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ON THE REITERATION PROPERTY OF X, , SPACES

NATAN JA. KRUGLJAK

Abstract.

In [6] Janson introduced the spaces X, , = (X, X,),,, With ¢ be a positive concave function on
R+ = (0, + o), g€ [1, o] and gave sufficient conditions on concave positive functions o, ¢4, ¢ that
the reiteration formula

— - —
(X¢o’qo’ Xo,0)00 = Xoworia

<¢((P0, <P1)(s) = (Po(s) )q,( (01(5) ))
®ols)

holds for all g, q,, g€[1, co]. Here we will give necessary and sufficient conditions on ¢,. ¢4, ¢ that
this reiteration formula holds for all gy, g4, g€[1, 0] and all Banach couples X.

The spaces considered here are described by using an idea of optimal blocks which originates from
a recent paper by Krugljak, Maligranda and Persson [8].

0. Introduction.

Let X = (X, X;) be a Banach couple and for er(f) = X, + X; Peetre’s
K-functional is defined by the formula

K@t,x,X)= inf (Ixilx, +tlxllx,) ¢>0).

x=xp+x1

In the theory if interpolation we have very nice theory and a lot of applications
(see [2]) of X, , = (X0, X1)e,4 (0€(0, 1), ge[1, + c0]) spaces which are defined by
the norm

0

K(t,x; X) \* dt \ '/
©1) Il = ( f (—“—f‘——)) —f-)

0

with usual changes for g = + . . _
One of the most important theoretical results for Xq , spaces 1s the so called
theorem of reiteration, which claims that
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0.2 (Xoo,00: X010 )0 = X(1 =)0 +a0,.05

if 0y # 0.
It seems natural to extend this theorem for more general spaces, for example
replacing t? in (0.1) by ¢(t) where ¢ is a positive concave function on R, =
(0, + o).
After some years (see [5,7.9] and also [1,4]) occurs that such approach needs
several restrictions on ¢, for example that ¢ belongs to the so called “quasi-
power” class P* ~, which means that ¢ behave like a power function near 0 and
+ oo.

In 1981 Janson [6] made another approach to such spaces. A very surprising
element of his theory is that for ¢ & P* ~ the spaces X oq = (X0, X1),,4 are not
defined by the norm

+ oo

K(t,x; X) | dt | 14
([[snre)

which is analogous to (0.1) but by the norm

YA e\ 1/4
0.4) Ixllpq = (Z [M] )

neZ (P(t,,)

where {t,} is a special sequence which depends on ¢. To explain why such
deﬁnition “theoretically” is more correct than (0.3) we should mention that for
the Xa g-Spaces the extreme (maxxmal and minimal) functors with the same
characteristic functlon t° are Xg « and Xa 1 respectively. The analogous state-
ment is true for the X,, s X,,, 1-spaces defined by (0.4), but it is not so if we define

».1 by the norm (0.3) when ¢ ¢ P* . In [6] Janson proved that if (o, ¢,)€
P’r ~ and ¢,/@,€P* ~ then analogously to (0.2) the formula

0.5) (Xq’o,llo’ Xm,qx)w-q = Ao(0.01).4

holds for any do,dy,4€[0, + 0] and @(@e, 91)(1) = @o(l) <p< Zg ) Here we
(1]

give necessary and sufficient conditions on ¢y, ¢@,, ¢ so that (0.5) is true for any
choice of qo, g1, g€ [1, + c0]. Our main tools in the proof are general results fgr
K and J methods from [3] combined with direct calculations for couples L, /;.

