ON THE REITERATION PROPERTY OF $\overrightarrow{X}_{\varphi,q}$ SPACES

NATAN JA. KRUGLJAK

Abstract.

In [6] Janson introduced the spaces $\overrightarrow{X}_{\varphi,q} = (X_0, X_1)_{\varphi,q}$ with φ be a positive concave function on $R_+ = (0, +\infty)$, $q \in [1, \infty]$ and gave sufficient conditions on concave positive functions φ_0, φ_1, φ that the reiteration formula

$$
(\overrightarrow{X}_{\varphi_0' + \varphi_0' + \varphi_1, q_1})_{\varphi,q} = \overrightarrow{X}_{\varphi(\varphi_0 + \varphi_1), q}
$$

holds for all $q_0, q_1, q \in [1, \infty]$. Here we will give necessary and sufficient conditions on φ_0, φ_1, φ that this reiteration formula holds for all $q_0, q_1, q \in [1, \infty]$ and all Banach couples \overrightarrow{X}.

The spaces considered here are described by using an idea of optimal blocks which originates from a recent paper by Krugljak, Maligranda and Persson [8].

0. Introduction.

Let $\overrightarrow{X} = (X_0, X_1)$ be a Banach couple and for $x \in \Sigma(\overrightarrow{X}) = X_0 + X_1$ Peetre's K-functional is defined by the formula

$$
K(t, x, \overrightarrow{X}) = \inf_{x = x_0 + x_1} (\|x_1\|_{X_0} + t \|x_1\|_{X_1}) \quad (t > 0).
$$

In the theory if interpolation we have very nice theory and a lot of applications (see [2]) of $\overrightarrow{X}_{\theta,q} = (X_0, X_1)_{\theta,q}$ ($\theta \in (0, 1)$, $q \in [1, +\infty]$) spaces which are defined by the norm

$$
\|x\|_{\theta,q} = \left(\int_0^\infty \left(\frac{K(t, x, \overrightarrow{X})}{t^\theta} \right)^q \frac{dt}{t} \right)^{1/q}
$$

with usual changes for $q = +\infty$.

One of the most important theoretical results for $\overrightarrow{X}_{\theta,q}$ spaces is the so called theorem of reiteration, which claims that

Received May 20, 1992.
\[(0.2) \quad (\overline{X}_{\theta_0, q_0}, \overline{X}_{\theta_1, q_1})_{\alpha, q} = \overline{X}_{(1-\alpha)\theta_0 + \alpha\theta_1, q},\]

if \(\theta_0 \neq \theta_1\).

It seems natural to extend this theorem for more general spaces, for example replacing \(t^\theta\) in (0.1) by \(\varphi(t)\) where \(\varphi\) is a positive concave function on \(\mathbb{R}_+ = (0, +\infty)\).

After some years (see [5, 7, 9] and also [1, 4]) occurs that such an approach needs several restrictions on \(\varphi\), for example that \(\varphi\) belongs to the so called “quasi-power” class \(P^{+ -}\), which means that \(\varphi\) behave like a power function near 0 and +\(\infty\).

In 1981 Janson [6] made another approach to such spaces. A very surprising element of his theory is that for \(\varphi \notin P^{+ -}\) the spaces \(\overline{X}_{\varphi, q} = (X_0, X_1)_{\varphi, q}\) are not defined by the norm

\[(0.3) \quad \left\{ \int_0^{+\infty} \left[\frac{K(t, x, \overline{X})}{\varphi(t)} \right]^q \frac{dt}{t} \right\}^{1/q}\]

which is analogous to (0.1) but by the norm

\[(0.4) \quad \|x\|_{\varphi, q} = \left(\sum_{n \in \mathbb{Z}} \left[\frac{K(t_n, x, \overline{X})}{\varphi(t_n)} \right]^q \right)^{1/q}\]

where \(\{t_n\}\) is a special sequence which depends on \(\varphi\). To explain why such definition “theoretically” is more correct than (0.3) we should mention that for the \(\overline{X}_{\theta, q}\)-spaces the extreme (maximal and minimal) functors with the same characteristic function \(t^\theta\) are \(\overline{X}_{\theta, \infty}\) and \(\overline{X}_{\theta, 1}\) respectively. The analogous statement is true for the \(\overline{X}_{\varphi, \infty}, \overline{X}_{\varphi, 1}\)-spaces defined by (0.4), but it is not so if we define \(\overline{X}_{\varphi, 1}\) by the norm (0.3) when \(\varphi \notin P^{+ -}\). In [6] Janson proved that if \(\varphi(\varphi_0, \varphi_1) \in P^{+ -}\) and \(\varphi_1/\varphi_0 \in P^{+ -}\) then analogously to (0.2) the formula

\[(0.5) \quad (\overline{X}_{\varphi_0, q_0}, \overline{X}_{\varphi_1, q_1})_{\varphi, q} = \overline{X}_{\varphi(\varphi_0, \varphi_1), q}\]

holds for any \(q_0, q_1, q \in [0, +\infty]\) and \(\varphi(\varphi_0, \varphi_1)(t) = \varphi_0(t)\varphi\left(\frac{\varphi_1(t)}{\varphi_0(t)}\right)\). Here we give necessary and sufficient conditions on \(\varphi_0, \varphi_1, \varphi\) so that (0.5) is true for any choice of \(q_0, q_1, q \in [1, +\infty]\). Our main tools in the proof are general results for \(K\) and \(J\) methods from [3] combined with direct calculations for couples \(L^r, L^1\).

