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STRONG BARRELLEDNESS PROPERTIES IN L_(y, X)

J. C. FERRANDO and L. M. SANCHEZ RUIZ

Throughout this paper (€, Z, ) will stand for a finite measure space, X being
ag-algebra of subsets of a set , and X is a normed space. L, (i, X) will denote the
space of all (equivalence classes of) X-valued u-measurable functions defined on
Q that are essentially bounded. On the other hand, S(u, X) will denote the
subspace of L, (u, X) of all X-valued u-simple functions on Q and S (u, X) will
stand for the subspace of L (u, X) formed by the functions that take at most
a countable number of different values u-almost everywhere, all these endowed
with the norm

I/ e = esssup{|| f(w): 0 Q}.

The subspace S (1, X) happens to be dense in L (1, X) as a consequence of the
Pettis measurability theorem. Finally, B(u, X) will denote the closure of S(u, X) in
Ly (1, X); it is clear that S(u, X) < S.(u, X) = Lo (u, X) and S.(u, X) = B(u, X) if
and only if X is finite-dimensional.

When no measure is considered, in [ 7] it has been shown that the space S(Z, X)
of X-simple X-valued functions on Q is barrelled iff X is finite-dimensional while
it is proven in [8] that the space B(Z, X) of all X-valued functions that are the
uniform limit of X-valued Z-simple functions is barrelled iff X is barrelled. On
the other hand, in [2] it has been shown that if u is atomless, L, (1, X) is barrelled,
and if u is atomic and o-finite, L, (1, X) is barrelled iff X is barrelled. In this paper
we will show that if X is barrelled of class s, then S, (i, X) and B(y, X) are barrelled
of class s and, since S,(u, X) is dense in L (u, X), this is also true in L, (1, X).

Let us start by recalling that a (real or complex Hausdorff locally convex)
spaceE is Baire-like [9] if, given any increasing sequence of closed absolutely
convex subsets of E covering E, there is one that is a neighbourhood of the origin.
E is said to be db or suprabarrelled [10, 11] if, given any increasing sequence of
subspaces of E covering E, there is one that is dense and barrelled. Given se N,
and considering as %, the class of Baire-like spaces, a space E is said to be
barrelled of class s [5], or briefly E€%,, if given any increasing sequence of
subspaces of E covering E, there is one that belongs to €, and E is said to be
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barrelled of class x, if E €%, for every se N. So €, coincides with the class of
suprabarrelled spaces and for every se N we have,

Baire-like o> %,_, = %, o barrelled of class x,.

The following definition, [4], will help us to obtain other useful characteriz-
ation of barrelled spaces of class s.

DEerINITION. Given a positive integer s, a countable family of subspaces
W= {Ln,. .m,;: meN, 1 <r<p<s} of alinear space L is an s-net in L if the
sequence {L,: meN} is increasing, covers L and, for each pe{2,...,s},
{Lm,...m,_,m: meN} is increasing and covers Ly, n,_,. The family {Ln, m;
m;eN, 1 £i < s} will be denoted by W,.

PROPOSITION 1. Given s€ N, a space E is barrelled of class s if and only if, given
any s-net W in E, there is some F € W, that is Baire-like (or barrelled and dense in E).

Proor. Fors = 1theresult isimmediate since any dense barrelled subspace of
a Baire-like space is Baire-like (see Prop. 1 of [3]).

Let us assume the proposition is true for some se N and suppose E€ %, ;. Let
W ={E,, m,:meN, 1 Sr<p<s+ 1} bean(s+ l)net in E, then there is
some m, € N such that E,, €%, and is dense in E. Fixing this m;,, {E,,,l‘_,,,,p: m,eN,
2<r<p<s+1}isan snet in E, and, by the induction hypothesis, some
En,...m,, is barrelled and dense in E,, and therefore in E. On the other hand,
assume that given any (s + 1)-net Win E there is some F € W, , that is barrelled
and dense. Suppose that E ¢ €, , ,, then there is an increasing sequence {E,: ne N}
of subspaces of E covering E such that no E, € 4. As E€ 6, < %,,every E, may be
assumed to be dense in E. So, by the induction hypothesis, for each ne N there
will be an s-net W"={F, ., :meN, 1<r=<p<s} in E, such that no
Fe(W"), is barrelled and dense in E,. Setting Epp, .m, = Fp, ., for each
nmeN, 1 <r<p<s, then W:={E, n:meN, 1<r<p=<s+ 1} is an
(s + 1)-net in E and no F e W, is barrelled and dense in E, a contradiction.

In what follows, given 4 € X, ¢(A) will denote the indicator function on 4, and
by a u-measurable function we shall mean a function from @ into X that is the
u-almost everywhere limit of a sequence of u-simple X-valued functions.