1. Definitions and results.

Let ¢ be a positive concave function on R, = (0, + o0). Here and below we will
assume that
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(.1 lim ¢(t) = lim Ul =0

t—=+0 t=>+
For fixed ¢ we will construct a special sequence {¢;}.
Let r > 1 be fixed. For s > 0 by Q¢ we denote the interval
(1.2) Q2 = {t> 0| 9(t) < r p(s)min (1, ¢/s)}

Itis easy to see from (1.1) that there exist two sides sequence (finite or infinite) of
increasing positive numbers {¢,;,,} such that

U'Q?;.-“ = R+’
i
Qg’zi+lns§g;i+l = Q’ l+]’

where €3¢ is the interior of [0)8
Denote the left endpoint of @, by t,; and right endpoint by t,;,,. We obtain
the sequence {t;} such that (see [3], p. 322-323 and [8]):

(1.3) tivg 2T,

(L.4) U [t2it2i+2) = R4,

(1.5) 0O S ro(tyi+)min(L t/tyie1) (t€[taitais2))
(1.6) O(tz;+)min(l, t/ty544) <

= r“—r“” O(tzi+)min(1,t/ty 1) (E€[tai,tris2))

REMARK 1.1. Tt is possible that the endpoints of Q? equal 0, or equal + co.
Then by [0, t)in (1.4),(1.5),(1.6) wemean [0, ) N R .. We denote by Q; the interval
Q; = [t2:,12i+2). By K, , (¢ — as above, ge[1, + 0]) we denote the K-functor
defined for the Banach couple X = (X,,X,) by the formula

3 ;)_f 9\ 1/q
(17 1l = (Z [sup —K—(S—-x—-—)] )

i se82; (p(s)

with usual changesif g = + 0. The idea to define such a K-method Qf interpola-
tion with blocks originates from a recent paper of Krugljak, Maligranda and
Persson [8].

REMARK 1.2. It is easy to see that the sequence {t;} for fixed ¢ is uniquely
determined by r and one of its elements let say t,. If we change r and to, then'v&te
obtain another sequence {#,} and so we can define || - [}, , on (1.7) by {t;}. Butitis
not difficult to prove that
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[N PP P

It follows from the fact that the intervals u;; = [t5;,15;42) N [t5), 5+ ;) divide the
intervals [z, t2x+2), [t t5142) into finite (and not greater than some natural
number N) subintervals.

REMARK 1.3. If ¢ = + o0, then (1.7) imply that

K(t,x,)?)
Ixlpeo = sup —2)
e SYP

and K, , is equal to K 2.
Ifg=1and lim @(t)/t = lim ¢(t) = + oo, then (see section 2 below, or [6])
t—=+0 t—+ o

K¢.1 = JL‘{’,

where Jy¢ is a J-method with parameter [:

Tl ds

Ifle= | =5 5

0
Since K¢, J ¢ are maximal and minimal interpolation functors with the same

characteristic function (see [3], p. 438-444) we conclude that K, (¢ — fix,
ge[1, +o0])is a scale which connects the extreme functors J.¢ and K;g¢.

REMARK 1.4. If ¢ belongs to the so called quasi-power class P* ~ (it means (see
t; . .
[8, Lemmal]) that sup %ﬁ < + o0, then is easy to check that the norm (1.7) is
2i

equivalent to
+ oo -
e
o(t) t)
0
REMARK 1.5. (Connections with the Janson definition). From (1.5) it follows
that ¢ on ©; = [t4;,12:+2) is equivalent to ¢(t,;+)min(1,t/t5;4,) and so
K(t,%X) - (K(tzi,X; X) K(taisax, X))
wa, @) otz) ° otaisz)

with constants of equivalence not depending on i. Therefore from (1.7) follows
that
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v ¥ \4\ /g
Il ~ (ﬂﬁfﬁ)&) )

which is the original definition of )?,,,,,, spaces by Janson [6] (in fact, Janson chose
the numbers t,; in a slightly different way).

To formulate our main result let us denote by (¢, ¢;) concave function
which is defined by the formula
?(@0, 1)) = @(@o(t), 91 (1)) = @o(t) 9(¢1(t)/ @o(t)),

where ¢, @;, ¢ are positive concave functions on R, which satisfies (1.1). It is
easy to see that (., @) is again a positive concave function and satisfies (1.1).
By {t;} we will define the sequence constructed above for @(¢@o, @;).

