STRONG BARRELLEDNESS PROPERTIES IN $L_{\infty}(\mu, X)$

J. C. FERRANDO and L. M. SÁNCHEZ RUIZ

Throughout this paper (Ω, Σ, μ) will stand for a finite measure space, Σ being a σ -algebra of subsets of a set Ω , and X is a normed space. $L_{\infty}(\mu, X)$ will denote the space of all (equivalence classes of) X-valued μ -measurable functions defined on Ω that are essentially bounded. On the other hand, $S(\mu, X)$ will denote the subspace of $L_{\infty}(\mu, X)$ of all X-valued μ -simple functions on Ω and $S_{\rm c}(\mu, X)$ will stand for the subspace of $L_{\infty}(\mu, X)$ formed by the functions that take at most a countable number of different values μ -almost everywhere, all these endowed with the norm

$$||f||_{\infty} = \operatorname{ess sup} \{||f(\omega)|| : \omega \in \Omega\}.$$

The subspace $S_c(\mu, X)$ happens to be dense in $L_\infty(\mu, X)$ as a consequence of the Pettis measurability theorem. Finally, $B(\mu, X)$ will denote the closure of $S(\mu, X)$ in $L_\infty(\mu, X)$; it is clear that $S(\mu, X) \subset S_c(\mu, X) \subset L_\infty(\mu, X)$ and $S_c(\mu, X) \subset B(\mu, X)$ if and only if X is finite-dimensional.

When no measure is considered, in [7] it has been shown that the space $S(\Sigma, X)$ of Σ -simple X-valued functions on Ω is barrelled iff X is finite-dimensional while it is proven in [8] that the space $B(\Sigma, X)$ of all X-valued functions that are the uniform limit of X-valued Σ -simple functions is barrelled iff X is barrelled. On the other hand, in [2] it has been shown that if μ is atomless, $L_{\infty}(\mu, X)$ is barrelled, and if μ is atomic and σ -finite, $L_{\infty}(\mu, X)$ is barrelled iff X is barrelled. In this paper we will show that if X is barrelled of class S, then $S_{c}(\mu, X)$ and $S_{c}(\mu, X)$ are barrelled of class S and, since $S_{c}(\mu, X)$ is dense in $S_{c}(\mu, X)$, this is also true in $S_{c}(\mu, X)$.

Let us start by recalling that a (real or complex Hausdorff locally convex) space E is Baire-like [9] if, given any increasing sequence of closed absolutely convex subsets of E covering E, there is one that is a neighbourhood of the origin. E is said to be db or suprabarrelled [10, 11] if, given any increasing sequence of subspaces of E covering E, there is one that is dense and barrelled. Given $s \in \mathbb{N}$, and considering as \mathscr{C}_0 the class of Baire-like spaces, a space E is said to be barrelled of class s [5], or briefly $E \in \mathscr{C}_s$, if given any increasing sequence of subspaces of E covering E, there is one that belongs to \mathscr{C}_{s-1} , and E is said to be

barrelled of class κ_0 if $E \in \mathscr{C}_s$ for every $s \in \mathbb{N}$. So \mathscr{C}_1 coincides with the class of suprabarrelled spaces and for every $s \in \mathbb{N}$ we have,

Baire-like $\supset \mathscr{C}_{s-1} \supset \mathscr{C}_s \supset$ barrelled of class \varkappa_0 .

The following definition, [4], will help us to obtain other useful characterization of barrelled spaces of class s.

DEFINITION. Given a positive integer s, a countable family of subspaces $W = \{L_{m_1...m_p}: m_r \in \mathbb{N}, 1 \le r \le p \le s\}$ of a linear space L is an s-net in L if the sequence $\{L_m: m \in \mathbb{N}\}$ is increasing, covers L and, for each $p \in \{2, ..., s\}$, $\{L_{m_1...m_{p-1}m}: m \in \mathbb{N}\}$ is increasing and covers $L_{m_1...m_{p-1}}$. The family $\{L_{m_1...m_s}: m_1 \in \mathbb{N}, 1 \le i \le s\}$ will be denoted by W_s .