1. Definitions and results.

Let \(\varphi\) be a positive concave function on \(\mathbb{R}_+ = (0, +\infty)\). Here and below we will assume that
ON THE REITERATION PROPERTY OF $\overline{X}_{\varphi,q}$ SPACES

(1.1) \[\lim_{t \to +0} \varphi(t) = \lim_{t \to +\infty} \frac{\varphi(t)}{t} = 0 \]

For fixed φ we will construct a special sequence $\{t_i\}$.

Let $r > 1$ be fixed. For $s > 0$ by Ω^r_s we denote the interval

(1.2) \[\Omega^r_s = \{ t > 0 | \varphi(t) \leq r \varphi(s) \min(1, t/s) \} \]

It is easy to see from (1.1) that there exist two sides sequence (finite or infinite) of increasing positive numbers $\{t_{2i+1}\}$ such that

\[\bigcup_i \Omega^r_{t_{2i+1}} = \mathbb{R}_+ , \]

\[\Omega^r_{t_{2i+1}} \cap \Omega^r_{t_{2i+1}} = \emptyset, \quad i \neq j, \]

where Ω^r_{\cdot} is the interior of Ω^r_{\cdot}.

Denote the left endpoint of $\Omega^r_{t_{2i+1}}$ by t_{2i} and right endpoint by t_{2i+2}. We obtain the sequence $\{t_i\}$ such that (see [3], p. 322–323 and [8]):

(1.3) \[t_{i+1} \geq rt_i, \]

(1.4) \[\bigcup_i [t_{2i}, t_{2i+2}] = \mathbb{R}_+ , \]

(1.5) \[\varphi(t) \leq r \varphi(t_{2i+1}) \min(1, t/t_{2i+1}) \quad (t \in [t_{2i}, t_{2i+2}]), \]

(1.6) \[\varphi(t_{2j+1}) \min(1, t/t_{2j+1}) \leq \frac{r}{r_{ij-i}} \varphi(t_{2i+1}) \min(1, t/t_{2i+1}) \quad (t \in [t_{2i}, t_{2i+2}]) \]

Remark 1.1. It is possible that the endpoints of Ω^r_s equal 0, or equal $+\infty$. Then by $[0, t)$ in (1.4), (1.5), (1.6) we mean $[0, t) \cap \mathbb{R}_+$. We denote by Ω_i the interval $\Omega_i = [t_{2i}, t_{2i+2}]$. By $K_{\varphi,q}$ (φ as above, $q \in [1, +\infty]$) we denote the K-functor defined for the Banach couple $\overline{X} = (X_0, X_1)$ by the formula

(1.7) \[\|x\|_{\varphi,q} = \left(\sum_i \left[\sup_{s \in \Omega_i} \frac{K(s, x; \overline{X})}{\varphi(s)} \right]^q \right)^{1/q} \]

with usual changes if $q = +\infty$. The idea to define such a K-method of interpolation with blocks originates from a recent paper of Krugljak, Maligranda and Persson [8].

Remark 1.2. It is easy to see that the sequence $\{t_i\}$ for fixed φ is uniquely determined by r and one of its elements let say t_0. If we change r and t_0, then we obtain another sequence $\{t'_i\}$ and so we can define $\|\cdot\|_{\varphi,q}$ on (1.7) by $\{t'_i\}$. But it is not difficult to prove that
\[\| \cdot \|_{\varphi,q} \approx \| \cdot \|_{\varphi,q} \]

It follows from the fact that the intervals \(u_{ij} = [t_{2i}, t_{2i+2}] \cap [t'_{2j}, t'_{2j+1}] \) divide the intervals \([t_{2k}, t_{2k+2}], [t'_{2l}, t'_{2l+2}]\) into finite (and not greater than some natural number \(N \)) subintervals.

Remark 1.3. If \(q = +\infty \), then (1.7) imply that

\[\| x \|_{\varphi,\infty} = \sup_{t > 0} \frac{K(t, x, \overline{X})}{\varphi(t)} \]

and \(K_{\varphi,\infty} \) is equal to \(K_{L,\varphi} \).

If \(q = 1 \) and \(\lim_{t \to +0} \varphi(t)/t = \lim_{t \to +\infty} \varphi(t) = +\infty \), then (see section 2 below, or [6])

\[K_{\varphi,1} = J_{L,\varphi} \]

where \(J_{L,\varphi} \) is a \(J \)-method with parameter \(L_{\varphi} \):

\[\| f \|_{L,\varphi} = \int_{0}^{+\infty} \frac{|f(s)|}{\varphi(s)} \frac{ds}{s}. \]

Since \(K_{L,\varphi}, J_{L,\varphi} \) are maximal and minimal interpolation functors with the same characteristic function (see [3], p. 438–444) we conclude that \(K_{\varphi,q}(\varphi - \text{fix}, q \in [1, +\infty]) \) is a scale which connects the extreme functors \(J_{L,\varphi} \) and \(K_{L,\varphi} \).