Here and everywhere below we shall use the function

S(2) = @1(8)/@olt)
Our main result is

THEOREM 1.1. Let @q, ¢4, @ be positive concave functions on R .. which satisfies
(1.1). Then, for any qq, q;, g€ [1, + 0], we have

(18) K«p,q(Kwo,qo’Km,q‘) = K¢(¢o-¢1),q
if and only if there exists a natural number N such that for any i the set
(1.9) Ui = S™ [t t2i+2)

intersect with not more than N numbers of intervals [t2j,t2;+2)-

We leave the proof of the Theorem 1.1 to section 4, but here we will give only
one corollary of it.

THEOREM 1.2. If @, @, € P* ™ and the map S:s - ¢(s)/@o(s) maps R onto
R, then (1.8) holds for all q, q1, 4€[1, + 0] if and only if

a) peP* "
and

b) supCard {keZ|2" < S2") < 2"*'} < +

neZ

hold.
L
PrROOF. We should like to remind that @eP* ™ iff sup ____zt:z < 40 (see
2 i

[8, Lemma 1]). It is easy to see that it follows from definition (1.2) that
Q;p(rpo,w) c Qv Qo
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. . t2
Hence, since ¢o, ¢, € P* ~ it follows that ¢(¢o, ¢;)€ P* ~ and so sup—-2 <
i 2i
+00. Moreover fy,, =1ty (see (1.3)) which implies that the intervals
[£2:, i+ 2) in Theorem 1.1 can be replaced by the intervals [27,2™+1).

If2" <s < 2™*! then

56) o

(1.10) i< s@m =

From this it follows that S maps the interval [2™,2™*') in an interval [T,,,4T,,),

. ta; .. .
T,, = £ S(2™). Therefore if o ¢ P* ~, then sup—zt—tz— = + 00 and it is impossible
2i
for all i to cover the interval [t,;, t;+ ) With N numbers of intervals of the form
[T, 4 T,,). Therefore ¢ must belong to P* ~ and as above we could replace the
intervals [¢,;, t5; + 2) by intervals of the form [2",2"*1). By using (1.10) it is easy to
show that the conditions in Theorem 1.1 now is equivalent to the condition b).

2. Theorem of equivalence.

We need some extension of Janson’s theorem on equivalence for )_(:,,q spaces. By
a general equivalence theorem for K-functors (see [3, Theorem 3.5.9]) K, , can be
expressed in terms of the so called J functors:

@2.1) Kopg=Js+ 4 (¢ =K, (L)

where I; = (I, 1,({27"})) is a Banach couple consisting of two sides infinite
sequences {¢,} with the norms

+ o + o0

a,|
||{an}z,= Z |a,l, ”{an}”l,({%))‘: Z "“2;‘

n=-o n=-ow

and 4 is a Gagliardo completion of A()? )=XonX;inZ ()? ). We will compute
the parameter of the J-method ¢ = Kw,q(fl) in (2.1).

Let us remind that Q; = [t,;,t5;+,). Everywhere below the symbol =~ means
that finiteness of one part imply finiteness of the other and the constants of
equivalence are absolute.

LEMMA 2.1. Let ¢ = Kq,,,q(fl) then

2 M%m¢z(2<§1Jg%fya

i \2kef

Proor. Since

K(t, {a,}; I) ~ ¥ |a, min (1, £/2")
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it follows that

tef; ¢ (t)

23) Hanb s ~ (2[ Zlanlmmu’%}]’)”f

Let us denote

| @] .
¥ ———(2")min(1,/2")
%y = sup =22

tef2; [ (t)

Then
o) =~ | {an}lle

and for t = t,;, , we obtain

a
o; g — | n'lt .
r 27¢ft2i+ 1,82i +2) (0(2 )

Analogously for t = t,; we obtain

1 2,
T anelizitais2) (p(zn)

o =

and so

|a,|
< 2r ;.
22& oM —

Therefore the right hand side in (2.2) is not greater than

1/q
2r (Z ac?)

To prove the inverse estimate let us denote by f; the sum

_ |a]
ﬂi" Z ¢(2n)'

2nef2,

Then, the right hand side in (2.2) is finite means that

1/q
(5h) "< +e

and so
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2;9 I?SL) (2" min(1,1/2") £ Br @(t2;+ ) min (1, t/t5;).