PROPOSITION 1. Given $s \in \mathbb{N}$, a space E is barrelled of class s if and only if, given any s-net W in E, there is some $F \in W_s$ that is Baire-like (or barrelled and dense in E).

PROOF. For s = 1 the result is immediate since any dense barrelled subspace of a Baire-like space is Baire-like (see Prop. 1 of [3]).

Let us assume the proposition is true for some $s \in \mathbb{N}$ and suppose $E \in \mathscr{C}_{s+1}$. Let $W = \{E_{m_1 \dots m_p} : m_r \in \mathbb{N}, 1 \le r \le p \le s+1\}$ be an (s+1)-net in E, then there is some $m_1 \in \mathbb{N}$ such that $E_{m_1} \in \mathscr{C}_s$ and is dense in E. Fixing this $m_1, \{E_{m_1 \dots m_p} : m_r \in \mathbb{N}, 2 \le r \le p \le s+1\}$ is an s-net in E_{m_1} and, by the induction hypothesis, some $E_{m_1 \dots m_{s+1}}$ is barrelled and dense in E_{m_1} and therefore in E. On the other hand, assume that given any (s+1)-net W in E there is some $F \in W_{s+1}$ that is barrelled and dense. Suppose that $E \notin \mathscr{C}_{s+1}$, then there is an increasing sequence $\{E_n : n \in \mathbb{N}\}$ of subspaces of E covering E such that no $E_n \in \mathscr{C}_s$. As $E \in \mathscr{C}_s \subset \mathscr{C}_0$, every E_n may be assumed to be dense in E. So, by the induction hypothesis, for each $n \in \mathbb{N}$ there will be an s-net $W^n = \{F^n_{m_1 \dots m_p} : m_r \in \mathbb{N}, 1 \le r \le p \le s\}$ in E_n such that no $F \in (W^n)_s$ is barrelled and dense in E_n . Setting $E_{nm_1 \dots m_p} : F^n_{m_1 \dots m_p}$ for each e is an e in e i

In what follows, given $A \in \Sigma$, e(A) will denote the indicator function on A, and by a μ -measurable function we shall mean a function from Ω into X that is the μ -almost everywhere limit of a sequence of μ -simple X-valued functions.

LEMMA 1. If $f \in S_c(\mu, X)$, then there is a countable partition $\{A_n : n \in I\}$ of Ω formed by nonempty elements of Σ such that f is essentially constant on each A_n and takes a different value.

PROOF. If $f \in S(\mu, X)$, then I is finite and the result is obvious. If $f \in S_c(\mu, X) \setminus S(\mu, X)$ let g be a canonical representation of f with countable range $\{x_n: n \in \mathbb{N}\}$. Since $g^{-1}(x_n) \in \Sigma$ for each $n \in \mathbb{N}$ (see for example [1, p. 167]), setting $A_n := g^{-1}(x_n)$, $n \in \mathbb{N}$, the sequence $\{A_n: n \in \mathbb{N}\}$ satisfies the lemma.

Hereafter, given $A \in \Sigma$, $S(\mu, A, X)$ and $S_c(\mu, A, X)$ will stand for the spaces $S(\mu/\Sigma \cap A, X)$, and $S_c(\mu/\Sigma \cap A, X)$, respectively. We identify these spaces with their natural embeddings into $L_{\infty}(\mu, X)$. Although the two following results can be found enunciated in [2], we give an independent proof of the first of them in order to get in touch with the methods of proof that we use afterwards. On the other hand, a proof of Theorem 2 with similar methods to the ones used in our Theorem 1 can be found in [6].

THEOREM 1. If X is barrelled, then $B(\mu, X)$ is barrelled.

PROOF. Suppose that X is barrelled but there is a barrel T in $B(\mu, X)$ which is not a neighbourhood of the origin in $B(\mu, X)$. Then T cannot absorb the unit sphere S_1 of $S(\mu, X)$ since if it did so it would also absorb the closed unit ball of $B(\mu, X)$. Hence there must be some $f_1 \in S_1$ such that $f_1 \notin 2T$.