Remark 1.4. If \(\varphi \) belongs to the so called quasi-power class \(P^{+\infty}_\cdot \) (it means (see [8, Lemma 1]) that \(\sup_{t \in \Omega_i} \frac{t_{2i+2}}{t_{2i}} < +\infty \), then is easy to check that the norm (1.7) is equivalent to

\[\left\{ \int_{0}^{+\infty} \left[\frac{K(t, x; \overline{X})}{\varphi(t)} \right]^q \frac{dt}{t} \right\}^{1/q}. \]

Remark 1.5. (Connections with the Janson definition). From (1.5) it follows that \(\varphi \) on \(\Omega_i = [t_{2i}, t_{2i+2}] \) is equivalent to \(\varphi(t_{2i+1}) \min(1, t/t_{2i+1}) \) and so

\[\sup_{t \in \Omega_i} \frac{K(t, x; \overline{X})}{\varphi(t)} \approx \max \left(\frac{K(t_{2i}, x; \overline{X})}{\varphi(t_{2i})}, \frac{K(t_{2i+2}, x, \overline{X})}{\varphi(t_{2i+2})} \right) \]

with constants of equivalence not depending on \(i \). Therefore from (1.7) follows that...
ON THE REITERATION PROPERTY OF $\overline{X}_{\varphi,q}$ SPACES

\[
\|x\|_{\varphi,q} \approx \left(\sum_i \left(\frac{K(t_{2i}, x; X)}{\varphi(t_{2i})} \right)^q \right)^{1/q}
\]

which is the original definition of $\overline{X}_{\varphi,q}$ spaces by Janson [6] (in fact, Janson chose the numbers t_{2i} in a slightly different way).

To formulate our main result let us denote by $\varphi(\varphi_0, \varphi_1)$ concave function which is defined by the formula

\[
\varphi(\varphi_0, \varphi_1)(t) = \varphi(\varphi_0(t), \varphi_1(t)) = \varphi_0(t) \varphi(\varphi_1(t)/\varphi_0(t)),
\]

where $\varphi_0, \varphi_1, \varphi$ are positive concave functions on \mathbb{R}_+, which satisfies (1.1). It is easy to see that $\varphi(\varphi_0, \varphi_1)$ is again a positive concave function and satisfies (1.1). By $\{\tilde{t}_i\}$ we will define the sequence constructed above for $\varphi(\varphi_0, \varphi_1)$.

Here and everywhere below we shall use the function

\[
S(t) = \varphi_1(t)/\varphi_0(t)
\]

Our main result is

Theorem 1.1. Let $\varphi_0, \varphi_1, \varphi$ be positive concave functions on \mathbb{R}_+ which satisfies (1.1). Then, for any $q_0, q_1, q \in [1, + \infty]$, we have

(1.8)

\[
K_{\varphi,q}(K_{\varphi_0,q_0}, K_{\varphi_1,q_1}) = K_{\varphi(\varphi_0, \varphi_1), q}
\]

if and only if there exists a natural number N such that for any i the set

(1.9)

\[
U_i = S^{-1}([t_{2i}, t_{2i+2}])
\]

intersect with not more than N numbers of intervals $[\tilde{t}_{j, i}, \tilde{t}_{j, i+2})$.

We leave the proof of the Theorem 1.1 to section 4, but here we will give only one corollary of it.

Theorem 1.2. If $\varphi_0, \varphi_1 \in P^{+ -}$ and the map $S : s \to \varphi_1(s)/\varphi_0(s)$ maps \mathbb{R}_+ onto \mathbb{R}_+, then (1.8) holds for all $q_0, q_1, q \in [1, + \infty]$ if and only if

a) $\varphi \in P^{+ -}$

and

b) $\sup_{n \in \mathbb{Z}} \text{Card} \{k \in \mathbb{Z} | 2^n \leq S(2^k) < 2^{n+1}\} < + \infty$

hold.

Proof. We should like to remind that $\varphi \in P^{+ -}$ iff $\sup_{t} \frac{t_{2i+2}}{t_{2i}} < + \infty$ (see [8, Lemma 1]). It is easy to see that it follows from definition (1.2) that

\[
\Omega^{\varphi(\varphi_0, \varphi_1)}_s \subset \Omega^{\varphi_0}_s \cup \Omega^{\varphi_1}_s
\]
Hence, since \(\varphi_0, \varphi_1 \in P^+ \) it follows that \(\varphi(\varphi_0, \varphi_1) \in P^+ \) and so \(\sup_i \frac{t_{2i+2}}{t_{2i}} < +\infty \). Moreover \(\tilde{t}_{2i+2} \geq r^2 \tilde{t}_{2i} \) (see (1.3)) which implies that the intervals \([\tilde{t}_{2i}, \tilde{t}_{2i+2}]\) in Theorem 1.1 can be replaced by the intervals \([2^m, 2^{m+1})\).

If \(2^m \leq s < 2^{m+1} \), then

\[
\frac{1}{2} \leq \frac{S(s)}{S(2^m)} \leq 2.
\]

From this it follows that \(S \) maps the interval \([2^m, 2^{m+1})\) in an interval \([T_m, 4T_m)\), \(T_m = \frac{1}{2} S(2^m) \). Therefore if \(\varphi \notin P^+ \), then \(\sup_i \frac{t_{2i+2}}{t_{2i}} = +\infty \) and it is impossible for all \(i \) to cover the interval \([t_{2i}, t_{2i+2}]\) with \(N \) numbers of intervals of the form \([T_m, 4T_m)\). Therefore \(\varphi \) must belong to \(P^+ \) and as above we could replace the intervals \([t_{2i}, t_{2i+2}]\) by intervals of the form \([2^n, 2^{n+1})\). By using (1.10) it is easy to show that the conditions in Theorem 1.1 now is equivalent to the condition b).

