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NEVANLINNA’S FIRST FUNDAMENTAL THEOREM
FOR SUPERTEMPERATURES

N. A. WATSON

1. Introduction.

The principal result of this paper, Theorem 1, is the analogue for the heat
equation of Nevanlinna’s First Fundamental Theorem on superharmonic func-
tions. The proof is necessarily very different from that given in [4], because the
Green function for the appropriate domain is unknown, and the point at which
we would want to evaluate it is on the boundary. The remainder of the paper is
devoted to some of the consequences of Theorem 1. After a few simple ones have
been deduced as corollaries, we estimate the upper and lower limits as ¢ - 0+ of
a quotient of surface means .# (u, py, c)/# (v, py, c), Where v is a supertemperature
and u is the difference of two, and v(p,) = 0, in terms of the behaviour near p, of
the measures associated with v and u by the Riesz decomposition theorem.
A judicious choice of v then leads to a similar result in which (v, po,c) is
replaced by a given function of ¢. Then, in Theorem 4, the size of the (polar) sets on

which lim sup (#(w, po, ¢)/F(c)) is infinite, for a given supertemperature w and
c>0+
function F, is estimated in terms of the parabolic Hausdorff measures described

in [6]. Theorems 2—4 are analogous to results of Armitage ([1]), although
Theorem 4 is considerably more general than a direct parallel. Finally, we
establish analogues of two elementary results from the Nevanlinna theory of
subharmonic and 6-subharmonic functions. In Theorem 5, we give necessary and
sufficient conditions for a measure on R" x ]— 00, [ to be the Riesz measure of
a supertemperature. In Theorem 6, we characterize those differences of two
supertemperatures on R" x ]— co0,a[ which can be expressed as a difference of
two positive supertemperatures.

We work in R"*1, a typical point of which is denoted by p or g, except that
where necessary it is written as (x,t) or (y,s), where x,yeR" and t,s€R. An
arbitrary open subset of R"*! is denoted by D, its Green function by Gp, and its
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adjoint Green function by G} (so that G}(p,q) = Gp(q, p))- The Green function
for R"*! is denoted by G, so that

G((x,),(,5)) = (4n(t — s))""?exp(—IIx — yl*/(4(t — 5)))

if t > s, and G((x,?),(y,s)) = 0if t < s. All our measures are locally finite Borel
measures, and we use the expression “signed measure” to signify a set function
which can be written as the difference of two positive measures (which are not
necessarily finite). Give a positive measure y on D, its Green potential is defined
by

Gpu(p) = L Gp(p,q)dp(q)

for all pe D, if it is finite on a dense subset of D, then it is called a potential. The
adjoint potential G}u is defined analogously. A temperature (or parabolic
function) is a solution of the heat equation, and a supertemperature (or super-
parabolic function) is the corresponding analogue of a superharmonic function.
If wis a supertemperature on D, then the Riesz decomposition theorem associates
with w a positive measure on D, which is equal to —6w in the sense of dis-
tributions (where 8 = Y 7_; D? — D, is the heat operator); that measure is called
the Riesz measure of w. If it exists, the greatest thermic (or parabolic) minorant of
w on D is denoted by GMpw. If A < D, the smoothed reduction of w over A4 is
written R3. See [2] for details.

For all ¢ > 0, we put 7(c) = (4nc) ™2, If poe R** 1 and ¢ > 0, we put Q(p,,c) =
{PeR™1:G(po, p) > 1(0)}, 02 (Po, ©) = 3P, \{Po}, and F(po,c) = A(po, )\
{po}. If, in addition, d > ¢, then we write

A(p(b (&) d) = Q(p03d)\g(p05 C),
and put
A(pO’ c, w) = U A(p07c’ d)
d>c

The p, may be omitted from these notations, if no confusion will be caused. If
p = (x,t) and po = (xg, t), We define K(p,, p) whenever t < t, by

K(po,p) = lIxo — x[I*(4]1x0 — xI1*(to — 8 + (lIxo — x|I* — 2n(to — 1))*)”1/2.