According to Lemma 1, let $\{Q_1^1, Q_2^1, ..., Q_{k_1}^1\}$ be a partition of Ω formed by nonempty elements of Σ such that f_1 is essentially constant on each Q_i^1 and takes a different value.

Now given that $S(\mu, X)$ is the topological direct sum of the subspaces $\{S(\mu, Q_i^1, X): 1 \le i \le k_1\}$, T cannot absorb the unit spheres of all of them, and there must be some $m_1 \in \{1, \ldots, k_1\}$ and $f_2 \in S_2$, the closed unit sphere of $S(\mu, Q_{m_1}^1, X)$, such that $f_2 \notin AT$. Let $\{Q_1^2, Q_2^2, \ldots, Q_{k_2}^2\}$ be a partition of $Q_{m_1}^1$ formed by nonempty elemets of Σ such that f_2 is essentially constant on each Q_i^2 and takes a different value.

Going on by recurrence, we obtain a normalized sequence $\{f_n: n \in \mathbb{N}\}$ of μ -simple functions, a sequence $\{m_n: n \in \mathbb{N}\}$ of positive integers and a countable family $\{Q_{m_n}^n: n \in \mathbb{N}\}$ formed by nonempty elements of Σ such that for each $n \in \mathbb{N}$, f_n is essentially constant on $Q_{m_n}^n$ in such a way that, for each $n \in \mathbb{N}$,

- (i) supp $f_{n+1} \subset Q_{m_n}^n$.
- (ii) f_n is essentially constant in supp f_m for every m > n.
- (iii) $Q_{m_{n+1}}^{n+1} \subset Q_{m_n}^n$.
- (iv) $f_n \notin 2nT$.

Set $Q:= \cap \{Q_{m_n}^n: n \in \mathbb{N}\}$. If $\mu(Q) \neq 0$ then e(Q) is not the identically null mapping and the mapping $x \to e(Q)x$ is an isometry of X onto its image. Therefore if x_n denotes the value taken by f_n on $Q_{m_n}^n$ then $||x_n|| \leq 1 \ \forall n \in \mathbb{N}$, since $\{f_n: n \in \mathbb{N}\}$ is normalized, and there must be some $n_0 \in \mathbb{N}$ such that $x_n e(Q) \in n_0 T \ \forall n \in \mathbb{N}$. Hence $x_n e(Q) \in nT \ \forall n \geq n_0$.

If for each $n \in \mathbb{N}$ we define $g_n := f_n - x_n e(Q) \notin nT$, then

$$\cap \{\operatorname{supp} g_n: n \geq n_0\} \subset \cap \{Q_{m_n}^n \setminus Q: n \geq n_0\} = \emptyset.$$

If $\mu(Q) = 0$, for each $n \in \mathbb{N}$ we define $g_n(\omega) = f_n(\omega)$ if $\omega \notin Q$ and $g_n(\omega) = 0$ if $\omega \in Q$. Taking $n_0 = 1$, then $g_n = f_n$ μ -a.e. $\forall n \ge n_0$ and $\bigcap \{ \sup g_n : n \ge n_0 \} = 0$. In any of these two cases, the sequence $\{g_n : n \ge n_0\}$ is bounded in $S(\mu, X)$.

Therefore if $\xi \in l_1$, $\sum\limits_{n=n_0}^{\infty} \xi_n g_n$ converges in the completion of $B(\mu,X)$ and, essentially, takes at most a countable number of values in X. Indeed if $\omega \in Q$, $\sum\limits_{n=n_0}^{\infty} \xi_n g_n(\omega) = 0$, and if $\omega \notin Q$, there exists some positive integer $m_0 \ge n_0$ such that $\omega \notin Q^n_{m_n}$ for all $n > m_0$ and so $\sum\limits_{n=n_0}^{\infty} \xi_n g_n(\omega) = \sum\limits_{n=n_0}^{\infty} \xi_n f_n(\omega) = \sum\limits_{n=n_0}^{m_0} \xi_n f_n(\omega) \in X$. Therefore, $\sum\limits_{n=n_0}^{\infty} \xi_g g_n \in B(\mu,X)$.