2. Theorem of equivalence.

We need some extension of Janson's theorem on equivalence for \(X_{\varphi,q} \) spaces. By a general equivalence theorem for \(K \)-functors (see [3, Theorem 3.5.9]) \(K_{\varphi,q} \) can be expressed in terms of the so called \(J \) functors:

\[
(2.1) \quad K_{\varphi,q} = J_\phi + \Delta c \quad (\phi = K_{\varphi,q}(\vec{l}_1)),
\]

where \(\vec{l}_1 = (l_1, l_1(\{2^{-n}\})) \) is a Banach couple consisting of two sides infinite sequences \(\{\phi_n\} \) with the norms

\[
\|\{a_n\}\|_1 = \sum_{n=-\infty}^{+\infty} |a_n|, \quad \|\{a_n\}\|_{l_1(t_{2i})} = \sum_{n=-\infty}^{+\infty} \frac{|a_n|}{2^n}
\]

and \(\Delta c \) is a Gagliardo completion of \(\Delta(X) = X_0 \cap X_1 \) in \(\Sigma(X) \). We will compute the parameter of the \(J \)-method \(\phi = K_{\varphi,q}(\vec{l}_1) \) in (2.1).

Let us remind that \(\Omega_i = [t_{2i}, t_{2i+2}) \). Everywhere below the symbol \(\approx \) means that finiteness of one part imply finiteness of the other and the constants of equivalence are absolute.

Lemma 2.1. Let \(\phi = K_{\varphi,q}(\vec{l}_1) \) then

\[
(2.2) \quad \|\{a_n\}\|_\phi \approx \left(\sum_i \left(\sum_{2^k \in \Omega_i} |a_k| \frac{1}{\varphi(2^k)} \right)^q \right)^{1/q}.
\]

Proof. Since

\[
K(t, \{a_n\}; \vec{l}_1) \approx \sum_n |a_n| \min \left(1, \frac{t}{2^n} \right)
\]
it follows that

\[(2.3) \quad \| \{ a_n \} \|_\phi \approx \left(\sum_i \left[\frac{\sum_n |a_n| \min \left(1, \frac{t^n}{2^n} \right)}{\varphi(t)} \right]^q \right)^{1/q} \].

Let us denote

\[\alpha_i = \sup_{t \in \Omega_i} \frac{\sum_n |a_n|}{\varphi(2^n)} \varphi(2^n) \min(1, t/2^n)\]

Then

\[(\sum \alpha_i^q)^{1/q} \approx \| \{ a_n \} \|_\phi\]

and for \(t = t_{2i+2} \) we obtain

\[\alpha_i \geq \frac{1}{r} \sum_{2^n \in [t_{2i+1}, t_{2i+2})} |a_n| \frac{1}{\varphi(2^n)}.\]

Analogously for \(t = t_{2i} \) we obtain

\[\alpha_i \geq \frac{1}{r} \sum_{2^n \in [t_{2i-1}, t_{2i+2})} |a_n| \frac{1}{\varphi(2^n)}\]

and so

\[\sum_{2^n \in \Omega_i} \frac{|a_n|}{\varphi(2^n)} \leq 2r \alpha_i.\]

Therefore the right hand side in (2.2) is not greater than

\[2r \left(\sum \alpha_i^q \right)^{1/q}\]

To prove the inverse estimate let us denote by \(\beta_i \) the sum

\[\beta_i = \sum_{2^n \in \Omega_i} \frac{|a_n|}{\varphi(2^n)}.

Then, the right hand side in (2.2) is finite means that

\[\left(\sum_i \beta_i^q \right)^{1/q} < +\infty\]

and so
\[
\sum_{t_{2j} \in \Omega_j} \frac{|a_n|}{\varphi(2^n)} \varphi(2^n) \min(1, t/2^n) \leq \beta_j r \varphi(t_{2j} + 1) \min(1, t/t_{2j}).
\]

Since on \(\Omega_i = [t_{2i}, t_{2i+2}] \) we have, according to (1.6),

\[
\varphi(t_{2j} + 1) \min(1, t/t_{2j} + 1) \leq \frac{r}{r^{j-i}} \varphi(t_{2i} + 1) \min(1, t/t_{2i+1})
\]

it follows that on \([t_{2i}, t_{2i+2}]\) we have

\[
\sum_{n} \frac{|a_n|}{\varphi(2^n)} \varphi(2^n) \min \left(1, \frac{t}{2^n}\right) \leq r^2 \left(\sum_{j} \frac{\beta_j}{r^{j-i}}\right) \varphi(t_{2i} + 1) \min \left(1, \frac{t}{t_{2i+1}}\right).
\]

Therefore

\[
\sup_{t \in \Omega_t} \frac{|a_n|}{\varphi(2^n)} \varphi(2^n) \min \left(1, \frac{t}{2^n}\right) \leq r^2 \sum_j \frac{\beta_j}{r^{j-i}}.
\]

By substitutions this estimate in the right hand side of (2.3) we obtain

\[
\|\{a_n\}\|_\phi \leq C \left(\sum_i \left(\sum_j \frac{\beta_j}{r^{j-i}}\right)^q\right)^{1/q}.
\]

In view of this inequality and the general Minkowski inequality for \(q \geq 1 \) and direct estimates

\[
\left(\sum_j \frac{\beta_j}{r^{j-i}}\right)^q \leq \sum_j \frac{\beta_j^q}{r^{q(j-i)}}
\]

for the case \(q < 1 \) we obtain

\[
\|\{a_n\}\|_\phi \leq C \left(\sum_j \beta_j^q\right)^{1/q}.
\]

This completes the proof.