If w is a function on 0Q(p,, ¢) such that the integral exists, we put

M (W, po, ) = t(C) L K(po, p)w(p)da(p),

2(po,c)
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where o denotes surface area measure. These means were used to define subtem-
peratures in [7], and were studied further in [8, 10].

The terms “increasing” and “positive” are used here in the wide sense.

Let v and w be supertemperatures on D, and let u = v — w whenever the
difference is defined, hence g.e. on D (that is, on D less a polar set). Such a function
u is called a d-subtemperature on D. Since .#(w, py,c) and .# (v, p,, c) are finite
whenever (p,,c) D, the mean of u is also defined and finite. If u and v are the
Rieszmeasures of wand v respectively, thenv — u will be called the Riesz measure
of u. Asin the case of §-subharmonic functions ([3], p. 507), the Riesz measure of
u is uniquely determined.

2. The fundamental theorem.

THEOREM 1. Suppose that w is a supertemperature on D, that p is its Riesz measure,
that Q(po,d) < D, and that 0 < ¢ < d. Then

d
(0] MW, po,c) = M(W,po,d) — J 7 () (' (po, 7)) 4y,
and
d
) w(po) = M(w, po,d) — L 7 () (€ (po, 7)) dy,

PROOF. Since the assertion is local, we can assume that w is positive and that
w is finite. If v is any positive supertemperature on D, with Riesz measure v, then
v = Ggev + GMgyv on Q(c). Since the function which is equal to v on D\Q(c),
and to GMgv on Q(c), can be expressed as the limit of a decreasing sequence of
supertemperatures on D, its lower semicontinuous smoothing is a supertempera-
ture on D. By Theorem 6 of [11], there is only one supertemperature on D which
is equal to v on D\€(c) and is a temperature on £(c), so that this supertempera-
ture is the smoothed reduction of v over D\(c), and therefore coincides on £(c)
with the PWB solution of the Dirichlet problem thereon with boundary function
v. It therefore follows from Lemma 4 of [11] that GMgv has a fine limit
M (v, po, ¢) at po.

Since u is finite, Gu is a potential on R"*1. On Q(c) we have

W = Gt + GMaoWw
and
Gu = Gogpt + GMoe G,
so that
w=Gu — GMp,Gu + GMpw-
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Taking fine limits at p,, we deduce that

3 w(po) = Gu(po) — M (G, po,c) + M (W, po,¢),

since the means are finite by Theorem 2 of [8]. Supposing, temporarily, that
w(po) < 00, so that Gu(py) < oo also, we obtain from (3) and the corresponding
formula with d in place of ¢, the identity

(4) VI{(W, Do C) = '/’{(W’ Do d) + ‘//{(Gﬂ, Do C) - '/”(Gﬂ’ Do d)
By the example in [8],

M(G(*,9), po, ¢) = ©(c) A G(po,q)
whenever ge R"* 1. Therefore

"”(G/‘a Po» C) = f

Rn

. (z(c) A G(po, 9))du(q),
so that

M(Gp, po,c) — M (G, po,d) = (t(c) — ©(d)) J.m )du(q) + f

Alc,

. (G(po, @)

— ©(d))du(g)-
If we put A(y) = u(Q'(y)) for all y €10, d], then

d
L(c (6o 0) —T@)dulg) = j (x0) — (@)d0)

d

= (t(d) — () Ac) — j T()AG)dy,

so that

d

M(Gu, po,¢) — M(Gp, po,d) = — J () A)dy.

(4

This, together with (4), yields (1) in the case where w(p,) < co.
Now suppose that w(p,) = oo, and let wy = R2\©), Then wy is a supertem-
perature on D and a temperature on £(c), so that

Wo(po) = M (Wo, Po,C) < 0,

by Theorems 4 and 2 in [8]. Therefore, if u, is the Riesz measure of wy,

d

Q) M(Wo, Do, ) = M(Wo, Po,d) — f T () o2 () dy.