LemMa 1. If feS.(u, X), then there is a countable partition {A,: nel} of
Q formed by nonempty elements of X such that f is essentially constant on each A,
and takes a different value.

ProoOF. If feS(u,X), then I is finite and the result is obvious. If
S €8(u, X)\S(u, X) let g be a canonical representation of f with countable range
{x,: ne N}. Since g ~!(x,) e Z for each ne N (see for example [1, p. 167]), setting
An:= g~ (x,), neN, the sequence {4,: ne N} satisfies the lemma.
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Hereafter, given A€, S(u, 4, X) and S (i, 4, X) will stand for the spaces
S(u/Z N A, X), and S.(u/Z N A, X), respectively. We identify these spaces with
their natural embeddings into L (u, X). Although the two following results can
be found enunciated in [2], we give an independent proof of the first of them in
order to get in touch with the methods of proof that we use afterwards. On the
other hand, a proof of Theorem 2 with similar methods to the ones used in our
Theorem 1 can be found in [6].

THEOREM 1. If X is barrelled, then B(u, X) is barrelled.

ProoF. Suppose that X is barrelled but there is a barrel T in B(u, X) which is
not a neighbourhood of the origin in B(u, X). Then T cannot absorb the unit
sphere S; of S(u, X) since if it did so it would also absorb the closed unit ball of
B(u, X). Hence there must be some f; €S, such that f; ¢2T.

According to Lemma 1, let {Q1,Q},...,0Q;i,} be a partition of Q formed by
nonempty elements of X such that f; is essentially constant on each Q} and takes
a different value.

Now given that S(u, X) is the topological direct sum of the subspaces
{S(u, @}, X): 1 £i £ ky}, T cannot absorb the unit spheres of all of them, and
there must be some m;e{l,...,k,} and f,€S,, the closed unit sphere of
S(u, QL. X), such that f, ¢4T. Let {Q3,03,...,0%,} be a partition of Q,,, formed
by nonempty elemets of X such that f; is essentially constant on each Q? and
takes a different value.

Going on by recurrence, we obtain a normalized sequence {f,: ne N} of
p-simple functions, a sequence {m,: ne N} of positive integers and a countable
family {Q% : ne N} formed by nonempty elements of X such that for eachneN, f,
is essentially constant on Q% _in such a way that, for each neN,

(i) supp fo+1 < QOn,-

(i) £, is essentially constant in supp f,, for every m > n.

(i) Ot < O,

(iv) f,&2nT.
Set Q:= n{Q", : ne N}. If u(Q) # 0 then e(Q) is not the identically null map-

ping and the mapping x — ¢(Q)x is an isometry of X onto its image. Therefore if
x, denotes the value taken by f, on @7, then |x,| = 1 VneN, since {fy:neN}is
normalized, and there must be some n, € N such that x,e(Q)enoT Vne N. Hence
x,e(Q)enT Vn = ny.

If for each ne N we define g,:= f, — x,e(Q) énT, then

A {suppg.: n = no} « N{QH\Q: nZ no} = 0.

If 4(Q) = 0, for each neN we define g,(@) = f,(o) if ®¢Q and g,(®) =0 if
we Q. Taking no = 1, then g, = f, p-a.e. Yn = no and N {SUPP gn' 11 % no} = 0.
In any of these two cases, the sequence {g,: n 2 no} is bounded in S(y, X).
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Therefore if £l Z £.g. converges in the completion of B(u, X) and, essential-
n=ngo

ly, takes at most a countable number of values in X. Indeed if weQ,

0
Z £.9.(@) = 0,and if w ¢ Q, there exists some positive integer my = ng such that

n=ngo

wé¢Qn for all n>m, and so i Engn(@) = i Eufulw) = % Efulw)e X.

n=ng n=no n=no

Therefore, Y. ¢,9,€B(u, X).

n=no

Hence, denoting by B, the closed unit ball of [;, the Banach disk
D:= { Y Eugnt feB,l} in the completion of B(u,X) is contained in B(u, X).

n=ng
Thus, by the Baire category theorem, there exists some integer g = n, with
D < qT and hence g, 4T, a contradiction.

THEOREM 2. If X is barrelled, then S (1, X) is barrelled.

In the following two results we suppose that s is any positive integer,
W ={En, .m,;:meN,1<r<p<s}isans-netin E formed by dense subspaces
of S.(u, X) covering S (i, X). Foreachmy,...,m;e N,suppose T,, ., isabarrel of
En,..m;>Bm,.. .m isitsclosurein S (u, X) and L,,, . := {Bm,..m, . By decreasing
recurrence, for p =s — 1,...,1, define the subspaces F,, ., 1= N {L,,,lm,,,p,,,:
mZmy1}, Ln,..m,:= V{Fp,  mm meN} and F,, := n{L,:m = m,}. Notice
that {F,: meN} and {Fpm, mm meN} are l-nets in S.(u, X) and Ly,
VmeN,1<sr<p<s—1landE, n, < Fun m,YmeN,1<r<p=ss

LeMMA 2. If {A,: ne N} is a sequence of nonempty pairwise disjoint elements of
Z, then there exists some no €N such that S.(u, U {4,: n Z no}, X) c F, .