Since on Q; = [t,;,t;+2) We have, according to (1.6),
. r .
@(t2j+ )min(1,t/t2544) S ;[F-,T(P(tZi+l)mln(1, ttzi+1)
it follows that on [t,;,t,;+,) we have

[an| n ﬁj 1 !
Z »(2") o¢ )mm( 2") = (2;: rlj_”)(‘)(tz“l)mm(l’ t2i+l).

Therefore

|| , < t)
—— (2" min{ 1,—
- 22" ®(27) > rzz
tef2; (p(t) = r“ ll

By substitutions this estimate in the right hand side of (2.3) we obtain

ladble < c(;(j b, )")"".

In view of this inequality and the general Minkowski inequality for ¢ = 1 and

direct estimates
IRl I Y
f ,.Ij—ll = 7 rali—il

for the case g < 1 we obtain

lanly < C(z ﬂ‘})”q

This completes the proof.

3. Descriptions of the functors F = K /(K. «:Kg,,0) G =Kq 4(Ko,.1,Kop, 1)

We will neid several lemmas.
A). Let L, = (Lo, L,(t~ 1)) be a Banach couple of functionson R, = (0, + c0)
with the norms

pitl}
t

1/ le, = sup lf @l 1z = sup |——

teR + teR +

In our first lemma we are interested in the functor
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(31) F= Kw,q(Ktpo.no’Km,oo) (1= q < o).

By a general reiteration theorem F = Ky where ¥ = F(I—,;,) (see [3] p. 345). In
Lemma 3.1 we try to determine ¥. Let {t;} be a sequence constructed by ¢ (cf.
section 1) and let

(3.2) Ui = S ([tai,t2i42)
LemMa 3.1. IfY = F(l_:m), then
fs) T\
63 170~ <Zi Ll’u‘f FIPRERNE) ] ) ’

ProOOF. Since

K(f:L,) = ]I,

where | f]is a least concave majorant of | f], than according to the concavity of ¢;,
we have

S0 el
P )

1 1 1
K<t’f ’ Lw(%)’ L""(ET)) ~ 23‘3(%( Y or (s))'f G

it follows that

Iflle, = (¥ = Ko, (L))

Since

1
[ :l:g(‘Po( )’ ‘P1(5)>|f( ) ]q)llq

Il ~ (Z

L o(0)
Denote
1
G4 @ = sup :Eg(fpo( )’ ‘P1(s)) 1fGs)l
| l tef2; (P(t)
Then

1/q
1l ~ (Zoﬂ) :

If se U;, then ip—l—g—e Q; = [t5i,t2i+,). Take tin (3.4) to be equal to @, (5)/@o(s).
Pols

Then we obtain
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o e,

@1(s) P(@o(s), 01(s) =
Qo) ——

©o(5)

for all seU;. We conclude that the right side in (3.3) is not greater than

1/q
(Z a:-') ~ IS lw

To prove (3.3) in the reversed direction let us denote

o O
(3.9) A S PNEXAC))

Then, since the right side in (3.3) is finite, we have that (Z ﬁ‘,?)l/q < +o0. Letus

consider the series ) f Xu, (Xu, is the characteristic functioln of U;). We will show

that this sum belongs to J, <L00 (—(5;), L, (;};)), ¢ = K(M(fl) and has norm not

greater than c(}’ $9)'/4. From this it follows that ) fxy, = f and due to (2.1)
Iy < c (B

Therefore we only need to prove that

(3.6) ”ZfXU,”J (Lo Loola)) = C( ﬁ?) ‘1'

According to (3.5) we have

oz o L)) =

@
=max[sup /6 su <Zl+1 76 )] rBip(tzi+y)

SeU; (PO(S) SeU;

and so

(Z[J(t2i+lstU;;Loo(bl—o)» L. () :Iq)l/q < r<Zﬁ§)m,

7 o(tzi+1)

If we replace t,;, 1 by 2% ~ t,;,, then we will have

J(2ki’fXUi;Lao(”—o')’ @ 4)1)) 4\ 1/ 1a
(?[ 02" ]) <c<;ﬂ?> |

Since in every set Q; = [t5;,t5;+2) it lies only finite (and not more than some
natural N) numbers of 2*/ we can use Lemma 2.1. to obtain the required result.