c
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Since there is only one supertemperature on D which is a temperature on Q(c) and
equal to w on D\Q(c) (by Theorem 6 of [11]), and that supertemperature is
necessarily equal to w on 6€'(c) also (by Theorem 5 of [8]), we see that w, = w on
D\(2(c) U {po}). Therefore we can replace w, by w in (5), so that it remains to
prove that we can also replace po by p. Let ye]c,d[, and let v,v, denote the
restrictions of p, g to €'(y). Then Gowyv = GgVvo on A(c,d), by the following
reasoning. Let {c;} be an increasing sequence in ]c, d[, with limit d. On Q(d), the
decreasing sequence of positive supertemperatures {R2\?€)} converges to
GMgyw. A similar statement is true for wo, so that GMggyw = GMg 4w, because
w = wo on D\Q(c). Therefore, for the same reason, Gouyt = Gou)tto on A(c, d). It
follows that, in particular, the restrictions of u and u, to A(y, d) are equal, so that
their potentials on Q(d) are equal, and hence Gguv = Gguvo on A(c,d). If

p€ly,d[, then the function
G(po,’) — t(d)
( (o) — 1(d) ) o

is a potential relative to the adjoint heat equation on Q(d), and is identically equal
to 1 on Q(p). Since it is also a solution of that equation on A(p, d), it can be written
as Gy, o for some positive measure o supported by 9€'(p). Hence

G?)(d)a dv = J Gg(d)v da
o (p)

Q) = f

@)
= J GowVodo = j Ghadvo = VO(Q/(V)),
0 (p) o)

so that u(Q'(y)) = po(€2'(y)) whenever y € Jc, d[. Thus (5) is the same as (1). Making
¢— 0 + in (1), we obtain (2).

RemARKs. The identity (2) is analogous to Nevanlinna’s First Fundamental
Theorem for superharmonic functions([4], p. 127). The formula (1) is analogous
to an extension of that theorem, which is proved, and described as “essentially

well-known”, in [1]. If we put
N(p09 C) = - J‘ T’(}’)ﬂ(gl(Po, 7))‘1)’,
0

then N(p,,-) is obviously increasing, and a standard technique ([4], p. 127) shows
that there is a convex function ¢ such that N(po,*) = ¢° .

We now give three corollaries of Theorem 1, all of which are analogues of
results on superharmonic functions given by Kuran in [5]. The proofs of the ﬁrft
two follow Armitage [1], while that of the third is adapted from Kuran’s
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argument. Theorem 3 (iii) of [8] implies that the surface means can be replaced by
the appropriate volume means in the first two corollaries.

COROLLARY 1. If w is a supertemperature on D, and p, € D, then #(w, po,c) =
o(t(c)) asc = 0+.

ProOOF. If Q(po,d) < D, then (1) yields
d
(6) MW, po,c) = — J ()€ )dy + 0(1)
as ¢ —» 0+. Since u(Q'(-)) is increasing on J0,d[, and u(2'(0+)) =0, it is an
elementary exercise to prove that the integral in (6) is o(z(c)) as ¢ » 0+.

REMARK. A more elementary proof of Corollary 1 was outlined in [9] (p. 255).

COROLLARY 2. If w is a positive supertemperature on an open superset of
(R"x J]— 00,t0[) U {Po}, where py = (xo, to), and u is the Riesz measure of w, then

T(C)“(Q,(poa C)) é V”(Wa Dos C)
forallc > 0.
Proor. By (1),if 0 < ¢ < d then

d d
MW, po,C) = — f (@ E)dy 2 w(€@ () J —7'(y)dy

= (1(¢) — Ud) w(Q'(©)) - ) (2 (c))
asd — oo.
COROLLARY 3. Let u be the Riesz measure of a positive supertemperature w on

H,=R" x ]—o0,a[. Then

lim 7(c)u(Q'(p,c)) = 0

=

Jorall peH,.
Proor. By Theorem 3 of [10], the function u, defined for all pe H, by

u(p) = lim .#(w, p, c),

€=* 0

is GMy_w. Since p is also the Riesz measure of w — u, it follows from Corollary
2 that

()& (p,c)) < M(w — u,p,c) = M(W,p,c) — u(p) >0
as ¢ — o0.

We shall return to the topic of Corollary 3 in Section 5.
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3. The behaviour of the means of small c.