ProOOF. Assume the lemma is false and that for each pe N there is some
fr€8c(u, U{A,: n 2 p}, X)\F, so that || f,|| = 1. Then {f,: ne N} is bounded in

Sc(u, X) and if €ly, Y. &,f, converges in the completion L, (u, X) of S.(u, X).

n=1

oo
Now ) ¢&,f, is essentially countably valued in X since if o€ Q\u {4,: ne N},

n=1

then ) ¢&,f(w) =0andif we U {4,: ne N} thereis some re N such that w€ 4,,
n=1

ie. wé U {4, n>r}and,sincesupp f, =« U{A; i =n}, i Efu(w) = i Efilw).
n= n=1
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Moreover, the sequence { Y. &y me N} of S¢(u, X) convergesto Y ¢&,f,inthe
=1 n=1

n

completion L (4, X) of So(u, X). Hence, Y &,f,€S.(, X).
n=1

o
Therefore D:= { Z Eufu & EB,I} is a Banach disk and, denoting by E,, the
n=1

normed space (D) whose norm is the gauge of D, there is some m} € N such that
F,,, n Epis a dense Baire subspace of E, Ym; > m',. By finite induction, suppose
that we have found m} and the functions mj(m,,...,m;_,),2 £i < p < s — 1,such
that for any positive integer m; =m), m; 2 mmy,...,m;_,), 2<i<p,
Fon,...m, 0 Ep is a dense Baire subspace of Ep. Then, for any m; 2 m,...,m, =
my(my,...,m,_y) given that {F,,,l__,,,,p,,,: meN} covers Fo,...m,» there is some
my, 1 (my,...,mp)e N such that Fu,...m,,, 0 Ep is a dense Baire subspace of E;
Vmy,y 2 my q(my,...,m,). Hence DclL, , i m2m,. .. m2
mg(my,...,m,_,), since B, m N L, . NEpis a barrel and consequently
a neighbourhood of the origin in the Baire space L, .. N Ep for
my = my,...,mg 2 mmy,...,mg_q). It follows from this that D c F,,, _, for
my Zmy,...,mg Z mfmy,...,m;_q) and therefore D c L, _, ifmy 2 mi,...,
mg_y 2 my_q(my,...,ms_;). This implies that D < F,, , _ form 2z m), ...,
ms_y = my_(my,...,m,_,). Going on in this way, we obtain that D c F,, for
my 2 my, and, consequently, f,,, €F, , a contradiction.

LemMa 3. If X is barrelled of class s, then there exists some qe N such that
S(u,X) < F,.

PROOF. Suppose the lemma is false and there is some f; € S(u, X), f1 ¢ F; so
that || f;|| = 1. Let {Q1,03,...,Q%,} be a partition of Q formed by nonempty
elements of ¥ such that f, is essentially constant on each Q} and takes a different
value.

Now given that S(u, X) is the topological direct sum of the subspaces
{S(u,Q}, X}: 1 i<k}, there must be some mye{l,....k;} such that
S(u, QL,, X) is not contained in F, for each ne N and, consequently, there is some
f2€8(u, QL , X), f,¢F, so that || f,]| = 1. Let {Q3,03,..., 0} be a partition of

w, formed by nonempty elements of Z such that f; is essentially constant on
each Q? and takes a different value. Now there is some my € {1,..., k,} such that
S(u, Q%,, X) is not contained in F, for each n.

Assume that we have obtained by induction a sequence { f,: n€ N} of y-simple
functions, a sequence of positive integers {k,: ne N}, and a countable family
{07 neN, 1 £ i < k,} formed by nonempty elements of Z such that:

a) for each neN, f, is essentially constant on each Qf and takes a different
value, and
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b) for each ne N, the following properties are satisfied

O Ifl=1

(ii) supp fo+1 = Qn, for some m,e{1,...,k,}.

(iii) Q5'1, < Q.

(V) fu¢ F,.

Set Q:= n{Q4 : neN}. In case (Q) + 0 we define g, := f, — x,e(Q) for each
ne N where x, denotes the value taken by f, on @}, . Then, since the mapping of
X into S.(u, X) such that x — e(Q)x is an isometry and X € %, using Proposition
litis easy to find somem, € N such that e(Q)x;€ F,Vje Nandforalln = m,. Thus,
gn ¢ F, for each n = m; and

N{suppg, neN} = 0.