Hence, denoting by B_{l_1} the closed unit ball of l_1 , the Banach disk $D:=\left\{\sum_{n=n_0}^{\infty}\xi_ng_n\colon \xi\in B_{l_1}\right\}$ in the completion of $B(\mu,X)$ is contained in $B(\mu,X)$. Thus, by the Baire category theorem, there exists some integer $q\geq n_0$ with $D\subset qT$ and hence $g_q\in qT$, a contradiction.

THEOREM 2. If X is barrelled, then $S_c(\mu, X)$ is barrelled.

In the following two results we suppose that s is any positive integer, $W = \{E_{m_1...m_p} \colon m_r \in \mathbb{N}, 1 \le r \le p \le s\}$ is an s-net in E formed by dense subspaces of $S_c(\mu, X)$ covering $S_c(\mu, X)$. For each $m_1, \ldots, m_s \in \mathbb{N}$, suppose $T_{m_1...m_s}$ is a barrel of $E_{m_1...m_s}$, $B_{m_1...m_s}$ is its closure in $S_c(\mu, X)$ and $L_{m_1...m_s} := \langle B_{m_1...m_s} \rangle$. By decreasing recurrence, for $p = s - 1, \ldots, 1$, define the subspaces $F_{m_1...m_{p+1}} := \cap \{L_{m_1...m_pm} : m \ge m_p + 1\}$, $L_{m_1...m_p} := \cup \{F_{m_1...m_pm} : m \in \mathbb{N}\}$, and $F_{m_1} := \cap \{L_m : m \ge m_1\}$. Notice that $\{F_m : m \in \mathbb{N}\}$ and $\{F_{m_1m_2...m_pm} : m \in \mathbb{N}\}$ are 1-nets in $S_c(\mu, X)$ and $L_{m_1...m_p}$, $\forall m_r \in \mathbb{N}, 1 \le r \le p \le s$.

LEMMA 2. If $\{A_n: n \in \mathbb{N}\}$ is a sequence of nonempty pairwise disjoint elements of Σ , then there exists some $n_0 \in \mathbb{N}$ such that $S_c(\mu, \bigcup \{A_n: n \geq n_0\}, X) \subset F_{n_0}$.

PROOF. Assume the lemma is false and that for each $p \in \mathbb{N}$ there is some $f_p \in S_c(\mu, \bigcup \{A_n : n \ge p\}, X) \setminus F_p$ so that $||f_p|| = 1$. Then $\{f_n : n \in \mathbb{N}\}$ is bounded in $S_c(\mu, X)$ and if $\xi \in l_1$, $\sum_{n=1}^{\infty} \xi_n f_n$ converges in the completion $L_{\infty}(\mu, \hat{X})$ of $S_c(\mu, X)$.

Now $\sum_{n=1}^{\infty} \xi_n f_n$ is essentially countably valued in X since if $\omega \in \Omega \setminus \bigcup \{A_n : n \in \mathbb{N}\}$, then $\sum_{n=1}^{\infty} \xi_n f_n(\omega) = 0$ and if $\omega \in \bigcup \{A_n : n \in \mathbb{N}\}$ there is some $r \in \mathbb{N}$ such that $\omega \in A_r$, i.e. $\omega \notin \bigcup \{A_n : n > r\}$ and, since supp $f_n \subset \bigcup \{A_i : i \ge n\}$, $\sum_{n=1}^{\infty} \xi_n f_n(\omega) = \sum_{n=1}^{r} \xi_n f_n(\omega)$.

Moreover, the sequence $\left\{\sum_{n=1}^{m} \xi_{n} f_{n}, m \in \mathbb{N}\right\}$ of $S_{c}(\mu, X)$ converges to $\sum_{n=1}^{\infty} \xi_{n} f_{n}$ in the completion $L_{\infty}(\mu, \hat{X})$ of $S_{c}(\mu, X)$. Hence, $\sum_{n=1}^{\infty} \xi_{n} f_{n} \in S_{c}(\mu, X)$.

