identities, univer-
sal subnets, and spectral theory.

COROLLARY 2.5. Let A be a C*-algebra and let n be a positive integer. Let (r,) be
a convergent net in A such that dim n, < n for all o, and let L be the set of limits of
(7,). Then

(i) L is a finite set with at most n elements,

(ii) for eachmeL,dimn < n,

(i) Y perdimn < n.

Proor. It suffices to prove (iii). This follows from Corollary 2.4 by putting
a=1 (if A is non-unital we adjoin an identity and note that the canonical
homeomorphism of 4 onto an open subset of ()" preserves dimension).

The next result is a slight extension of Corollary 3 of [14; Section 10].

COROLLARY 2.6. Let A be a C*-algebra and let n be a positive integer. Let (n,) be
aconvergent net in A and suppose that dim n, = n for all o Let L be the (necessarily
finite) sets of limits of (m,).

If A is unital the following are equivalent:

(i) Yrerdimn =n,

(ii) Trmy(a) > Y e Trn(a) (acA).
If A is non-unital let o denote the element of (A)" which annihilates A. Then the
following conditions are equivalent:

(1)’ ZneL dimn = n,

(i) Trm(@) = Y reL Trn(a) (acA) and m, o in (A)".

ProoF. Suppose that A is unital. Suppose also that (i) holds and that xe A4
with 0 < x < 1. By applying Theorem 2.4 to x and 1 — x we obtain that

limsup Trm,(x) £ Y. Trn(x) < liminf Tr 7, (x).
nel
Then (i) follows by linearity. Conversely, if (ii) holds we can obtain (i) by putting
a=1
Suppose that A is non-unital. Given that (i)’ holds it follows, by applying
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Corollary 2.5 (iii) to (n,) (regarded as a net in (4) "), that n, $ o. The rest of (ii) is
obtained as before. Conversely, if (i)' holds there is an open neighbourhood U of
oin(A)" such that m, ¢ U frequently. There exists a closed ideal J of A such that
U ={d'e(A)” :0'(J) + {0}}.Since J & A thercexists xe A such that 1 — xe J. If
ne L then, since n, - 7, w¢ U and so n(x) = n(1). Also, 7,(x) = n,(1) frequently.
Hence, using (ii),

Y dimz = ) Tra(x) = lim Tr 7,(x) = n.
nel nel
The next result is similar to [20; Lema 11]. It explains why we will restrict
attention to t-convergent nets in the next section.

COROLLARY 2.7. Let A be a C*-algebra and let (1,) be a net in 1d (4) converging
(t,) to 1 €1d (A). Suppose that there exists a dense subset S of A* such that

lim f,(I,) = f(I) < 0 (a€el).
Then I, — I (ty).

Proor. Let (I5) be any subnet of (I,). By t,-compactness, (I;) has a subnet (1,)
which is t-convergent to some J € Id(A). Since I, — I (z,,), ] 2 J by Lemma 1.2.
Forae$S

fo() =lim f,(I) 2 f,(J) (by Theorem 2.3).

Hence f,(I) = f,(J). If PePrim(A/J) there exists aeS with f,(P) > 0. Hence
P=1IandsoI = J. It follows that I, — I(t,).

REMARK. If it is further assumed that S above is the positive part of a self-
adjoint subalgebra then the method of [20; Lemma 11] can be used to show that
the assumption that I, — I(z,,) is redundant.

3. Fell C*-algebras.

In this section we study Fell C*-algebras (C*-algebras of Type Io), viewing them
as a natural generalization of the class of continuous trace C*-algebras. We show
that they can be characterized in terms of an ideal of ‘continuous trace’; we give an
example of a Fell C*-algebra which is not a GCT-algebra, and we study the set of
separated points in their spectra.

We begin with some definitions:
A positive element x in a C*-algebra 4 is said to be abelian if rank n(x) 1 for all
ne A. If Ais generated, as a C*-algebra, by its abelian elements then it is said to be
a C*.algebra of Type I,.

C*.algebras of Type I, were studied in [24; 6. 1, 6.2] where it was shown that
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they are liminal, and that the class is closed under passage to quotients and to
hereditary subalgebras. Continuous trace C*-algebras are of Type I,; in fact
a C*-algebra has continuous trace if and only if it is of Type I, and has Hausdorff
spectrum, see below. Part of the interest of C*-algebras of Type I, is that each
postliminal C*-algebra has a canonical composition series of Type I, whereas its
continuous trace composition series are obtained using Zorn’s Lemma [24;
6.2.12]. C*-algebras of Type I, also arise in the study of continuity of transition
probabilities [6]. We shall look at this in more detail in the next section.

Let A be a C*-algebra. A point 7, € A satisfies the Fell condition if there exists
ae A™ such that n(a) is a 1-dimensional projection for all = in some neighbour-
hood of 7, in A. We will call such points Fell points. It is easy to see that if J is an
idealin 4 and me J < A then nis a Fell point in J if and only if 7 is a Fell point in
A. Elementary manipulations show that a point 7, is a Fell point if and only if
there is an abelian element x such that 7y(x) % 0. This shows that a C*-algebra is
of Type I, if and only if each point of its spectrum is a Fell point. Because of this it
is convenient to refer to such algebras as Fell C*-algebras, and we shall use this
name from now on. For any C*-algebra A, the set F of all Fell points in A is
clearly open. If A is postliminal then it follows from [24; 6.2.11] that F is dense in
A. The corresponding essential closed ideal J of A is the largest Fell ideal of A.
Since J is liminal Prim (J) is a T;-space, from which it follows that if = is a Fell
point in A then ker 7 is a minimal primitive ideal of A (see also the proof of
Lemma 3.1).

Let A be a C*-algebra and let P be the set of ae A* such that the function

7 — Tr n(a)

is finite and continuous on A. Then the linear span of P is a two-sided ideal of 4,
which is denoted m(A4) [12; 4.5.2], and A is said to have continuous trace if m(A) is
dense in 4. A C*-algebra has continuous trace if and only if its spectrum is
Hausdorff and each point of the spectrum is a Fell point [12; 4.5.3-4].

The main purpose of this section is to consider possible generalizations of the
notion of continuous trace. There are three natural ways to do this, and we begin
by describing these, and showing that they are all equivalent.

Following [19] we say that a net (n,) in 4 is properly convergent if it is
convergent and every cluster point of () is a limit. It follows from Lemma 1.4
that (n,) is properly convergent in A4 if and only if (ker x,) is 7,-convergent to
a proper ideal in Id(A). (Corollary 2.7 shows that we will need to use the
1,-topology if we want continuity of the trace functions on a dense ideal
(c.f. [14], [20]. [25])).