3. Descriptions of the functors \(F = K_{q,q}(K_{q_0,\infty}, K_{q_1,\infty}), G = K_{q,q}(K_{q_0,1}, K_{q_1,1}) \).

We will need several lemmas.

A). Let \(L_{\infty} = (L_{\infty}, L_{\infty}(t^{-1})) \) be a Banach couple of functions on \(R_+ = (0, + \infty) \) with the norms

\[
\|f\|_{L_{\infty}} = \sup_{t \in R_+} |f(t)|, \quad \|f\|_{L_{\infty}(t^{-1})} = \sup_{t \in R_+} \left|\frac{f(t)}{t}\right|.
\]

In our first lemma we are interested in the functor
(3.1) \[F = K_{\varphi,q}(K_{\varphi_0,\infty}, K_{\varphi_1,\infty}) \quad (1 \leq q \leq \infty). \]

By a general reiteration theorem \(F = K_\Psi \) where \(\Psi = F(L_\infty^\ast) \) (see [3] p. 345). In Lemma 3.1 we try to determine \(\Psi \). Let \(\{t_i\} \) be a sequence constructed by \(\varphi \) (cf. section 1) and let

(3.2) \[U_i = S^{-1}([t_{2i}, t_{2i+2}]). \]

Lemma 3.1. If \(\Psi = F(L_\infty^\ast) \), then

(3.3) \[\|f\|_\Psi \approx \left(\sum_i \left[\sup_{s \in U_i} \varphi_0(s), \varphi_1(s) \right]^{q} \right)^{1/q}. \]

Proof. Since

\[K(f; L_\infty^\ast) = \|\hat{f}\|, \]

where \(|\hat{f}| \) is a least concave majorant of \(|f| \), than according to the concavity of \(\varphi_i \), we have

\[\|f\|_{\Psi_i} = \sup_{t > 0} \frac{|\hat{f}|(t)}{\varphi_i(t)} = \sup_{t > 0} \frac{|f(t)|}{\varphi_i(t)} \quad (\Psi_i = K_{\varphi_i,\infty}(L_\infty^\ast)). \]

Since

\[K(t,f; L_\infty \left(\frac{1}{\varphi_0}, L_\infty \left(\frac{1}{\varphi_1} \right) \right) \approx \sup_{s > 0} \left(\frac{1}{\varphi_0(s)}, \frac{t}{\varphi_1(s)} \right) |f(s)| \]

it follows that

(3.4) \[\alpha_i = \sup_{t \in \Omega_i} \frac{1}{\varphi_0(s), \varphi_1(s)} |f(s)| \]

Denote

Then

\[\|f\|_\Psi \approx \left(\sum_i \alpha_i^q \right)^{1/q}. \]

If \(s \in U_i \), then \(\frac{\varphi_1(s)}{\varphi_0(s)} \in \Omega_i = [t_{2i}, t_{2i+2}) \). Take \(t \) in (3.4) to be equal to \(\varphi_1(s)/\varphi_0(s) \).

Then we obtain
\[
\frac{|f(s)|}{\varphi_0(s) \varphi\left(\frac{\varphi_1(s)}{\varphi_0(s)}\right)} = \frac{|f(s)|}{\varphi(\varphi_0(s), \varphi_1(s))} \leq \alpha_i
\]
for all \(s \in U_i\). We conclude that the right side in (3.3) is not greater than
\[
\left(\sum_i \alpha_i^q\right)^{1/q} \approx \|f\|_\Psi.
\]
To prove (3.3) in the reversed direction let us denote
\[
\beta_i = \sup_{s \in U_i} \frac{|f(s)|}{\varphi(\varphi_0(s), \varphi_1(s))}.
\]
Then, since the right side in (3.3) is finite, we have that \(\left(\sum_i \beta_i^q\right)^{1/q} < +\infty\). Let us consider the series \(\sum f \chi_{U_i}\) (\(\chi_{U_i}\) is the characteristic function of \(U_i\)). We will show that this sum belongs to \(J_\varphi(L_\infty\left(\frac{1}{\varphi_0}\right), L_\infty\left(\frac{1}{\varphi_1}\right))\), \(\varphi = K_{\varphi, \Psi}(t_i)\) and has norm not greater than \(c(\sum \beta_i^q)^{1/q}\). From this it follows that \(\sum f \chi_{U_i} = f\) and due to (2.1)
\[
\|f\|_\Psi \leq c \left(\sum \beta_i^q\right)^{1/q}.
\]
Therefore we only need to prove that
\[
\|\sum f \chi_{U_i}\|_{\sigma(L_\infty(\frac{1}{\varphi_0}), L_\infty(\frac{1}{\varphi_1}))} \leq c \left(\sum_i \beta_i^q\right)^{1/q}.
\]
According to (3.5) we have
\[
J\left(t_{2i+1}, f \chi_{U_i}; L_\infty\left(\frac{1}{\varphi_0}\right), L_\infty\left(\frac{1}{\varphi_1}\right)\right) = \\
= \max \left[\sup_{s \in U_i} \frac{|f(s)|}{\varphi_0(s)} , \sup_{s \in U_i} \left(\frac{t_{2i+1}}{\varphi_1(s)} \frac{|f(s)|}{\varphi_1(s)}\right)\right] \leq r \beta_i \varphi(t_{2i+1})
\]
and so
\[
\left(\sum_i \left[\frac{J(t_{2i+1}, f \chi_{U_i}; L_\infty(\frac{1}{\varphi_0}), L_\infty(\frac{1}{\varphi_1}))}{\varphi(t_{2i+1})}\right]^q\right)^{1/q} \leq r \left(\sum_i \beta_i^q\right)^{1/q}.
\]
If we replace \(t_{2i+1}\) by \(2^{k_i} \approx t_{2i+1}\), then we will have
\[
\left(\sum_i \left[\frac{J(2^{k_i}, f \chi_{U_i}; L_\infty(\frac{1}{\varphi_0}), L_\infty(\frac{1}{\varphi_1}))}{\varphi(2^{k_i})}\right]^q\right)^{1/q} \leq c \left(\sum_i \beta_i^q\right)^{1/q}.
\]
Since in every set \(\Omega_i = [t_{2i}, t_{2i+2})\) it lies only finite (and not more than some natural \(N\) numbers of \(2^{k_i}\)) we can use Lemma 2.1. to obtain the required result.
B). Now, we will consider the interpolation functor