Therefore $D:=\left\{\sum_{n=1}^{\infty}\xi_{n}f_{n}: \xi\in B_{l_{1}}\right\}$ is a Banach disk and, denoting by E_{D} the normed space $\langle D \rangle$ whose norm is the gauge of D, there is some $m_1' \in \mathbb{N}$ such that $F_{m_1} \cap E_D$ is a dense Baire subspace of $E_D \forall m_1 \ge m'_1$. By finite induction, suppose that we have found m_1' and the functions $m_i'(m_1, ..., m_{i-1}), 2 \le i \le p \le s-1$, such that for any positive integer $m_1 \ge m'_1$, $m_i \ge m'_i(m_1, \dots, m_{i-1})$, $2 \le i \le p$, $F_{m_1,\ldots m_n} \cap E_D$ is a dense Baire subspace of E_D . Then, for any $m_1 \geq m'_1,\ldots,m_n \geq m'_n$ $m'_p(m_1,\ldots,m_{p-1})$ given that $\{F_{m_1,\ldots,m_p,m}: m \in \mathbb{N}\}$ covers F_{m_1,\ldots,m_p} , there is some $m'_{p+1}(m_1,\ldots,m_p) \in \mathbb{N}$ such that $F_{m_1,\ldots,m_{p+1}} \cap E_D$ is a dense Baire subspace of E_D $\forall m_{n+1} \geq m'_{n+1}(m_1, \ldots, m_n)$. Hence $D \subset L_{m_1, \ldots, m_n}$ if $m_1 \geq m'_1, \ldots, m_n \geq m'_1,$ $m'_s(m_1,\ldots,m_{s-1})$, since $B_{m_1,\ldots,m_s} \cap L_{m_1,\ldots,m_s} \cap E_D$ is a barrel and consequently a neighbourhood of the origin in the Baire space $L_{m_1, m_2} \cap E_D$ for $m_1 \ge m_1', \ldots, m_s \ge m_s'(m_1, \ldots, m_{s-1})$. It follows from this that $D \subset F_{m_1, \ldots, m_s}$ for $m_1 \ge m'_1, \ldots, m_s \ge m'_s(m_1, \ldots, m_{s-1})$ and therefore $D \subset L_{m_1, \ldots, m_{s-1}}$ if $m_1 \ge m'_1, \ldots, m_{s-1}$ $m_{s-1} \ge m'_{s-1}(m_1, \ldots, m_{s-2})$. This implies that $D \subset F_{m_1, \ldots, m_{s-1}}$ for $m_1 \ge m'_1, \ldots, m_{s-1}$ $m_{s-1} \ge m'_{s-1}(m_1, \ldots, m_{s-2})$. Going on in this way, we obtain that $D \subset F_{m_1}$ for $m_1 \ge m_1'$, and, consequently, $f_{m_1} \in F_{m_1}$, a contradiction.

LEMMA 3. If X is barrelled of class s, then there exists some $q \in \mathbb{N}$ such that $S(\mu, X) \subset F_a$.

PROOF. Suppose the lemma is false and there is some $f_1 \in S(\mu, X)$, $f_1 \notin F_1$ so that $||f_1|| = 1$. Let $\{Q_1^1, Q_2^1, \ldots, Q_{k_1}^1\}$ be a partition of Ω formed by nonempty elements of Σ such that f_1 is essentially constant on each Q_i^1 and takes a different value.

Now given that $S(\mu, X)$ is the topological direct sum of the subspaces $\{S(\mu, Q_i^1, X): 1 \le i \le k_1\}$, there must be some $m_1 \in \{1, ..., k_1\}$ such that $S(\mu, Q_{m_1}^1, X)$ is not contained in F_n for each $n \in \mathbb{N}$ and, consequently, there is some $f_2 \in S(\mu, Q_{m_1}^1, X)$, $f_2 \notin F_2$ so that $||f_2|| = 1$. Let $\{Q_1^2, Q_2^2, ..., Q_{k_2}^2\}$ be a partition of $Q_{m_1}^1$ formed by nonempty elements of Σ such that f_2 is essentially constant on each Q_i^2 and takes a different value. Now there is some $m_2 \in \{1, ..., k_2\}$ such that $S(\mu, Q_{m_2}^2, X)$ is not contained in F_n for each n.