The first possible way of generalizing continuous trace is suggested by The-
orem 2.4, Define S to be the set of ae 4™ such that
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Trn,(a) - Y, Tra(a) < o
nel
whenever (r,) is a properly convergent net in 4 with limit set L. Note that S can
also be defined as the set of ae A™ such that f,(P,) —» f.(J) < co whenever (P,)is
a net in Prim (4) converging (t,) to a proper closed ideal J. If 4 is Hausdorff then
clearly S = P.

When 4 is Hausdorff, Prim (4) is equal to Primal’(4). This suggests a second
possible way of generalizing continuous trace. Define U to be the set of ac 4*
such that f;, is finite and 7,-continuous on Primal’(4).

At this stage it might seem that the demands of the second generalization are
too ambitious. It is natural to view a C*-algebra as a C*-bundle over Sub(4) (see
Introduction), so for the third generalization define V to be set ofae A* such that
£, is finite and 7,-continuous on Sub(A4).

Our first aim is to show that these three generalizations of continuous trace are
actually all the same. We begin with a lemma which extends [20; Theorem 3].

LEMMA 3.1. Let A be a C*-algebra and let a be an element of A* such that
Trn(a) is finite and bounded for mwe A. Suppose that ne A and that n(a) > 0. Let
J be a primal ideal contained in ker . Then {r} is open in (A/J)".

PrOOF. Note first that if o € 4 and ¢ # = then there exists an open neighbour-
hood of = which does not contain ¢. For, otherwise, ne {o} ~ and since n (re-
garded as an irreducible representation of 6(A4)) does not annihilate the compact
operator o(a) we have n ~ ¢ [8; 1.3.4].

Now by [12; 3.5.9] there exists an open neighbourhood U of nin A such that

1 Tro(a) > %Tr n(@) >0 (oeU).

Suppose that {r} is not open in (4/J)". By the first paragraph we can find
infinitely many points in (4/J)" n U, so by (1), fo(J) = . But f,is bounded on
Prim(4), by assumption, and Prim(A4) is dense in (Primal(4),7,) [3;3.1] so
Theorem 2.3 implies that f, is bounded on Primal(4). This gives a contradiction,
so {n} is open in (A/J)".

PROPOSITION 3.2. Let A be a C*-algebra and let P,S,U and V be the subsets of
A" defined before Lemma 3.1. Then

(@) P< S, and

(i) S, U, and V are equal.

PROOF. (i) Suppose that ae P and that L is the set of limits of a (properly)
convergent net (r,) in A. Let g e L. Using Theorem 2.4 we have
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Y Trn(a) < liminf Tr,(a) = Tra(a) < co.

nel
Thus Trn(a) = 0 for all e L\{s}. It follows that either L is a singleton or
Trn(a) = O for all e L and that in both cases

Trn,(a) - Y, Trn(a) < co.
nel
Hence a€eS.

(ii) It follows at once from the definition of U and the alternative definition of
Sthat U = §.

We now show that S < V. Letae€ S. Since Sub(4) = Prim(A4)*, by [3;4.3b)], f,
is finite on Sub(A). Let J e Sub(A4) and let ¢ > 0 be given. Since a€ S there is
atgo-neighbourhood M of J such | f,(P) — f,(J)| < ¢/2forall P e Prim(4) n M. Let
K eSub(4) " M and let

N = {Ield(A): £,(I) > £.(K) — ¢/2}.

N is 1,-open, by Theorem 2.3, so M n N is a t-neighbourhood of K. Since
Sub(4) c Prim(A4)*, Prim(4) " M N N is non-empty. Let PePrim(4) "M n
N. Then-

Jo(K) — &/2 < f(P) < fo(J) + ¢/2.

Hence f,(K) < f,(J) + & It follows that f, is upper semi-continuous for 7, on
Sub(A). Since f, is also lower semi-continuous for 7, (from Theorem 2.3), ae V.

Finally we show that V < U. Let ae V. Since f, is finite on MinPrimal(A4), f, is
finite on Primal’(4). Suppose that J, — J (z,) in Primal’(A4). It suffices to show
that some subnet of (f,(J,)) is convergent to f(J).

For each a let I, be a minimal primal ideal contained in J,. We may assume, by
t,-compactness and by passing to a subnet if necessary, that (I,) is 7-convergent
in Primal(A4) with limit I, say. Since I, < J, for each a, we have I = J and, in
particular, I % A.

For each alet F, = {ne(A/I,)A :7(a) + 0}. Since f,(I,) is finite, the proof of
Lemma 3.1 (with J replaced by I,) shows that {z} is open in (A/1,)" for each
neF,.

Let G, = {neF,:n(J,) + {0}} = F,nJ,,and let H, = F,\G, = F, " (4/J,)".
Let K, = n{kern:neG,} (and if G, is empty set K, = A).

Suppose that me H,. Since {r} is open in (4/I,)" and n¢ G,, we have n¢G,.
Thus, if G, is non-empty, H, N (4/K,)" is empty. Hence

(1) fl)= 3 Tra@= Y Tra(@+ Y Tra(a) =fuK,) + fldi).

neFy neGq neHq
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We may assume, by t,-compactness and by passing to a subnet if necessary,
that (K,)is ,-convergent in Id(4) with limit K, say. Since I, < K, foralle, I < K.

Let me(A/I)". Then there exists a subnet (Ip) of (I,) and mg € (4/1;)" such that
g — 7 (and hence ker mg — ker 7 in Prim(A4)).

Suppose, further that n(a) 3 0. Then eventually nz(a) # 0, that is, nge Fy.
Hence there is a subnet (I,) of (Ip) such that either 7, € G, for all y or n,€ H, for all
. By Lemma 1.2, either ker 7 2 K or kern 2 J. Hence

@ L= % Tra@ < fulJ) + fu(K).
ne(4/ 1) N
Note that since ae V, f,(I,) = f,(I).
From (1), (2), and Theorem 2.3 we have

JalJ) + fo(K) 2 fo() = lim fo(1,) = lim (fu(K,) + fo(J,)) = limsup(f(K,) + fu(J,))
2 liminf f,(K,) + limsup f,(J,) 2 liminf f,(K,) + liminf f,(J,) = f(K) + f.(J).
Hence lim sup f,(J,) = liminf f,(J,) = f,(J), as required.

From now on we prefer to work with U rather than Sor V. Clearly U + U < U
and if ae 4 and aa* e U then a*ae U. Also,ifaeU,bedand 0 £ b £ a then by
applying Theorem 2.3 to b and a — b we see that be U (c.f. [12; 4.4.2]). It follows
from [12; 4.5.1] that the linear span X(4) of U is a two-sided ideal of 4 and
X(A)* = U. Our aim is to characterize those algebras for which X (A) is dense in
A. First we show that Fell C*-algebras belong to this class. This follows immedi-
ately from the next Proposition, see Theorem 3.6.