ON THE REITERATION PROPERTY OF X, ; SPACES 75

B). Now, we will consider the interpolation functor

G=K,,(K

?o,l’wa 1)'

By a general equivalence theorem (see [3]) we obtain that G coincides with the
interpolation functor J,, where ¢ = G(I) on all relatively complete couples.
Here we will determine ¢.

LEMMA 3.2. If ¢ = G(l,), then

N |a‘n| 9\ 1/g
3.7 Han}llo = (Z Lévi o(@o(2"), (p1(2"))] ) '

ProOF. From Lemma 2.1 we have

I {an}”Ktpi,l(Tl) ~ Z (plfzaln)

n

and so

1
K(t {a } qu 1(11) K(pl 1(’1)) ~ Zlan|m1n< (2n) 0, :2")>

Therefore,

t

. 1
[ ; |a,| min (b——q)o 2 012 ) ]q)x/q.

su
o )

(3.8) I{an}lls ~ (Z

If we denote

. 1 t
w_ﬂmp§“”mm<¢a?r¢arﬂ
. o0

M%m¢z(;#fm

)

then

Since, for t = t,;+,, we have

lan| 2(¢0(27), 91(2")
S(2Melt2i+ 1.t2i+2) (p((PO(zn)’ (Pl(zn)) (p(t2i+ 1)

v

&

IV

. min 1 tri+2 _1_ ______If_"l.____—
202 912 ) T T sametitins» ©(@0(2),0:1(27)

and, analogously, for t = t,;
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¥y la,| . 2(@o(2"), 1(2")
S(2™eltaistzi+ 1) ?(@0(2"), 1(27) (p(tZi) '

(|

o;

-min( 1 L2 ) l Ja,|
?0(2") #1(2") ] T T samefizntaie ) (@027, 91(27)
it follows that

|a|
— < Jra,.
27U, P(@0(27), 91(2) ~
Therefore, the right hand side in (3.7) is not greater than
2r(Y, o) ~ || {an}ly-
Assume now that the right side in (3.7) is finite. If we denote
_ |a|
P rgui ?(@o(27), 01 (2")’
then

1/q
(Zﬂ;’) < + 0.

Since
2, '“"'m‘“<<po(2")’ «pl(z")) = 2 o001 @)

t lan|

1
2@’ q»l(z")) S1 L @)

. t
) = rﬂj‘P(tsz)mm(l, )
L2j+1

“@(9o(2"), ¢1(2")) - min (

. t
“o(taj+ l)mm(l’t—

2j+1

it follows that

(1 t ; t
Zlanlmln <—M’m> Zrﬁj(p(tzi+l)mln (1’ t2j+ 1) <

sup = <sup- =
t .
et o) @(t2;+1)min (1,
L2i+1
ﬁ.
=Y o

J

Thus, by (3.8) we have



ON THE REITERATION PROPERTY OF X, .q SPACES 71

Han}lly < c(z (Z s ))1

i I

and by applying a general Minkowski inequality for g = 1 or direct estimates for
q < 1 we obtain

Handly < c(; ﬁ;)”".

This completes the proof.

O). Let {i;} be a sequence constructed for the concave function ¢(¢,, ¢,) and
@, = [t21,12:+2) (se€ section 1). Take j = j(i) such that

<P1({2i+1)
. Eyiie < P2 oy
(3.9) 2-1+1 = Poltares) = Laj+1
Lemma 3.3. Ifj = j(i) is defined by (3.9), then
(3.10) g c U Uy
lk—jls2

Proor. Ifse [,{2,'4. 15 {2i+2)’ then

©(@o(s), 91(8) = r¢((p0(fZi+1)» [ (t~2i+ )

which we can rewrite as

3.11) (P<<P1(S)> <r (Po(fziu) ‘(p((Pl(;ZHl)) <rolty+1)

©o(s) ©o(s) () (in +1)
or
(3.12) @(@1(s)/@o(s)) <7 Poltai+1) . ((Pl(t:ZH-l)) <7 (P(tl(j—l)+l)'
) 018/ @ols) ~ ®1(5) 0oltzivd) /) = tag-n+1

The estimates (3.11) and (3.12) imply that

- which, in its turn, implies (3.10). .
In an analogous way we can treat the case s€[£2;,2i+1)-

COROLLARY 3.1. Let
(3.13) Vi= U @

25+ 16Uk

If ViU, 4 @, then |k — | < 5.
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Proor. If se V¥, n U, then for some i we have seQ; and f,,,€U,. So
QN U+ 0and QN U, + 0. From Lemma 3.3 we obtain now that [k — | < 5.
This completes the proof.