Let u be a 6-subtemperature and v a supertemperature on D, with Riesz measures
uand v respectively. We shall compare the behaviour, for small ¢, of the quotients
M(u, po, )/ M (v, po, ) and (€ (po, c)/v(€'(po,c)). This leads to a similar result
comparing .# (u, po, ¢)/F(c) with u(€'(po,c))/f (c) under suitable conditions on f,
where F is an integral of f with weight function t’. An application is given in
Section 4. The results of this section were suggested by the work of Armitage [1],
and the proof of Theorem 2 follows his argument; but the proof of Theorem 3 is
necessarily different.

THEOREM 2. Let u be a §-subtemperature and v a supertemperature on D, with
Riesz measures p and v respectively. If v(py) = o, then

- MU, Do, ) _ . #(E& (po, )
7) limsup———— < limsup—=——,
( P H0.00,0) = ros? T (p0r0)
and the reverse inequality holds for lower limits.

PrOOF. Let A denote the right-hand side of (7). If A = oo there is nothing to
prove, so suppose otherwise. Given ¢ > 0, choose d > 0 such that

(& (po, ©)) < (A + &)¥(2'(po, )
whenever ce€]0,d]. As ¢ — 0+, it follows from Theorem 1 that

d

M(u, po,c) = —J 7 () (2 (po, ¥))dy + 0(1)

d
<-4+ E)J T ()2 (po, Y))dy + (1) = (A + &)# (v, o, ¢) + D).
Since .# (v, po,0+) = v(po) = o0, we deduce that

. ./”(“,Po,c)
limsup—————— < A + ¢,
c—oO+p ./”(U,po,c)

which proves (7). The inequality for lower limits now follows if we replace u by
—u.

THEOREM 3. Let ae]0, o[, and let f be a positive, continuous, increasing
function on [0, ] such that f is differentiable on ]0,a[ and

®) —ﬂammw=w

Let
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FlO) = — j "o o)

(4

for all ce]0,a[. If u is a d-subtemperature on D with Riesz measure yi, and pye D,
then

: "/{(ua Do> C) 3 'u(g'(po, C))
lim sup——— < lim sup————,
mor. F© T e 10O

and the reverse inequality holds for lower limits.
Proor. If £(0) % 0, then u(€'(po,c)) = o(f(c)) as ¢ — 0+, so we must prove
that .#(u, po, c) = o(F(c)). Now,
Floyz f (O)J —7()dy = f(0)(z(c) — (@)

so that t(c)/F(c) is bounded as ¢ —» 0+, and hence

"l{(uaPO’c) _ -/”(u,l?o,c) . T(C) N
Fo = @ Fle) 7

by Theorem 1, Corollary 1.

Now suppose that f(0) = 0, and choose d < o such that Q(p,,d) < D. Let
Po = (X0, to), put g(y) = yz(y)f'(y) for all y € J0, d[, and define a measure v on D by
putting

w2 2
dv(x, ) = g((to — 1) exp( li‘;to f"t ) )) g:("to _xll)z 2(x, ) dx dt,

where y is the characteristic function of Q(p,, d). Then, if c € ]0, d[, it follows from
Lemma 3 in [7] that

2 2
W (po, 0) = L( G(r0,(x0) Dol exp( e )
, Ixo — xI?
x f ((to — t)exp (m)) dx dt

- f “dy J 0K (B0, (x, 0)f () do = f )M, por )y = £(O).
0 () 0

It therefore follows from Theorem 1 that, as ¢ —» 0+,
'd d
M(GpV,po,c) = -I TV () dy + 0(1) = —f T()f(y)dy + (1) = F(c) + 0(1).

Since Theorem 1 shows that
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Gpv(po) = M(GpV, po,d) — '[ T()f(dy =

by (8), the result now follows from Theorem 2.