Form, e Alet m ~ o if 7 and o cannot be separated by disjoint open sets in A.
Set S(n) = {oed:0 ~ n}.

PROPOSITION 3.3. Let A be a C*-algebra and let ae A™ be an abelian element of
A.

(i) Suppose that m, and n, are distinct elements of A such that m; ~ ny. Then at
least one of m,(a) and m,(a) is zero.

(i) f,(I) = |la + I|| (I e Primal(A4)).

(iii) f, is finite and t,-continuous on Primal(A). Hence a€ U.

PrOOF. (i) Thereisa net(n,)in A such that 7, — 7, and 7, = 7. By passing to
a subnet if necessary we may suppose that (ker 7,) is t,-convergent to some ideal
Jeld(A4). Then J < ker, (i = 1, 2). There exists me(4/J)" such that a + J|| =
Im(a)||. Then
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In@l = lla + J|| = lim ||n,(a)ll = lim Tr r,(a)
2 Y Tro(a) (by Theorem 2.4)
ae(A/NHN
= 2 lo@l.
oe(A/ )N

Thus if 6e(4/J)" and ¢ # 7 then o(a) = 0.
(ii) Let I € Primal(A). If ae I then

Jall) =0 =la +I|.
Suppose that a¢ I. By (i) there exists a unique =€ (4/I) " such that n(a) % 0. Then
Joll) = Trn(a) = |n(a)]| = lla + I|.

(ii)) This follows from (ii).

COROLLARY 3.4. Let A be a C*-algebra and suppose that m is a Fell point of A.
Then 7 has a Hausdorff open neighbourhood in A.

ProoF. There exists an abelian element ae A* such that n(a) + 0. Then

{oced:a(a) % 0}

is an open neighbourhood of 7 [12; 3.3.2] and is Hausdorff by 3.3 (i).

Our aim now is to show that if X(A) is dense in A then A is a Fell C*-algebra.

PROPOSITION 3.5. Let A be a C*-algebra and let m € A. Suppose that n(X(A)) +
{0}. Then {n} is open in S(r).

PRrOOF. Suppose that {n} is not open in S(r). Then there exists a net (r,) in
S(m)\{n} such that n, > n. For each «, J, = ker = n ker , is primal (because
n, € S(m)). By the 7,-compactness of Primal(A4), (J,) has a subnet (J;) which is
1,~convergent to some J € Primal(A), and J < ker 7, using Lemma 1.2.

By Lemma 3.1 there exists an open subset V of A such that

V" ={r}.

Let K be the closed, two-sided ideal of 4 such that K = V. Since n(K) # {0} and
n(4) =2 LC(H,) we have n(K) = LC(H,). Let ae U such that n(a) # 0. Then there
exists be K* such that n(b) = n(a). Let ¢ = babe K* n X(4) = K n U. Then
n(c) = n(a)® # 0 (since n(a) = 0) and so, since ce U, 0 < Trn(c) < oo. We have

Tra(c) = f.(J) (since ceK)
=lim f.(J;) (since ceU)
2 lim sup (Tr 7g(c) + Tr n(c))
=2Trn(c) (by [12;3.5.9]).
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This contradiction shows that {=} is open in S(n).

THEOREM 3.6. Let A be a C*-algebra andlet we A. Then the following conditions
are equivalent:

(i) m is a Fell point,

(i) X(A) & kerm.

PRrOOF. (i) = (ii) Ifnis a Fell point then there exists an abelian element a such
that n(a) + 0. Proposition 3.3 (iii) implies that a € X(A4). Hence X (4) & kerm.

(ii) = (i) Suppose that (ii) holds. By [12;4.4.2(ii)] it suffices to find ce A * such
that 7(c) # 0 and such that the function ¢ — Tr 6(c) (s € A) is finite and continu-
ous at 7.

By Proposition 3.5 there is a closed two-sided ideal K of 4 such that
S(m) " K = {n}. Choose a€ U such that n(a) + 0, and choose be K * such that
n(a) = n(b). Then ¢ = babe K n U and n(c) % 0. Since ce U, Tr o(c) < oo for all
oeA.

Suppose that 7, — min 4 and let (mg) be any subnet of (z,). By the 7,-compact-
ness of Primal(A) there exists a subnet (ker ,) of (ker 7) such that ker z, — J (1)
for some primal ideal J of 4. Lemma 1.2 shows that J < ker 7. Then

lim Trz,(c) = f.(J) (since ceU)
= Trn(c) (since ceK).
Since the subnet (n;) was arbitrary, Tr 7, (c) — Tr n(c).
The next corollary follows immediately from Theorem 3.6

COROLLARY 3.7. Let A be a C*-algebra. Then the following are equivalent:
(i) A4 is a Fell C*-algebra,
(i) X(A) is dense in A.

Corollary 3.7 shows that Fell C*-algebras have a right to be thought of as
C*-algebras of “generalized continuous trace’. But there is already a class of
algebras claiming this name for themselves, so we now investigate the connec-
tions between these two classes.

A C*-algebra A is said to have generalized continuous trace (GCT or, some-
times, GTC) if the continuous trace ideal m(A/I) is non-zero for every non-zero
quotient A/I of A [12, 4.7.12]. It is easy to show that GCT algebras are limi‘nal
[12;4.7.12]. If Ais liminal and A is compact or if every irreducible representation
of A is finite dimensional then A has GCT [13; §1], [11; Proposition 1.3], [L
Example 4.5]. It is easy, therefore, to give examples of GCT algebras which are
not Fell algebras: for example the algebra of sequences of two-by-two complex
matrices which tend to a scalar matrix at infinity.
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We now give an example of a Fell C*-algebra which does not have GCT (which
shows that the two classes don’t have much connection). To do this we use the
following characterization [12; 4.7.12]: a liminal C*-algebra 4 has GCT if and
only if A is quasi-separated (a topological space T is quasi-separated if whenever
F is a non-empty closed subset of T the interior of the set of separated points of
F is non-empty (or, equivalently, dense)). It is, therefore. sufficient for our
example to produce a Fell C*-algebra in which the set of non-separated points is
dense in the spectrum.

ExampLE 3.8. Let H be a separable, infinite dimensional Hilbert space and let
(e)(1 £ i < o) be an orthonormal basis for H. For i,je{1,2,...} let T; be the
rank-one operator such that T;; e; = e;. For each ne{l1,2,...} let C, be the
C*-subalgebra of LC(H) generated by T;;(1 < i < oo)and T;;(1 < i,j < n). Then
C, = M,(C) ® co. Let B be the C*-algebra of continuous functions from [0, 1]
into LC(H). If r is a rational number in (0, 1) let d(r) be the denominator when r is
written as a fraction in its lowest terms and set d(0) = d(1) = 1. Let A be the
C*-subalgebra of B consisting of those functions fe B such that f(r) e Cy, for
each rational re [0, 1].