Assume that we have obtained by induction a sequence $\{f_n: n \in \mathbb{N}\}$ of μ -simple functions, a sequence of positive integers $\{k_n: n \in \mathbb{N}\}$, and a countable family $\{Q_i^n \ n \in \mathbb{N}, 1 \le i \le k_n\}$ formed by nonempty elements of Σ such that:

a) for each $n \in \mathbb{N}$, f_n is essentially constant on each Q_i^n and takes a different value, and

- b) for each $n \in \mathbb{N}$, the following properties are satisfied
- (i) $||f_n|| = 1$.
- (ii) supp $f_{n+1} \subset Q_{m_n}^n$ for some $m_n \in \{1, ..., k_n\}$. (iii) $Q_{m_{n+1}}^{n+1} \subset Q_{m_n}^n$.
- (iv) $f_n \notin F_n$.

Set $Q := \bigcap \{Q_{m_n}^n : n \in \mathbb{N}\}$. In case $\mu(Q) \neq 0$ we define $g_n := f_n - x_n e(Q)$ for each $n \in \mathbb{N}$ where x_n denotes the value taken by f_n on $Q_{m_n}^n$. Then, since the mapping of X into $S_c(\mu, X)$ such that $x \to e(Q)x$ is an isometry and $X \in \mathscr{C}_s$, using Proposition 1 it is easy to find some $m_1 \in \mathbb{N}$ such that $e(Q)x_i \in F_n \ \forall i \in \mathbb{N}$ and for all $n \geq m_1$. Thus, $g_n \notin F_n$ for each $n \ge m_1$ and

$$\cap \{ \operatorname{supp} g_n : n \in \mathbb{N} \} = \emptyset.$$

In case $\mu(Q) = 0$, we define $g_n(\omega) := f_n(\omega)$ for $\omega \notin Q$ and $g_n(\omega) := 0$ for $\omega \in Q$ for each $n \in \mathbb{N}$. Then $g_n = f_n \mu$ -a.e. and $\bigcap \{ \sup g_n : n \in \mathbb{N} \} = \emptyset$ as well.

As in Theorem 1, $D := \left\{ \sum_{n=1}^{\infty} \xi_n g_n : \xi \in B_{l_1} \right\}$ is a Banach disk in $L_{\infty}(\mu, \hat{X})$ which is contained in $S_c(\mu, X)$ and there must be some $p \ge m_1$ such that $D \subset F_p$. Hence $g_n \in F_n$, a contradiction.

THEOREM 3. Given $s \in \mathbb{N}$, if X is barrelled of class s then $S_c(\mu, X)$ is barrelled of class s.