In case Q) = 0, we define g,(w): = f(w)for wé¢ Q@ and g,(w):= 0 for we Q for
each neN. Then g, = f, p-a.e. and N {suppg,: ne N} = @ as well.

AsinTheorem 1,D:= { Y &g éeB,l} is a Banach disk in L (i, X) which is
n=1

contained in S (4, X) and there must be some p = m, such that D < F,.
Hence g, € F,, a contradiction.

THEOREM 3. Given se N, if X is barrelled of class s then S (u, X) is barrelled of
class s.

Proor. By Theorem 2, S.(u, X)€%, since it is a metrizable barrelled space.
Proceeding by recurrence, let pe {1,...,s} and assume S.(u, X) € ¢,_,\%,. Then,
by Proposition 1, there is a p-net W:={E,, n.:meN, 1Sr<i<p}in
Sc(u, X) formed by dense subspaces such that no E,,, .., € W; is barrelled of class
i— 1,1 <iZp And as S.(u, X) is metrizable, no E,, .. .m,1s barrelled. For each
my,...,m,€N, suppose T,, ., is a barrel of E,, . which is not a neighbour-
hood of the originin E,,, . ,let B,, ., betheclosure of T, . . in Sc(4, X)and
let Lp,...m,:= {Bm,..m,>- By decreasing recurrence, for i = p — 1,..., 1, define
the subspaces Fm,...mi“ = n{Lm,...m{m: mz mi+1}a Lm1...m,:= U{le...m.»m:
meN},and F,, := n{L,: m 2 m,}. Then {F,: meN} and {F,, _nm: meN}are
respectively 1-netsin S.(u, X)andin L,, _,,,Vm,eN,1 £r £i < p — 1. Besides
En,..m; S F,. . .m»,Vm,eNwith1 <r <i < p. Now if there is a m; € N such that
Sc(u, X) coincides with F,, , then L,, €%, and there must be some m, € N such
that F,, ,,,€%,_, and is dense in S.(u, X). Thus, L,, .,€%,_, and is dense in
S.(u, X). Continuing in this way we would find some F'"r--'"p €%,. So
By, ...m, N Fn,...m, would be a neighbourhood of zero in F,, m, and E,  m,
would be barrelled, a contradiction.

Hence, no F, may coincide with S (u, X). Now by the previous Lemma we may
assume that S(u, X) = F, VneN. Let f; € S.(u, X)\F, be such that || ;]| = 1 and
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let {Q}: ie N} be a partition of Q formed by nonempty elements of X determined
by Lemma 1 and defined by the u-measurable function f; so that f, is essentially
constant on each Q! and takes a different value.

By Lemma 2 there is some positive integer n, >n; =1 so that
Sewu{Qi:izm},X) < F,. Thus, setting Q,:=u{Q}: 1Zi<n,),
S.(u, 2, X) cannot be contained in any F,, n = n,, and there must be some
fr€S8(u, QI’ X)\F,,so that || ;|| = 1. Let {Q7: ie N} be a partition of Q, formed
by nonempty elements of 2 determined by the u-measurable function f; so that f,
is constant on each Q? and takes a different value.

Continuing in this way, we obtain a sequence of positive integers {n;: ie N} and
asequence { f,: ne N} of u-measurable functions of S.(u, X) which determine the
sequence {Q%: n, ie N} formed by nonempty elements of X such that, for each
neN, f, is essentially constant on each Q and takes a different value, in such
a way that setting Q,:= U{Q" 1 < i < n;,,} VneN,for eachie N we have that,

(i) supp fi+1 = Qi

(i) e(€2;)f;€S(p, i, X) = S(u, X).

(i) 2;., = Q.

(i¥) fid F,.

Now let g;:= f; — e(82;)f; for each ieN. Then g;¢F, for each ieN and
suppg; Nsuppg; = @ for i & j. Hence {{g,: neN}), where the closure is in
Lo(u, X), is a copy of ¢ since {g,/|lg.|: n€ N} is equivalent to the unit vector
basis of c,. As it is easy to see that {{g.,: neN}y < S.(u, X), using the Baire
category theorem as above, there must be some ge N such that {g,: ne N} < F;
for each k = n,. Hence g,€F, , 2 contradiction. Thus S.(i, X)€%,

Hence S.(u, X)€%, and the proof is over.

THEOREM 4. If X is a barrelled space of class s (barrelled of class %), then both
L (u, X) and B(u, X) are barrelled of class s (barrelled of class xo).

PrOOF. The first affirmation is an obvious consequence of the previous the-
orem, since S.(u, X) is dense in L (u, X). The argument to prove the second
affirmation is analogous to the one given in theorems above, but working with
B(u, X) instead of S.(u, X), and using Theorem 1 instead of Theorem 2.
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