If se[0,1] let I, be the closed, two-sided ideal of A consisting of those f e A
such that f(s) = 0. If s is irrational then for each n = 1 there exists a neighbour-
hood of s in which each rational number r satisfies d(r) = n. It follows that

{f(s): f € A} contains the norm-closure of { ) C, and hence is equal to LC(H).
n=1

Thus I is primitive. Otherwise A/I; = C,, so Prim(A/I,) is a countably infinite,
discrete space. If (s,) is a sequence of irrational numbers in (0, 1) converging to
a rational number r then I, — I,(t,), so I; converges (t,,) to each P e Prim(A4/1,),
by Lemma 1.1. Thus if P € Prim(A/1,) P is not a separated point of Prim (A). Since
the ideals I,, for r rational, have zero intersection it follows that the set of
non-separated points is dense in Prim(A). Since A is obviously liminal, Prim(A) is
homeomorphic to 4, so 4 does not have GCT.

Foreachie{1,2,...} the constant function f;:[0, 1] — T; is clearly an abelian
element of A. If me A there exists i such that n(f;) + 0. Hence the ideal generated
by these elements is dense in A. Hence A is a Fell C*-algebra which does not have

GCT.

An example has previously been given of a separable, liminal C*-algebra for
which the set of non-separated points is dense in the spectrum [13], but it is more
complicated to describe, and it is not easy to see whether it is a Fell C*-algebra.

We now continue to investigate separated points in the spectra of Fell
C*-algebras. For I,J € Primal’(A4) let I ~ J if I and J cannot be separated by
disjoint t,,-open sets in Primal’(4).
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LEMMA 3.9. Let A be a C*-algebra and let I, J € Primal’'(4). Then I ~ J ifand
only if I n J is primal.

ProoF. Theideal I N Jis primal if and only if there exists a net (P,) in Prim(A4)
such that P, - I(z,) and P, — J(r,,) [5; 3.2], [3; 3.2]. If such a net exists then
clearlyI ~ J. Converselyif I ~ J then the denseness of Prim(4)in (Primal(4), T.)
[3; 3.1] implies that such a net exists.

The next lemma is an immediate consequence of the definition of ~.

LeMMA 3.10. Let A be a C*-algebra Suppose that (P,) and (Q,) are nets in
Prim(A) with P, — I (z,,) and Q, — J (,,) for some I,J € Primal’ (A). If P, ~ Q, for
eacha thenI ~ J.

LEMMA 3.11. Let A be a C*-algebra. Let (P,) be a net in Prim(A) converging (z,,)
to a primalideal I and suppose that (Q,) is a net in Prim(A), with Q, ~ P, for eacha.
(i) If I is minimal primal and (Q,) converges (t,,) to a primal ideal J then J = I.
(i) If I is a closed, separated point of Prim(A), and Prim(A) is compact then

Q,— 1L

Proor. (i) This follows from Lemmas 3.9 and 3.10.

(ii) Let (Qp) be any subnet of (Q,). By the compactness of Prim(4), (Q,) has
a convergent subnet (Q,), converging to some Q € Prim(4). Since I is minimal
primal [3;4.5] part (i) implies that Q = I. But I is a closed point of Prim(4), hence
a maximal ideal. Hence Q = I, and Q, — .

THEOREM 3.12. Let A be a C*-algebra. Suppose that Prim(A) is compact and
that each point of Prim(A) has a Hausdorff neighbourhood. Let X be the set of
separated points of Prim(A). Then Prim(A) is a T,-space and X is a dense, open
subset of Prim(A).

PRrOOF. Since each point has a Hausdorff neighbourhood, Prim(4) is a T-
space. Suppose that P is a separated point in Prim(4). Let (P,), (Q,) be nets in
Prim(A), with P, ~ Q, for each «, and P, — P. By Lemma 3.11 (ii) @, — P also.
But P has a Hausdorff neighbourhood, by assumption, so eventually P, = Q..
Hence P, is eventually a separated point. It follows that X is open.

Let P e Prim(A) and let I be a minimal primal ideal such that I < P. By[3;3.1]
there exists a net (P,) in Prim(4) such that P, — I(z,,). Let (Q,) be anet in Prim(4)
with 0, ~ P, for each . By the 1,,-compactness of Prim (4) each subnet (Qp) of
(Q.) has a subnet (Q,) converging (t,,) to some @ in Prim(A), and Q 21, by
Lemma 3.11 (i). Since Q has a Hausdorff neighbourhood and (P,) also converges
(z,,) to Q it follows that eventually P, = Q,. Hence P, is eventually a separated
point. Since P, — P in Prim(A4), X is dense in Prim(4).
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ReMARKS: (i) If 4 is a Fell C*-algebra with compact spectrum then Corollary
3.4 shows that the theorem above applies to A. In this case, however the
denseness of X in Prim(A) already follows from the fact that 4 is a GCT
C*-algebra.

(i) The first paragraph of the proof above actually shows that if A is
a C*-algebra with Prim(4) compact and T; then the interior of the set of
separated points of Prim(A) is precisely the set of separated points which have
a Hausdorff neighbourhood.

4. Points of continuity for transition probabilities.

In this section we extend the results of [6] on continuity questions for the
transition probability mapping T (see Section 1) and its restriction T; to R(4)(the
subset of P(4) x P(A)consisting of those pairs (¢, i) such that r, is equivalent to
n,). We equip P(A4) x P(A) with the product w*-topology. The restriction of this
topology to R(A) is called the product topology and is denoted 7,. We shall also
be concerned with the quotient topology 7, on R(A). This is obtained as follows
(see [6]). We define G(A) to be the set of extreme points of the closed unit ball of
the Banach dual A*. There is a mapping g of (G(4), w*) onto R(A) given by

q(#) = (91, 19*) (¢ €G(4)).

The topology 7, on R(4) is defined to be the quotient topology induced by g from
(G(A), w*).

In the locally convex, separated space A* x A* the set P(4) x P(A)isequal to
0.(S(A) x S(A)), so it follows from [12; B14] that P(4) x P(A) is a Baire space.
Since T is upper semi-continuous on P(A) x P(A), the set of points of continuity
is a dense Gs-set [12; B18]. In Theorem 4.1 we describe this set and give an
alternative proof of its density. This result extends the observation of [6; p. 8,
Remark 2] which was described in Section 1.

Recall that a C*-algebra is said to be elementary if it is isomorphic to the
algebra of compact operators LC(H) on some Hilbert space H.