COROLLARY. Ifuis a 6-subtemperature on D with Riesz measure i, if po € D and if
Kk, = (4m)""?(n/2), then

lim sup—li—(%)—) < K, limsup ¢ ™2 u(Q' (po, ¢)),
c=>0+ =0+
and
: n—F\ w-m2 ; =812 (Y
lim sup| —— Jc M (4, po, ) < K, limsup ¢ ™% p(€(po, c))
c—=0+ c—~+0+
fo<p<n

PrOOF. Take « = 1 and f(y) = y#/? in Theorem 3, where 0 < f < n. If f = n,
we have

1
F(c) = an Y~ tdy = Kk, log(1/c),

and if 0 < § < n we have

G-t -1

4. Parabolic Hausdorff measures of certain polar sets.

We use Theorem 3 to study the size of the set of points p where .#(w, p, c)/F(c) is
unbounded as ¢ — 0+, for a given function F and supertemperature w. The size is
estimated in terms of the parabolic Hausdorff measures discussed in [6], which
have the appropriate mixed homogeneity.

We recall the relevant definitions. Let h be an increasing function on ]0, co[
such that h(0+) = 0. Let 2 denote the class of all sets of the form

(fl [aa; + r]) x [a,a+1*],

i=1

The set of this form which is centred at pis denoted by P(p,r). Foran arbitrary set
E, the outer parabolic h-measure of E is defined by

P —h—my(E)= lim mf{z h(diam P)): P,e Z,E < U Pi,dlamPi<6}

50+ i=1
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The associated measure, defined on a o-field that contains the Borel sets, is
denoted by 2 — h — m. When h(s) = s* for some a« > 0, we write Z — A* — mfor
2 — h — m. The parabolic dimension is defined by

P —dimE =inf{a > 0:2 — A* — m,(E) = 0}.

Theorem 4 below was suggested by Theorem 3 of [1]. However, it is much
more general than the direct analogue of Armitage’s theorem, which is given as
a corollary.

We require the following slight modification of a result in [6].

LEMMA. Let h be an increasing function on ]0, co[ with h(0+) = 0, to which
there corresponds a constant A such that h(2s) < Ah(s) for all s > 0. If uis a positive
measure on R"*?, and

2= {pitimsup 2550 _ o,

then ? — h — m(Z) = 0.
Proor. We can suppose that y is finite. For each ke N, put
. wP(p,r) }
Z, =<p:limsup————= = k,.
‘ {” osl hE)

Then, by a simple modification of the proof of Lemma 3 in [6], there is a constant
A, such that 2 — h — m(Z,) < A, u(R"*Y)/k. Since Z < Z, for all k, the result
follows.

THEOREM 4. Let a€]0, o[, and let h be an increasing, continuous function on

10, o[ with h(0+) = 0, which is differentiable on ]0, \/&[, to which there corre-
sponds a constant A such that h(2s) £ Ah(s) for all s > 0, and which satisfies

V&

©) f s L h(s)ds = oo.
0

Let

F(O) = — f “ )7y

[4

Jor all ce]0,a[. If w is a supertemperature on D, then the set

) }
10 D:1 _—
10 {” oL 7 B

has # — h-measure zero.
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Proor. It follows from (9) that

a va
j YR /)y =2 f 5Tt h(s)ds = oo,
V]

0

so that we can take f(y) = h(\/§) in Theorem 3, and deduce that the set (10) is
a subset of

11 D:li fm: }
(1 {pe ‘ii‘(?‘ip h(\ﬁ) o ¢,

where u is the Riesz measure of w. Given ¢ > 0, we can choose r = (6nc/e)'/?, so
that Q'(p, c) < P(p,r). It follows that the set (11) is contained in

. H(P(p.1) }
12 D:1 —_——= ,
. {” TR e T
where 6 = (e/6n)'/? < 1. If i is chosen such that 2'6 > 1, then
h(or) = A h(Q2i6r) = A7 h(r)

by our conditions on h. It follows that the set (12), and hence the set (10), is
a subset of the set Z in the above lemma (for the present choice of u), which has
2 — h- measure zero. The result follows.

COROLLARY. Let w be a supertemperature on D.

(1) The set
. M (w,p,c)
1 . —— e
(13) {peD hzriffp “loge oo}
has # — A"-measure 0.
i) If 0 < B < n, then the set
(14) {peD :lim sup ¢~ #2 #(w,p,c) = oo}
c—o+t
has 2 — AP-measure 0, so that the set
(15) {peD:lim sup c® P2 _#(w,p,c) > O}
c—o+

has P-dimension at most B.