\[G = K_{\varphi,q}(K_{\varphi_0,1}, K_{\varphi_1,1}). \]

By a general equivalence theorem (see [3]) we obtain that \(G \) coincides with the interpolation functor \(J_\phi \), where \(\phi = G(l_1) \) on all relatively complete couples. Here we will determine \(\phi \).

Lemma 3.2. If \(\phi = G(l_1) \), then

\[
\| \{a_n\} \|_\phi \approx \left(\sum_i \left[\sum_{n \in \mathbb{N}} \frac{|a_n|}{\varphi_0(2^n) \varphi_1(2^n)} \right]^q \right)^{1/q}.
\]

Proof. From Lemma 2.1 we have

\[
\| \{a_n\} \|_{K_{\varphi_1,1}(l_1)} \approx \sum_n \frac{|a_n|}{\varphi_1(2^n)}
\]

and so

\[
K(t, \{a_n\}, K_{\varphi_0,1}(l_1), K_{\varphi_1,1}(l_1)) \approx \sum_n |a_n| \min \left(\frac{1}{\varphi_0(2^n)}, \frac{t}{\varphi_1(2^n)} \right).
\]

Therefore,

\[
\| \{a_n\} \|_\phi \approx \left(\sum_i \left[\frac{\sum \frac{|a_n| \min \left(\frac{1}{\varphi_0(2^n)}, \frac{t}{\varphi_1(2^n)} \right)}{\varphi(t)} \right]^q \right)^{1/q}.
\]

If we denote

\[
\alpha_i = \sup \frac{\sum |a_n| \min \left(\frac{1}{\varphi_0(2^n)}, \frac{t}{\varphi_1(2^n)} \right)}{\varphi(t)},
\]

then

\[
\| \{a_n\} \|_\phi \approx \left(\sum_i \alpha_i^q \right)^{1/q}
\]

Since, for \(t = t_{2i+2} \), we have

\[
\alpha_i \geq \sum_{S(2^n) \in \{t_{2i+1}, t_{2i+2}\}} \frac{|a_n|}{\varphi_0(2^n) \varphi_1(2^n)} \cdot \frac{\varphi_0(2^n) \varphi_1(2^n)}{\varphi(t_{2i+1})}
\]

\[
\cdot \min \left(\frac{1}{\varphi_0(2^n)}, \frac{t_{2i+2}}{\varphi_1(2^n)} \right) \geq \frac{1}{r} \sum \frac{|a_n|}{\varphi_0(2^n) \varphi_1(2^n)}
\]

and, analogously, for \(t = t_{2i} \):
\[\alpha_i \geq \sum_{s(2^n) \in \{t_{2i}, t_{2i+1}\}} \frac{|a_n|}{\varphi_0(2^n), \varphi_1(2^n)} \cdot \frac{\varphi(\varphi_0(2^n), \varphi_1(2^n))}{\varphi(t_{2i})} \cdot \min \left(\frac{1}{\varphi_0(2^n)}, \frac{t_{2i}}{\varphi_1(2^n)} \right) \geq \frac{1}{r} \sum_{s(2^n) \in \{t_{2i}, t_{2i+1}\}} \frac{|a_n|}{\varphi(\varphi_0(2^n), \varphi_1(2^n))} \]

it follows that

\[\sum_{2^n e U_n} \frac{|a_n|}{\varphi(\varphi_0(2^n), \varphi_1(2^n))} \leq 2r \alpha_i. \]

Therefore, the right hand side in (3.7) is not greater than

\[2r(\sum \alpha_i)^{1/q} \approx \| \{a_n\} \|_\phi. \]

Assume now that the right side in (3.7) is finite. If we denote

\[\beta_i = \sum_{2^n e U_i} \frac{|a_n|}{\varphi(\varphi_0(2^n), \varphi_1(2^n))}, \]

then

\[\left(\sum \beta_i^q \right)^{1/q} < + \infty. \]