THEOREM 4.1. Let A be a C*-algebra and let T: P(A) x P(A) — [0, 1] be defined
by
T(.¥) =<, ¥> (&, ¥ eP(A)).

E; = {(¢,¥)e P(4) x P(4): T($,y) = 0}

and let E, be the subset of P(A) x P(A) consisting of those pairs (¢, ) such that
there exists a closed ideal J of A such that J is an elementary C*-algebra and
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J ={ny}. Then E = E, U E, is dense in P(A) x P(A) and is precisely the set of
points at which T is continuous.

PrOOF. Let (¢,¥)eE. If (¢,y)e E, then T is continuous at (¢, ), [6; p. 8].
Suppose thatﬂ(q&, Y)e E;\E,. Then there exists an elementary closed ideal J of
A such that J = {n,} = {n,}. Suppose that ¢, > ¢ and ¥, — ¢ in P(4) in the
w*-topology. Then, eventually, ¢,|J,¥,|J € P(J) and so

oY) = {@al L] T> > (DI YT = (. ¥)

by [6; p. 8, Remark 1]. Thus T is continuous at (¢, y).

Now suppose that (¢,¥)e(P(4) x P(4))\E. Note that {¢,¥) + 0 and that
¢ and ¥ are equivalent pure states. We shall complete the proof (and confirm the
density of E) by showing that (¢, ) is the limit of a net in E;. There are two cases
to consider.

Case 1. Suppose that {n,} is not openin 4. Let I' be a base of open neighbour-
hoods of 0in A*. Let N e I'. Then the canonical image of (¢ + N) n P(4)in A4 is
an open neighbourhood of m, in A and so there exists ¢y e (¢ + N) n P(4) such
that ¢y is not equivalent to ¢ or ¥ and hence such that (¢, ) = 0. Directing
I by reverse inclusion in the usual way, (¢, ) = (¢, V) in P(4) x P(A).

Case2. Suppose that {r,} is openin A. Then there is a closed ideal J of 4 such
that {n,} = J. Since (¢, ¥) ¢ E we must (in the absence of a positive resolution of
Naimark’s conjecture) consider the possibility that J is a simple, antiliminal,
inseparable C*-algebra. There exists a unit vector € H, such that = w,°n,.
Since m,4(A) is a prime C*-algebra and m,(J) " LC(H,) = {0}, it follows that
n4(4) "LC(H,) = {0}. Let p be the unique state of B = w4 (A) + LC(H,) which
is zero on LC(H,,) and agrees with w, on 74 (4). By Glimm’s vector state theorem
[15; Theorem 2], [16; Lemma 9] there is a net (1,) of unit vectors of Hy such that
w,,|B - p. Then {n,,&,> — 0 and so eventually 1, — {14, 4)Sp can be nor-
malised to a unit vector, {, say. It follows that

(P, wp oy =<, LI* =0
and (¢, wg, ° 1) = (¢, %) in P(4) x P(A).

Next we give a localized version of the global continuity result for the mapping
T, on R(A) [6; Theorem 2.3]. The methods are partly similar to those in [61.
However, some extra arguments are required and we also replace the method of
[6; p. 7] by using, and then developing further, a technique of Glimm [16].

THEOREM 4.2. Let A be a C*-algebra and let Ty: R(4) — [0, 1] be defined by
To(d,¥) = <. ¥> ($:¥)€R(A)).
Let (¢, ) € R(A). The following conditions are equivalent:
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(i) Ty is continuous at (¢, ) for the product topology on R(A),

(ii) either (¢, > = 0 or m, is a Fell point in A.

PROOF. (ii) = (i) Ifn, isa Fell point in 4 then the argument in the proof of [6;
Theorem 2.3] shows that (¢, ) is a point of continuity for Ty,. If (¢, > = O then
(¢, ¥) is a point of continuity for the map T of Theorem 4.1, [6; p. 8]. Hence, by
restriction, (¢, ¥) is a point of continuity for T;,.

(i) = (ii) Suppose that (¢, ¥) is a point of continuity for T, and that (¢, ¥) =
J # 0. We shall show that 4 is a Fell point in A.

Write n = n,. We begin by showing that {z} is open in S(n). Suppose, on the
contrary, that {n} is not open in S(n). As before let I' be a base of open
neighbourhoods of 0in A*. Let N e I'and let N; = 1/2 N. The canonical image of
(¢ + Ny)n P(A) in A is an open neighbourhood of 7 and hence contains an
element ¢ of S(n)\{x}. Thus there exists a pure state ¢’ associated with ¢ such
that ¢’ € ¢ + N,. The argument in the proof of [4; Theorem 1 ((ii) = (iii))] shows
that there exists p € 4 and unit vectors ¢ and 5 in H,such that ¢y = w;oped’ +
Ny, Yy=w,opey +N; and [K&nd|* <56/2. Hence ¢yed + N and
Ynyey + N. Letting N run through I' we have (¢n, ¥x) = (¢, ¥) in the product
topology on R(A) but lim sup {¢n, ¥n) < 1/2<{, ¥ . This contradicts the conti-
nuity of Ty at (¢, ¥) and so {n} is open in S(r).

We show next that n(4) 2 LC(H,). Suppose, on the contrary, that n(A4) N
LC(H,) = {0}. Let B = n(A4) + LC(H,). Let ¢’ and ¥’ be the (unique) states of
B which annihilate LC(H,) and satisfy ¢’ o n = ¢, and ' o = = . Let 4 be a base
of w*-open neighbourhoods of 0 in B* and let M € 4. By Glimm’s vector state
space theorem [15], [16] there exists a unit vector &, in H, such that
w,,|Be ¢’ + M. By the same theorem there is a net () of unit vectors in H, such
that o, |B — /. Let Ey be the projection onto the linear span of £,. Since
V' (Ey) =0, {EpNa,1M.» = 0. Thus there exists a unit vector #,, such that
,, |Bey’ + M and [<Erm>nmp|? £ 8/2. As M runs through 4, g, °T— ¢ and
wy,, ° 7 —> . Since [{Eyy, a2 + 8, this contradicts the assumed continuity of Tg
at (¢, ¥). Hence n(4) = LC(H,).

Since {n} is open in S(r) there exists an open neighbourhood U of z in A such
that U n S(n) = {n}. Let J be the closed two-sided ideal of 4 for which U = J.
Since n(4) =2 LC(H,) and n(J) % {0}, we have n(J) 2 LC(H,). Thus there exists
aeJ™ such that n(a) is a rank one projection which supports the pure state ¢ in
the representation m. Since mis a separated point of J, |a(a® — a)| - 0asa — zin
J. By a standard functional calculus argument, we may assume without loss of
generality that o(a) is a projection for all ¢ in some neighbourhood V of 7 with
V < J. By shrinking V, if necessary, we may also assume that a(a) + Oforalloe V
[12;3.3.2].