PROOF. By Theorem 2, $S_c(\mu, X) \in \mathscr{C}_0$ since it is a metrizable barrelled space. Proceeding by recurrence, let $p \in \{1, ..., s\}$ and assume $S_c(\mu, X) \in \mathscr{C}_{p-1} \setminus \mathscr{C}_p$. Then, by Proposition 1, there is a p-net $W := \{E_{m_1...m_i}: m_r \in \mathbb{N}, 1 \le r \le i \le p\}$ in $S_c(\mu, X)$ formed by dense subspaces such that no $E_{m_1, \dots, m_t} \in W_1$ is barrelled of class $i-1, 1 \le i \le p$. And as $S_c(\mu, X)$ is metrizable, no $E_{m_1...m_p}$ is barrelled. For each $m_1, \ldots, m_p \in \mathbb{N}$, suppose T_{m_1, \ldots, m_p} is a barrel of E_{m_1, \ldots, m_p} which is not a neighbourhood of the origin in $E_{m_1...m_p}$, let $B_{m_1...m_p}$ be the closure of $T_{m_1...m_p}$ in $S_c(\mu, X)$ and let $L_{m_1...m_n} := \langle B_{m_1...m_n} \rangle$. By decreasing recurrence, for i = p - 1, ..., 1, define the subspaces $F_{m_1...m_{i+1}} := \bigcap \{L_{m_1...m_im} : m \ge m_{i+1}\}, L_{m_1...m_i} := \bigcup \{F_{m_1...m_im} : m \ge m_{i+1}\}, L_{m_1...m_im} : m \ge m_{i+1}\}$ $m \in \mathbb{N}$, and $F_{m_1} := \bigcap \{L_m : m \ge m_1\}$. Then $\{F_m : m \in \mathbb{N}\}$ and $\{F_{m_1, \dots, m_m} : m \in \mathbb{N}\}$ are respectively 1-nets in $S_c(\mu, X)$ and in $L_{m_1...m_i}, \forall m_i \in \mathbb{N}, 1 \le r \le i \le p-1$. Besides $E_{m_1...m_i} \subset F_{m_1...m_i}, \forall m_r \in \mathbb{N}$ with $1 \leq r \leq i \leq p$. Now if there is a $m_1 \in \mathbb{N}$ such that $S_{c}(\mu, X)$ coincides with F_{m_1} , then $L_{m_1} \in \mathcal{C}_{p-1}$ and there must be some $m_2 \in \mathbb{N}$ such that $F_{m_1m_2} \in \mathscr{C}_{p-2}$ and is dense in $S_c(\mu, X)$. Thus, $L_{m_1m_2} \in \mathscr{C}_{p-2}$ and is dense in $S_{c}(\mu, X)$. Continuing in this way we would find some $F_{m_1, \dots, m_n} \in \mathscr{C}_0$. So $B_{m_1...m_n} \cap F_{m_1...m_n}$ would be a neighbourhood of zero in $F_{m_1,..,m_n}$ and $E_{m_1...m_n}$ would be barrelled, a contradiction.

Hence, no F_n may coincide with $S_c(\mu, X)$. Now by the previous Lemma we may assume that $S(\mu, X) \subset F_n \ \forall n \in \mathbb{N}$. Let $f_1 \in S_c(\mu, X) \setminus F_1$ be such that $||f_1|| = 1$ and let $\{Q_i^1: i \in \mathbb{N}\}$ be a partition of Ω formed by nonempty elements of Σ determined by Lemma 1 and defined by the μ -measurable function f_1 so that f_1 is essentially constant on each Q_i^1 and takes a different value.

By Lemma 2 there is some positive integer $n_2 > n_1 = 1$ so that $S_c(\mu, \cup \{Q_i^1 : i \ge n_2\}, X) \subset F_{n_2}$. Thus, setting $\Omega_1 := \cup \{Q_i^1 : 1 \le i \le n_2\}$, $S_c(\mu, \Omega_1, X)$ cannot be contained in any F_n , $n \ge n_2$, and there must be some $f_2 \in S_c(\mu, \Omega_1, X) \setminus F_{n_2}$ so that $||f_2|| = 1$. Let $\{Q_i^2 : i \in \mathbb{N}\}$ be a partition of Ω_1 formed by nonempty elements of Σ determined by the μ -measurable function f_2 so that f_2 is constant on each Q_i^2 and takes a different value.

Continuing in this way, we obtain a sequence of positive integers $\{n_i: i \in \mathbb{N}\}$ and a sequence $\{f_n: n \in \mathbb{N}\}$ of μ -measurable functions of $S_c(\mu, X)$ which determine the sequence $\{Q_i^n: n, i \in \mathbb{N}\}$ formed by nonempty elements of Σ such that, for each $n \in \mathbb{N}$, f_n is essentially constant on each Q_i^n and takes a different value, in such a way that setting $\Omega_n := \bigcup \{Q_i^n: 1 \leq i \leq n_{i+1}\} \ \forall n \in \mathbb{N}$, for each $i \in \mathbb{N}$ we have that,

- (i) supp $f_{i+1} \subset \Omega_i$.
- (ii) $e(\Omega_i) f_i \in S(\mu, \Omega_i, X) \subset S(\mu, X)$.
- (iii) $\Omega_{i+1} \subset \Omega_i$.
- (iv) $f_i \notin F_{n_i}$.