PRrOOF. The assertions about the sets (13) and (14) follow from Theorem 4?,
with o = 1 and h(s) = s for Be]0,n]. The last part then follows, because if

B <y < n then the set in (15) is contained in the set
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{peD :limsup ¢~ "2 #(w,p,c) = 00},

c—o+
which has # — A”-measure 0.

ReMARKs. It is already known that the set (13) has #-dimension at most n,
because it is clearly polar and a set with larger #-dimension cannot be ([6],
Theorem 3). Part (i) of the corollary is worthwile only because there exist polar
sets with strictly positive 2 — A"-measure ([6], Example 3).

5. The Riesz measures of potentials on lower half-spaces.

Let H, = R" x ]—o00,a[, where —o0 < a £ o0, let pe H,, and let u be a positive
measure on H,. We put A(p,y) = u(€2'(p,y)) for all y > 0. If p = (x, t), then A(p)
denotes H,. The following theorem is analogous to the first part of Theorem 3.20
in [4]; no exact analogue of the second part is possible due to the existence of
non-constant positive temperatures on H,. Recall that Gy _ is the restriction of
GtoH, x H,.

THEOREM 5. Let p be a positive measure on H,,.
(i) If wis the Riesz measure of a potential on H,, then

(16) —f Y@My <

forallpeH,.
(ii) Conversely, if there is p € H, such that (16) holds, then the Green potential of
W is a supertemperature on A(p). If, in addition,

1
- L T AMp,y)dy < oo,
then Gu(p) < co.

Proor. (i) If Guis a supertemperature on H,, and pe H,, then since Gu = 0it
follows from (1) that

~L T AP, y)dy < #(Gp,p, 1)

whenever ¢ > 1. Making ¢ — oo, we obtain (16).
(i)) Suppose that (16) holds when p = py. ff u = Gy on H,, and pe H,, then

u(p) = L«p , G(p,q)du(q) + j . G(p,@)du(q) = v4(p) + v2(p),

A(po,1,)
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say. The function v, is a supertemperature on H,. For each integer k > 1, let u,
denote the supertemperature given by

ul(p) = J G(p,q9)du(q)
A(po,1,k)

for all pe H,. Then {w,} is increasing, so that its limit v, is a supertemperature on
A(po) if it is finite at py ([7]). If 2 = A(po,"), then

k

(o) = f (y)dA(y) = [T() AT —f () Ay)dy.

1 1

Since (16) holds when p = p,, given ¢ > 0 we can find ¢, such that

0

A@ﬂ@=z@Jm—ﬂwwg—J'fmuw@<e

c

whenever ¢ > ¢, so that A(c)z(c) — 0 as ¢ — co. Hence

v2(Po) = lim u(po) = —7(1)A(1) — Lw T()Ay)dy < oo,

k-

so that v,, and therefore u, is a supertemperature on A(p,). For the last part, we
have

=0+ c=0+

uw=MJ GWM@ﬁmrMW)
A(pg.c,©) c

lim (—T(C)A(C) - fm T'(v)i(v)dv> = —Lw T(y)A@)dy < .

c—=0+

6. Differences of positive supertemperatures on lower half-spaces.

Let u be a d-subtemperature on D. If y is the Riesz measure of u, then y can be
written minimally as a difference u* — p~ of two positive measures on D, as in
the subharmonic case ([3], pp. 505-7). Whenever £(p, c) < D, we put

At (pc)=p*(@(p,c), N*(p,o)=— f 0 TAY (Y)Y,

and similarly for u~. We say that u(po) is finite if N * (po, ) and N~ (po, ") are both
finite, in which case it follows from (2) that u is the difference of two supertem-
peratures which are finite at p,. If u(p,) is finite, we define the characteristic T of
u at py by

T(u’Po,C) = -/”(u+,Po,C) + N+(P0’C) - “(PO)
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whenever Q(p,, ¢) S D. This is directly analogous to the definition for §-subhar-
monic functions given in [3], p. 508. We can use T to characterize those
d-subtemperatures on H, = R" x ]— o0,a[, — o0 < a £ oo, which can be writ-
ten as a difference of two positive supertemperatures. This result is analogous to
Theorem 7.42 in [3], which deals with §-subharmonic functions on a disc; its
proof is an adaption of the proof given in [3].