Suppose that = is not a Fell point. Then there exists a net (g,) in V such that
o, — n and, for each a, rank (o,(a)) = 2. For each a there is an orthonormal set
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{£,,{.} in the Hilbert space for o, such that ¢,(a)¢, = ¢, and 6.(@)¢, = ¢,. Let
x € A. Then n(a)n(x)n(a) = An(a) for some AeC. Since axa — Aael, |o (axa —
Aa)|l = 0. Hence, arguing as in [16; p. 605]

lim {a,(x)¢s, &:> = lim o, (axa)é,, &, )
=lim{o,(Aa)¢,, &) = A = p(x).

Thus w;, ° g, — ¢ and similarly w,° g, — ¢.

Recall that 4 is A itself (if A is unital) or 4 + C1(if Ais non-unital). There exists
a unitary element ue A such that yy = ¢(u*.u). For each o, let Ne = 6,(4)(,, where
&, is the canonical extension of o, to A. Then ,, ° 6, = Y. Since Ty is continuous
at (¢, ¥), <& MD1* = (¢, ¥). Thus [<&,, 6, () HI* — 6 + 0.

On the other hand, n(a)#(u)n(a) = un(a) for some pueC. Since aua — paeJ,
o, (aua — pa)|| — 0. Hence

lim <&,,6,(u){,> = lim {&,, o,(aua)l,>
= lim {¢,, o,(pa){,> = plim (&, (> = 0.
This contradiction shows that = is a Fell point.

PROPOSITION 4.3. Let A be a C*-algebra and let ue A be a unitary element.
Define @,: R(A) - R(A) by

P, Y) = ($,Y(u.u*) (b, ¥)eR(A).

Then @, is a bijection and
(i) @, is a homeomorphism for t,,
(i) @, is a homeomorphism for t,.

PROOF. &, is a two-sided inverse for &, so @, is a bijection. For (i) and (ii) it
suffices to prove either that &, is open or that &, is continuous, since this will then
also hold for the inverse map 9,,.

(i) Suppose that (¢, Y,) = (¢, ¥)(z,)in R(4). Then ¢, ~ ¢, Ya = ¥, Y. u*) -
Y(u . u*), all in the w*-topology, and s0 (@, Y, (u . u*) = (&, ¥ (u.u*)). This shows
that @, is t,-continuous.

(ii) Consider the map g:(G(4), w*) > (R(A),7,) given by (@) = (¢}, |$*]) and
recall that if ¢ = (n(.)&, 7 (where 7 is an irreducible representation and £ and
n are unit vectors in H,) then |¢| = w;omand |p* = wyom. .

Let U be a non-empty open subset of (R(4),7,). Then g~ '(U) is an open,
g-saturated subset of G(4). Let V = {y € G(4):¥ = ¢(u.) for some peq” Lyl
Then V is an open, g-saturated subset of G(4) (note that if ¢,3//eG(A) then
4(¢) = q(y) if and only if ¢ = A ¢ for some A€ C with |4] = 1). Using the vector
functional representation of the previous paragraph, one may check that
q(V) = &,(U). This shows that &, is 7,-open.
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Another way of viewing the proof of (ii) is to observe that &, lifts to
a w*-homeomorphism of G(4) given by ¢ — ¢(u.) (¢ € G(A)).

COROLLARY 4.4. Let A be a C*-algebra and let
i:(R(4),7,) = (R(A4), 7,)

betheidentity map. Let (¢, ) € R(A). Theniis continuous at (¢, ) ifand only if n, is
a Fell point in A.

PROOF. Suppose that iis continuous at (¢, ). There exists a unitary ue 4 such
that = ¢(u*.u). Since &,, is 7,-continuous on R(4) and @, is t,-continuous on
R(A), Proposition 4.3, it follows that i is continuous at (¢, ¢). Since the transition
probability map is t,-continuous on R(A) [6; Proposition 3.2], (¢, ¢) is a point of
7,~continuity for To. Hence 7, is a Fell point, by Theorem 4.2.

Conversely, suppose that =, is a Fell point. Then, by Theorem 4.2, (¢, ¢) is
apoint of 7,-continuity for T,. By [6; 3.3], (¢, ¢)is a point of continuity for i. Since
@, is t,-continuous on R(A) and ®,, is 7,-continous on R(A), i is continuous at

(@,¥).

5. Fell points in C*-algebras of separated topological equivalence relations.

The work in this section was done jointly with Mark Priest, and we would like to
thank him for allowing it to appear here.

The main result of this section is that the Fell points in the spectrum of the
reduced C*-algebra of a separated topological equivalence relation can be
characterized by the points of continuity of a certain map (Theorem 5.7), exactly
as in Corollary 4.4.

Let R be an equivalence relation on a set X, with diagonal R®. Let r, s be the
projection maps from R to R° defined by r((x,y) = (x,y) and s((x,y)) =
(», ¥)((x, y) € R). Then R is said to be a separated topological equivalence relation if
there is a second countable locally compact, Hausdorff topology 7, on R such
that r (or, equivalently, s) is a local homeomorphism. The separated topological
equivalence relations are precisely the second countable r-discrete principal
groupoids which admit Haar systems [27; 1.2.7,1.2.8]. For (x, y)e R an R%-strip
neighbourhood of (x, y) is an open neighbourhood of (x, y) on which both the
projection maps, r and s, are homeomorphisms onto open subsets of R. When
R is a separated topological equivalence relation the R%-strip neighbourhoods
form a base for the topology. For x € X the equivalence class of x in X will be
denoted [x]. The set {(y,y):ye[x]} is called the orbit of (x, x) in R°. It will be
convenient to refer to the set {(y,2):y,ze[x]} as an equivalence class in R.
A subset of R is said to be invariant if it contains the orbit of each of its points.

Now let R be a separated topological equivalence relation and let C(R) be the
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*-algebra of continuous complex functions on R of compact support, with
involution given by

*u,v) = f(v, u),

with pointwise addition, and with multiplication given by

frav) = Y flu,w)gw,v) fgeC.(R).

The topology ensures that the sum has only finitely many non-zero terms. Let
[|- lrea be the C*-norm on C(R)in [27; I1.2.8], [21; 6.3]. The completion of C.(R)
with respect to this norm is denoted C%,(R). We shall give an alternative
description of ||.]..q after Proposition 5.2. The norm |.||,.s dominates the
uniform norm on R so we can regard the elements of CX,(R) as continuous
functions on R vanishing at infinity [27; 11.4.2].