Now let $g_i := f_i - e(\Omega_i)f_i$ for each $i \in \mathbb{N}$. Then $g_i \notin F_{n_i}$ for each $i \in \mathbb{N}$ and supp $g_i \cap \text{supp } g_j = \emptyset$ for $i \neq j$. Hence $\overline{\langle \{g_n : n \in \mathbb{N}\} \rangle}$, where the closure is in $L_{\infty}(\mu, \hat{X})$, is a copy of c_0 since $\{g_n / \|g_n\| : n \in \mathbb{N}\}$ is equivalent to the unit vector basis of c_0 . As it is easy to see that $\overline{\langle \{g_n : n \in \mathbb{N}\} \rangle} \subset S_c(\mu, X)$, using the Baire category theorem as above, there must be some $q \in \mathbb{N}$ such that $\{g_n : n \in \mathbb{N}\} \subset F_k$ for each $k \geq n_g$. Hence $g_g \in F_{n_o}$, a contradiction. Thus $S_c(\mu, X) \in \mathscr{C}_p$.

Hence $S_c(\mu, X) \in \mathscr{C}_s$ and the proof is over.

THEOREM 4. If X is a barrelled space of class s (barrelled of class κ_0), then both $L_{\infty}(\mu, X)$ and $B(\mu, X)$ are barrelled of class s (barrelled of class κ_0).

PROOF. The first affirmation is an obvious consequence of the previous theorem, since $S_c(\mu, X)$ is dense in $L_\infty(\mu, X)$. The argument to prove the second affirmation is analogous to the one given in theorems above, but working with $B(\mu, X)$ instead of $S_c(\mu, X)$, and using Theorem 1 instead of Theorem 2.

ACKNOWLEDGEMENT. The authors are very grateful to the referee.

REFERENCES

- B. Beauzamy, Introduction to Banach Spaces and their Geometry, Math. Studies 68, North-Holland, 1982.
- 2. J. C. Diaz, M. Florencio and P. J. Paul, A uniform boundedness theorem for $L^{\infty}(\mu, E)$, Arch. Math., to appear.

- 3. J. C. Ferrando and M. López Pellicer, Una propiedad de M. Valdivia, espacios de tipo (L) y condiciones débiles de tonelación, Rev. Real. Acad. Cienc. Madrid 83 (1990), 25-34.
- J. C. Ferrando and M. López-Pellicer, Strong barrelledness properties in l₀[∞](X, A) and bounded finite additive measures, Math. Ann. 287 (1990), 727-736.
- J. C. Ferrando and M. López-Pellicer, Barrelled spaces of class n and of class κ₀, Disert. Sem. Mat. Fund. UNED. No. 4 (1992).
- 6. J. C. Ferrando, On the barrelledness of the space $L_{\infty}(\mu, X)$, Bull. Soc. Math. Belg., 44 Fasc. 2 (Serie B) (1992), 165–169.
- J. Freniche, Barrelledness of the space of vector valued and simple functions, Math. Ann. 267, 479–486
- 8. J. Mendoza, Barrelledness conditions on $S(\Sigma, E)$ and $B(\Sigma, E)$, Math. Ann. 261, 11–22.
- 9. S. A. Saxon, Nuclear and product spaces, Baire-like spaces and the strongest locally convex topology, Math. Ann. 197 (1972), 87-106.
- S. A. Saxon and P. P. Narayanaswami, Metrizable (LF)-spaces, (db)-spaces and the separable quotient problem. Bull. Austral. Math. Soc. 23 (1981), 65-80.
- 11. M. Valdivia, *On suprabarrelled spaces*, Lecture Notes in Math. 843, Func. Anal. Hol. and Approx. Theory, 572-580. Springer, 1981.

DEPARTAMENTO DE MATEMÁTICA APLICADA UNIVERSIDAD POLITÉCNICA DE VALENCIA 46071 VALENCIA SPAIN