The next theorem gives the description of the functors F and G.
THEOREM 3.1. If F = K, ,(Ky, 0, Ko, 00) and G = K, (K, .1, Ky, 1), then

o ___Mg_s)l_ 9\ 1/4
I flri., = (; [Ss‘:f (p((po(s),(pl(s»:l >

I{an}6a; z(z[ y __Jg,,l___}«;)uq
nSIlG(1y) i La2nev,; (p((po(zn)’ (pl(zn)) .

ProoF. From Lemma 3.1 and Corollary 3.1 we have

9\ 1/9
e ~ (z [sup _'_fﬂ_] ) .

i seU; (p((pO (S), [} (S))

N IO ”“~< [ /) D/
~<Z[?}‘p <p(<po(s),<p1(s))]> 2% @ ) )

In a quite analogous way we obtain the second statement.

and

4. Proof of the theorem 1.1.

A). necessity. If, for any Banach couple X and any qo,q1,q€[1, + co]. we have
Xooaor Xo1.41)0.0 = Xoiwouo 10

then it holds for couple X = l_; and gy =¢q; = 1,9 = + 00. From Theorem 3.1 it

follows that the norm of left hand side is equivalent to

L n el
@D lienblas ~ 20 2, o oa), 0@

Moreover, according to Lemma 2.1 we see that the norm of the right hand side is
equivalent to
|an|
4.2 a, Iy X su —
“2 10 a0 % P 2 a2, 012

i 2y
Since V; is a union of some Qj and {a,} is arbitrary it is easy to see that (4.1) is
equivalent to (4.2) if and only if there exists a natural number N such that V; is
a union of not more than N numbers of £;.
Now, from Corollary 3.1 it follows that for any i U; n Q;:# § not more than
11 N numbers of j.
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B). sufficiency. If there exists a natural N such that for any i, the numbers of
jfor which .Q;n U; # @is not more than N, then from Corollary 3.1 it follows that
for any k the set ¥ consists of not more than 11 N numbers of Q; Thus, by
Theorem 3.1 for

G= Kw,q(Kq’o,l’Km,l)

we have
HanHloay ~ (z( L — ))/
' i \2neV; 0(0o(2"), 91(2")

- ‘ || a\ /g
- (? (Em ?(9o(2"), <P1(2"))) ) ‘

Compare this with Lemma 2.1 and, in view of the minimal property of J functor,
we have

JKw(m'm).q(l_;) > K‘?’-‘I(Kfl’o,l’ K(pl,l) E- K(P-q(KG’oqo’ K¢’1111)‘

Since on the right hand side we have a K-functor, it follows that A° is also
contained in it. Thus

Kq:((pg,wx),q = JKw(vo,wx),q(n) + 4= K(qu(Kw;.‘lo’ K'Pl:q!)'
To prove the reversed imbedding, let us consider the functor
F =K o(Kpou: Ko, )

on the couple Em.
By Theorem 3.1 we have

o 17 D’ N
1/lleeo ~ (; [il’}? 2(@ol5), 91(5)
o 1£6) ])/
~ @ [335 o@olh ) |/

Since F is a K-functor, it follows from the maximal property of the K -functor that

N K(s,f;fw) d ”"_
I ez, = IK(f; Lo)lr@,,) = (ZI;EE‘LE M] ) -

—

= ”f” K@’(«Po,m)»q (LOO)'
Thus

Kopo(Kpoa0 Koy a) & Kq:,q(Krpo.oo’wayw) = Koo

and the proof is complete.
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