When R is a separated topological equivalence relation R® is a clopen subset of
R [27;1.2.8], so the C*-algebra Cy(R®) is an abelian subalgebra of 4 = C%4(R).
Infactitis a Cartan(or diagonal) subalgebra of A [28], [18], [21]. (The definition
of “Cartan subalgebra” given in [27; I1.4.13] is slightly different, and is no longer
used.) For each x€ X, (x,x) can be viewed as a pure state of Co(R°) (given by
evaluation at (x,x)), and (x, x) has a unique extension to a pure state ¢, on
A (which is also given by evaluation at (x, x)).

Recall that if ¢ is a state on a C*-algebra A then the left kernel of ¢ is the closed
left ideal

Ly = {ae A:p(a*a) = 0}.

Forae A let £, denote the image of a in the quotient space A/L,. Then (&, &) =
@(b* a) is a sesquilinear form on A4/L, defining a pre-Hilbert space structure. Let
H, denote the completed Hilbert space. For a,be A define m4(a)Sy = Sap- Then
(ns, Hy) is the GNS representation corresponding to ¢.

LEMMA 5.1. Let R be a separated topological equivalence on a set X. Let xe X
and for each point y € [x] let f, be a function in C(R) whose support is contained in
an R-strip neighbourhood of (v, x) and such that f,((y,x)) = 1. Then the set

B = {éfy:ye[x]}
is an orthonormal basis for H, .
ProoF. Let f,eB. Then
Eppr,> = o) = (K )% x)

Y 1,00 =140 =1

w~Xx
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If £, is a different element of B then
iy lr2 = ¢:((S)*1)
= ((*f,))(x,x)

= 2 Lwx)fw,x)

wNx
=0

since supp f, nsupp f, N s~ ((x,x)) = @. Hence the set B is orthonormal.
To show that the linear span of Bis dense in H,_suppose that a is a function in
C.(R). Then aeL,_ if and only if al;-1(,x) = 0. Indeed

a*a(x,x) = ). la(w,x)?
and so a*a(x, x) = 0 if and only if a|s- 1 x) = 0. The support of a is compact so
there exist only finitely many distinct elements y(1),...,y(n) in X for which
a(y(i),x) £0(1 £i < n). Hence

i=1

<a — i a(y(), x)fy(i)) Is-1(@xn = 0

and we have that

n

éa = Z a(y(l), x)cfym’

i=1

by the preceding observation. Hence B spans C.(R)/L,_which is dense in H_.

For each xe X let Hy,; be a Hilbert space of dimension equal to the cardinality
of [x]. Let {e,} (y € [x]) be an orthonormal basis for Hj,;. Then Lemma 5.1 shows
that the map

e,—&r, (yelx))
extends to an unitary operator U from Hy, to H,_. Let n;,; be the irreducible
representation of A4 on Hy,, defined by
n[x](.) = U*ﬂ¢x(.)U.

PROPOSITION 5.2. Let R be a separated topological equivalence relation on a set

X and let A = C%4(R). Let xe X and let ny,, be the irreducible representation of

red

A defined above. Then, for all ac A, {(n;;(a)e,, e,> = a(z,y) (y,z€[x]).

PRroOF. Since ||. ||;.q dominates the uniform norm on R [27;11.4.2] it is enough
to prove the result for ae C.(R). So let ae C.(R), y,ze[x]. Then
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(mg(@e,,e.) = <“¢x(a)‘ffy, ff,) = <5afy, ff,)
¢((f)*afy) = (£)*af,)(x, x)

Z (f2*(x, wi)a(w,, W) fy(w2, X)

Wi,wa~Xx

It

Z Oz)(x9 wl)a(wl’ Wz)fy(Wz»x) = a(z, y)
Wi,Wa2~X

REMARK. It follows at once from Lemma 5.2 that N,y ker m,; = {0}. Hence
for all ae C%,4(R)

lallrea = sup {lInq(@)ll: xe X}.

The next lemma follows immediately from the fact that {e,} (ye[x]) is an
orthonormal basis for Hiy;.

LeMMA 5.3. Let R be a separated topological equivalence relation on a set X and
let A= C*4R). IfxeX and ac A" then

Trm(a) = . a(y,y).
y~x

LEMMA 5.4. Let R be a separated topological equivalence relation on a set X and
let A= CX4(R).

(i) If xe X then m4(A) = LC(Hy,) if and only if the orbit of (x,x) in RO is
discrete.

(i) If ne A and if n(A) = LC(H,) then there exists x € X such that n is equival-
ent to Tpy.

PROOF. (i) The local homeomorphism property of the projection maps r and
simplies that either every point of the orbit of (x, x) is isolated, or the orbit of (x, x)
has no isolated points. In the first case there exist elements a of A* such that
0 < Trmy,y(a) < oo; in the second case there do not. Hence in the first case
Tx(4) 2 LC(Hyy), in the second case m,y(4) £ LC(Hyy)-

(i) Let S be the closed invariant subset of R such that (kern)* = {aeA™:
a(x,x) = 0 for all (x,x)e S} [27; I1.4.6]. Let ae A™ such that () is a non-zero
compact operator. Since a¢ (kerm)* there exists (x,x)€S such that a(x,x) + 0
Hence Ty(a) is non-zero. Since ker n < ker 7y it follows from [8; 1.3.4] that mis
equivalent to 7.

REMARK. Itfollows from 5.4 (ii) thatif A = CX4(R)isa postliminal C*.algebr.a
then 4 = {m,,:xeX}. If A is a UHF algebra, on the other hand, Fhen Ais
isomorphic to C* ,(R) for some separated topological equivalence relation R, but

re

it is known that, for each xe X, ¢, is a product state. Since A has pure states

1
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which are not unitarily equivalent to product states it follows that the set
{m: x € X} is not the whole of A. Maybe {n,;: x€ X} is equal to 4 if and only if
A is postliminal.

We now describe a second topology on a separated topological equivalence
relation R. Under the original topology, ,, the diagonal R° is a topological
space. We transfer the topology to X, using the natural bijection from R° to X,
and then give R a new topology, t,, by restricting the product topology on
X x X.Itisstraightforward to check, using the base of R%-strip neighbourhoods
for 1,, that 7, is finer than t,,.

If A = C¥4(R) then the mapping (x, y) — (¢, ¢,) embeds R as a subset of R(4)
in such a way that the 7,-topology on R(4) restricts to the 7,-topology on R, and
the 7,-topology on R(A) restricts to the 7,-topology on R [28]. In the light of
Section 4 it is natural to investigate the points of continuity for the inclusion map

from (R. 1,) to (R, 7,).

LEMMA 5.5. Let R be a separated topological equivalence relation and let
j:(R,1,) = (R, 1,) be the inclusion map. Let (x, y) € R. The following are equivalent:

(i) (x,y) is a point of continuity for j,

(ii) (x, y) has at,-open neighbourhood which contains at most one point from each
equivalence class in R.