Since

\[\sum_{2^n e U_j} |a_n| \min \left(\frac{1}{\varphi_0(2^n)}, \frac{t}{\varphi_1(2^n)} \right) \leq \sum_{2^n e U_j} \frac{|a_n|}{\varphi(\varphi_0(2^n), \varphi_1(2^n))} \cdot \varphi(\varphi_0(2^n), \varphi_1(2^n)) \cdot \min \left(\frac{1}{\varphi_0(2^n)}, \frac{t}{\varphi_1(2^n)} \right) \leq \frac{r}{2^n e U_j} \varphi(\varphi_0(2^n), \varphi_1(2^n)) \cdot \varphi(t_{2j+1}) \min \left(1, \frac{t}{t_{2j+1}} \right) = r \beta_j \varphi(t_{2j+1}) \min \left(1, \frac{t}{t_{2j+1}} \right) \]

it follows that

\[\sup_{t e \Omega_i} \sum_n \frac{|a_n| \min \left(\frac{1}{\varphi_0(2^n)}, \frac{t}{\varphi_1(2^n)} \right)}{\varphi(t)} \leq \sup_j r \beta_j \varphi(t_{2j+1}) \min \left(1, \frac{t}{t_{2j+1}} \right) \leq r^2 \sum_j \frac{\beta_j}{r^{i-j-i}} \]

Thus, by (3.8) we have
\[\|\{a_n\}\|_\Phi \leq c \left(\sum_j \left(\sum_i \frac{\beta_j}{r^{j-i}} \right)^q \right)^{1/q} \]

and by applying a general Minkowski inequality for \(q \geq 1 \) or direct estimates for \(q < 1 \) we obtain

\[\|\{a_n\}\|_\Phi \leq c \left(\sum_j \beta_j \right)^{1/q}. \]

This completes the proof.

C) Let \(\{\tilde{t}_i\} \) be a sequence constructed for the concave function \(\varphi(\varphi_0, \varphi_1) \) and \(\tilde{\Omega}_i = [\tilde{t}_{2i}, \tilde{t}_{2i+2}] \) (see section 1). Take \(j = j(i) \) such that

\[t_{2(j-1)+1} \leq \frac{\varphi_1(\tilde{t}_{2i+1})}{\varphi_0(\tilde{t}_{2i+1})} \leq t_{2j+1}. \]

(3.9)

Lemma 3.3. If \(j = j(i) \) is defined by (3.9), then

\[\tilde{\Omega}_i \subset \bigcup_{|k-j| \leq 2} U_k \]

(3.10)

Proof. If \(s \in [\tilde{t}_{2i+1}, \tilde{t}_{2i+2}] \), then

\[\varphi(\varphi_0(s), \varphi_1(s)) \leq r \varphi(\varphi_0(\tilde{t}_{2i+1}), \varphi_1(\tilde{t}_{2i+1})) \]

which we can rewrite as

\[\varphi \left(\frac{\varphi_1(s)}{\varphi_0(s)} \right) \leq r \frac{\varphi_0(\tilde{t}_{2i+1})}{\varphi_0(s)} \cdot \varphi \left(\frac{\varphi_1(\tilde{t}_{2i+1})}{\varphi_0(\tilde{t}_{2i+1})} \right) \leq r \varphi(t_{2j+1}) \]

(3.11)

or

\[\frac{\varphi(\varphi_0(s)/\varphi_0(s))}{\varphi_1(s)/\varphi_0(s)} \leq r \frac{\varphi_0(\tilde{t}_{2i+1})}{\varphi_0(s)} \cdot \varphi \left(\frac{\varphi_1(\tilde{t}_{2i+1})}{\varphi_0(\tilde{t}_{2i+1})} \right) \leq r \frac{\varphi(t_{2(j-1)+1})}{t_{2(j-1)+1}}. \]

(3.12)

The estimates (3.11) and (3.12) imply that

\[t_{2(j-1)} \leq \frac{\varphi_1(s)}{\varphi_0(s)} \leq t_{2j+2} \]

which, in its turn, implies (3.10).

In an analogous way we can treat the case \(s \in [\tilde{t}_{2i}, \tilde{t}_{2i+1}) \).

Corollary 3.1. Let

\[V_k = \bigcup_{\tilde{t}_{2j+1} \in U_k} \tilde{\Omega}_j \]

(3.13)

If \(V_k \cap U_l \neq \emptyset \), then \(|k - l| \leq 5 \).
PROOF. If \(s \in \Omega \cap U_i \), then for some \(i \) we have \(s \in \Omega \) and \(\tilde{\Omega}_{i+1} \subseteq U_i \). So \(\Omega \cap U \neq \emptyset \) and \(\Omega \cap U \neq \emptyset \). From Lemma 3.3 we obtain now that \(|k - l| \leq 5 \). This completes the proof.

The next theorem gives the description of the functors \(F \) and \(G \).

Theorem 3.1. If \(F = K_{\phi, q}(K_{\phi, 0}, K_{\phi, 1}) \) and \(G = K_{\phi, q}(K_{\phi, 0}, K_{\phi, 1}) \), then

\[
\| f \|_{F(\Omega_\infty)} \approx \left(\sum_i \left[\sup_{s \in \Omega_i} \frac{|f(s)|}{\phi(\phi_0(s), \phi_1(s))} \right]^q \right)^{1/q}
\]

and

\[
\| \{a_n\} \|_{g(\Omega_n)} \approx \left(\sum_i \left[\sum_{2^n \in \mathbb{V}_i} \frac{|a_n|}{\phi(\phi_0(2^n), \phi_1(2^n))} \right]^q \right)^{1/q}.
\]

Proof. From Lemma 3.1 and Corollary 3.1 we have

\[
\| f \|_{F(\Omega_\infty)} \approx \left(\sum_i \left[\sup_{s \in \Omega_i} \frac{|f(s)|}{\phi(\phi_0(s), \phi_1(s))} \right]^q \right)^{1/q} \approx \left(\sum_j \left[\sup_{s \in \Omega_j} \frac{|f(s)|}{\phi(\phi_0(s), \phi_1(s))} \right]^q \right)^{1/q}.
\]

In a quite analogous way we obtain the second statement.