THEOREM 6. Let u be a d-subtemperature on H,,.

(1) If u = uy — u, is the difference of two positive supertemperatures on H,, and
u(po) is finite, then T(u, po,-) is an increasing function such that 0 £ T(u, po,*) <
u,(po) on 10, o[, and there is a convex function ¢ such that T(u, py,") = P o 1.

(ii) Conversely, if there is a sequence {p;} in H, such that H, = () A(p;), u(p;)is

i=1
finite for all j, and T(u, p;,") is bounded above on 10, o[ for all j, then u is the
difference of two positive supertemperatures on H,.

Proor. (i) Forie{l,2}, let u; be the Riesz measure of u;, and put

Ai(po, ) = l‘i(g'(l’o, o), Nipo,c) = —J: 7'(y) Ao, y)dy

for all ¢ > 0. Since u; = 0, it follows from (2) that
0= M(uy,po,c) = M(uy,Ppo,c) + N1(po,c) — uy(po)-

Since u; and p, are positiveand u = pu; — py, wehave u* < y;and ™ £ p,, s0
that

N*(po,€) = N1(po, ) = u1(po) — A (uy, po,¢).
Furthermore, u; = u* so that #(u™, po,¢) < A (uy, po,c). Hence
T(“,POaC) é Jl{(“l,l’o,c) + (ul(po) - Vd(ul’pO’c)) - “Z(PO)-

Now let v, and v, be the potentials on H, of u* and u~ respectively. Applying
(2) to each v; and subtracting, we obtain

u(po) = M (u, po, ) + N* (o, ) — N (po,c),
so that
T(u, po,c) = M(u",po,c) + N~ (po,¢)
= MU",po,c) + v2(po) — M (02, o, ) = V2(Po) — M (v A 2,Po,0)-

Therefore, as v; A v, is a supertemperature, the characteristic T(u, po,-) is in-
creasing ([10]), there is a convex function ¢ such that T(u, py,-) = ¢ ° 7 ([8,10]),
and
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T(u’ p0’0+) = vZ(pO) - (Ul A Uz)(po) g 0

(i) Let u =w, — w, for some supertemperatures w; on H,. Applying (2) to
each w; and subtracting, we obtain

(17) T(u,pj: C) = '//l(u‘apﬁc) + Nh(pj,c)

for all j and all ¢ > 0, as above. Hence N~ (p;,") < T(u, p;,"), so that N~ (p;,") is
bounded. Thus

—L T()A7(pj )y < 0
for all j, so that Theorem 5 (ii) shows that the Green potential v, of u~ is
a supertemperature on A(p;) for all j, and hence on H,. Furthermore,
N*(pjc) = T(u,pj,c) — Mu™,pjc) + u(p;) < T(u, pj, ) + u(p;)

for all j and all ¢ > 0, so that each N*(p;,") is bounded, and hence the Green
potential v; of u* is a supertemperature on H, and finite at every p;. It follows
that the function h, defined q.e. on H, by h = u + v, — vy, can be extended to
a temperature h on H,. Furthermore, because v; and v, are positive,

M(h™,pj') S Mu”,pj) + M(v1,D)0)
= T(u,p;,") = N (p") + #A(v1,P5°)
by (17), so that
M7, pj,) £ T, pj,) + v1(pj)

and hence each .#(h ", pj,") is bounded. By Theorem 3 in [10], the subtempera-
ture i~ has a thermic majorant w on H,. Therefore h = (h + w) — w is a differ-
ence of two positive temperatures on H,, and hence

u=h+v, —v,=h+w+v)—W+vy)
is the difference of two positive supertemperatures.

REMARK. The representation formula for the difference of two positive super-
temperatures on H,, follows easily from the Riesz decomposition theorem and
the representation theorem for positive temperatures given in [2], p. 294.
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