ProOF. (i) = (ii) Suppose that each neighbourhood of (x, y) contains two
points from the same equivalence class in R. Let U be any fixed R°-strip
neighbourhood in z, of (x, ). By hypothesis there are nets (a,, b,) and (c,, d, ) both
converging (7,) to (x, y) with (a,, b,) and (c,, d,) in the same equivalence class in
R but not equal, for each «. Since each net is eventually inside U it follows that
eventually a, + ¢, for each a. The continuity of the projection maps r and
s implies that

(@,,0,) = (%, %) (1)
and

(e, d2) = (3,9)  (%,)-
Therefore, by definition

(@4, ds) = (%) (zp).

But s is injective on U and (c,, d,) is eventually in U, with g, # ¢,), so eventually
(a,,d,) is not in U. Hence (a,,d,) P (x, y) (z,), as required.

(i) = (i) Conversely,suppose that(x, y) has a 7,-neighbourhood U containing
at most one point from each equivalence class in R. Let (x,,y,) be a net
converging (t,) to (x,y). This means, by definition, that (x,, x,) — (x,x) and
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(yan ya) - (y’ Y) (Ta)' Hence eventually (xa’ xa) is in r( U), so there is a point
(%4>2,) € U for all a sufficiently large. Similarly there is a point (w,, y.)€ U for all
asufficiently large. But U contains at most one point from each equivalence class,
which implies that x, = w, and y, = z,,thatis that (x,, y,) is eventuallyin U. The
same argument shows that (x,, y,) is eventually inside any 7,-neighbourhood of
(x,y) contained in U, and hence that (x,, y,) — (x, ) (z,).

ReMARK. The local homeomorphism property of r and s implies that either
every point in an equivalence class in R satisfies (i) above, or no point does.
Hence either every point in an equivalence class is a point of continuity, or no
point is (c.f. Corollary 4.4).

LEMMA 5.6. Let A be a C*-algebra and let be A*. Then the function from A to
the extended interval [0, co] defined by n — rank n(b) is lower semi-continuous on
A

PROOF. Let B = (bAb)™ be the hereditary subalgebra of 4 generated by b. By
[24; 4.1.9] the map (n, H) — (n|B, n(B)H) induces a homeomorphism from
A\hull(B) onto B. If ne A then dim n| B = rank n(b) so for each neN the set
{rne A:rank n(b) > n} is equal to the set {ne A:dim | B > n}, which is open by
[12; 3.6.3].

THEOREM 5.7. Let R be a separated topological equivalence relation and let
A = CX4(R). Let j be the map defined in Lemma 5.5.

(i) Let (x, y)eR. If (x,y)is a point of continuity for j then n, is a Fell point in A.

(i) Ifnis a Fell point in A then there exists x e X such that n ~ m,y, and (,2) is

a point of continuity for j for all y,ze[x].

ProoF. (i) Suppose that(x, y)is a point of continuity for j. By Lemma 5.5 (x, y)
has a 7,-open neighbourhood U which contains at most one point from each
equivalence class of R. Let f € C,(R) be supported in U with f(x, y) # 0. Then for
each ze X, ny,;(f*f) is an operator of rank less than or equal to one. Since the set
{n,;:ze X} is dense in 4 it follows from Lemma 5.6 that f*fis an abelian
element. Since 7 (f*f) % 0, 7y is a Fell point in 4. '

(i) Let z be a Fell point in A. By Lemma 5.4 (ii) there exists x € X such that 7 is
equivalent to ;. Let a be an abelian element in A% such that ||la| = ||n(a)||. = 1.
Let e be the unit vector in Hy,y which spans the range of n(a). By Kadison’s
Transitivity Theorem [24; 3.13.2] there exists be A with ||b] = 1 such that
n(b)e, = e. Set ¢ = b*ab. Then c s an abelian elementin 4* and [lc|| = [()] =
1. In fact n(c) is the orthogonal projection onto the span of e,. Hence c(x,x) =1
and ¢ vanishes on all other points in the equivalence class of (x, x) in R. Let N be
the 7,-open neighbourhood of (x, x) in R defined by

N = {(5»€eR%:c(y,y) > 1/2}-
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The N contains at most one point from each equivalences class in R, for if (y, y),
(z,z)e N are in the same orbit, but not equal, then

Trry,(0) 2 c(y,y) + c(z,2) > 1,

contradicting the fact that c is abelian with |c|| = 1. It follows from Lemma 5.5
that (x, x) is a point of continuity for j. Hence (y, z) is a point of continuity for j for
all y,ze[x].

An alternative proof of Theorem 5.7 (ii) can be given, based on Corollary 4.4
and the remarks before Lemma 5.5.

LeEMMA 5.8. Let R be a separated topological relation and let A = C*,(R). If
(43)1¢4 is an approximate identity for Co(R®) then it is an approximate identity for
A.

PrOOF. Let aeA with |ja|| =1, and let ¢ > 0 be given. Let be C.(R) with
lla — b|| < &/3and ||b|| < 1. Let S denote the support of b and set T = 7(S). Then
T is a compact subset of R®. Let fe Co(R®) with f(f) = 1 for all te T. Then
fb = b. Choose A€ A such that |Ju,f — f| < &/3. Then

lusa — all = lluza — ub + u;b — fb + fb — al
= lluza — usb + u; fb — fb + b —a|
< lluall lla — bl + llunf — fILIBI + 1b — all <e.

COROLLARY 5.9. Let R be a separated topological equivalence relation and let
A = CX4(R). Then A is a Fell C*-algebra if and only if the topologies 1, and 1,

red
coincide on R.

Proor. If 4 is a Fell C*-algebra then for every point (x, y) of R, m,; is a Fell
point of 4, so (x,y) is a point of continuity for j, by Theorem 5.7. Hence the
topologies 7, and 7, coincide on R.

Conversely, suppose that 7, and 7, coincide on R. Let x and y be distinct points
of X. By Lemma 5.5 there is a 7,-open neighbourhood U of (x, x) containing at
most one point from each equivalence class in R. We may assume that U < R°
and that (y,y)¢U. Let feC.(R%" such that f(x,x) >0 and such that the
support of f is contained in U. Then the argument in the proof of Theorem 5.7 (i)
shows that f is an abelian element of A.

By the Stone-Weierstrass theorem the set of elements in Co(R°) which are
abelian in 4 generates Co(R®) as a C*-algebra. Since Co(R°) contains an approxi-
mate identity for 4, Lemma 5.8, it follows that the smallest closed ideal of
A containing the abelian elements is A itself. This implies, by [24; 6.1.7], that A is
a Fell C*-algebra.
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