4. **Proof of the theorem 1.1.**

A). **necessity.** If, for any Banach couple \(\tilde{X} \) and any \(q_0, q_1, q \in [1, +\infty] \), we have

\[
(\tilde{X}_{\phi_0, q_0}, \tilde{X}_{\phi_1, q_1})_{\phi, q} = \tilde{X}_{\phi(\phi_0, \phi_1), q},
\]

then it holds for couple \(\tilde{X} = \tilde{I}_1 \) and \(q_0 = q_1 = 1, q = +\infty \). From Theorem 3.1 it follows that the norm of left hand side is equivalent to

\[
\| \{a_n\} \|_{g(\tilde{I}_1)} \approx \sup_i \sum_{2^n \in \mathbb{V}_i} \frac{|a_n|}{\phi(\phi_0(2^n), \phi_1(2^n))}.
\]

Moreover, according to Lemma 2.1 we see that the norm of the right hand side is equivalent to

\[
\| a_n \|_{K_{\phi(\phi_0, \phi_1), q}(\tilde{I}_1)} \approx \sup_i \sum_{2^n \in \tilde{\Omega}_i} \frac{|a_n|}{\phi(\phi_0(2^n), \phi_1(2^n))}.
\]

Since \(\mathbb{V}_i \) is a union of some \(\tilde{\Omega}_j \) and \(\{a_n\} \) is arbitrary it is easy to see that (4.1) is equivalent to (4.2) if and only if there exists a natural number \(N \) such that \(\mathbb{V}_i \) is a union of not more than \(N \) numbers of \(\tilde{\Omega}_j \).

Now, from Corollary 3.1 it follows that for any \(i \) \(U_i \cap \Omega_\infty \neq \emptyset \) not more than \(11N \) numbers of \(j \).
B. sufficiency. If there exists a natural N such that for any i, the numbers of
j for which $\Omega_j \cap U_i \neq \emptyset$ is not more than N, then from Corollary 3.1 it follows that
for any k the set V_k consists of not more than $11N$ numbers of Ω_j. Thus, by
Theorem 3.1 for

$$G = K_{\varphi,q}(K_{\varphi_{0,1}}, K_{\varphi_{1,1}})$$

we have

$$\| \{a_n\}\|_{G(i_1)} \approx \left(\sum_i \left(\sum_{2^n \in V_i} \frac{|a_n|}{\varphi_0(2^n)} \right)^q \right)^{1/q} \approx \left(\sum_i \left(\sum_{2^n \in \Omega_i} \frac{|a_n|}{\varphi_0(2^n)} \right)^q \right)^{1/q}.$$

Compare this with Lemma 2.1 and, in view of the minimal property of J functor,
we have

$$J_{K_{\varphi_{0,0}, q}}(i_1) \hookrightarrow K_{\varphi,q}(K_{\varphi_{0,1}}, K_{\varphi_{1,1}}) \hookrightarrow K_{\varphi,q}(K_{\varphi_{0,q}}, K_{\varphi_{1,q}}).$$

Since on the right hand side we have a K-functor, it follows that A^c is also
contained in it. Thus

$$K_{\varphi_{0,0}, q} = J_{K_{\varphi_{0,0}, q}}(i_1) + A^c \hookrightarrow K_{\varphi,q}(K_{\varphi_{0,q}}, K_{\varphi_{1,q}}).$$

To prove the reversed imbedding, let us consider the functor

$$F = K_{\varphi,q}(K_{\varphi_{0,\infty}}, K_{\varphi_{1,\infty}})$$

on the couple \mathcal{L}_∞.

By Theorem 3.1 we have

$$\|f\|_{F(\mathcal{L}_\infty)} \approx \left(\sum_i \left[\sup_{s \in \Omega_i} \frac{|f(s)|}{\varphi(\varphi_0(s), \varphi_1(s))} \right]^q \right)^{1/q} \approx \left(\sum_i \left[\sup_{s \in \Omega_i} \frac{|f(s)|}{\varphi(\varphi_0(s), \varphi_1(s))} \right]^q \right)^{1/q}.$$

Since F is a K-functor, it follows from the maximal property of the K-functor that

$$\|f\|_{F(\mathcal{L}_\infty)} = \|K(f; \mathcal{L}_\infty)\|_{F(\mathcal{L}_\infty)} \approx \left(\sum_i \left[\sup_{s \in \Omega_i} \frac{K(s, f; \mathcal{L}_\infty)}{\varphi(\varphi_0(s), \varphi_1(s))} \right]^q \right)^{1/q} = \|f\|_{K_{\varphi_{0,0}, q}(\mathcal{L}_\infty)}.$$

Thus

$$K_{\varphi,q}(K_{\varphi_{0,0}}, K_{\varphi_{1,q}}) \hookrightarrow K_{\varphi,q}(K_{\varphi_{0,\infty}}, K_{\varphi_{1,\infty}}) = K_{\varphi_{0,0}, q}$$

and the proof is complete.
ACKNOWLEDGEMENTS. I wish to thank Professors Lech Maligranda and Lars Erik Persson, Luleå University, SWEDEN, for reading my manuscript and for valuable comments and remarks.

REFERENCES

DEPARTMENT OF MATHEMATICS
YAROSLAVL STATE UNIVERSITY
SOVETSKAYA 14
150000 YAROSLAVL
RUSSIA