STRONG BARRELLEDNESS PROPERTIES IN $L_\infty(\mu, X)$

J. C. FERRANDO and L. M. SÁNCHEZ RUIZ

Throughout this paper (Ω, Σ, μ) will stand for a finite measure space, Σ being a σ-algebra of subsets of a set Ω, and X is a normed space. $L_\infty(\mu, X)$ will denote the space of all (equivalence classes of) X-valued μ-measurable functions defined on Ω that are essentially bounded. On the other hand, $S(\mu, X)$ will denote the subspace of $L_\infty(\mu, X)$ of all X-valued μ-simple functions on Ω and $S_c(\mu, X)$ will stand for the subspace of $L_\infty(\mu, X)$ formed by the functions that take at most a countable number of different values μ-almost everywhere, all these endowed with the norm

$$\|f\|_\infty = \text{ess sup}\{\|f(\omega)\|: \omega \in \Omega\}.$$

The subspace $S_c(\mu, X)$ happens to be dense in $L_\infty(\mu, X)$ as a consequence of the Pettis measurability theorem. Finally, $B(\mu, X)$ will denote the closure of $S(\mu, X)$ in $L_\infty(\mu, X)$; it is clear that $S(\mu, X) \subset S_c(\mu, X) \subset L_\infty(\mu, X)$ and $S_c(\mu, X) \subset B(\mu, X)$ if and only if X is finite-dimensional.

When no measure is considered, in [7] it has been shown that the space $S(\Sigma, X)$ of Σ-simple X-valued functions on Ω is barrelled iff X is finite-dimensional while it is proven in [8] that the space $B(\Sigma, X)$ of all X-valued functions that are the uniform limit of X-valued Σ-simple functions is barrelled iff X is barrelled. On the other hand, in [2] it has been shown that if μ is atomless, $L_\infty(\mu, X)$ is barrelled, and if μ is atomic and σ-finite, $L_\infty(\mu, X)$ is barrelled iff X is barrelled. In this paper we will show that if X is barrelled of class s, then $S_c(\mu, X)$ and $B(\mu, X)$ are barrelled of class s and, since $S_c(\mu, X)$ is dense in $L_\infty(\mu, X)$, this is also true in $L_\infty(\mu, X)$.

Let us start by recalling that a (real or complex Hausdorff locally convex) space E is Baire-like [9] if, given any increasing sequence of closed absolutely convex subsets of E covering E, there is one that is a neighbourhood of the origin. E is said to be db or suprabarrelled [10, 11] if, given any increasing sequence of subspaces of E covering E, there is one that is dense and barrelled. Given $s \in \mathbb{N}$, and considering as \mathcal{C}_s the class of Baire-like spaces, a space E is said to be barrelled of class s [5], or briefly $E \in \mathcal{C}_s^-$, if given any increasing sequence of subspaces of E covering E, there is one that belongs to \mathcal{C}_{s-1}, and E is said to be

Received March 30, 1992.
barrelled of class \mathcal{K}_0 if $E \in \mathcal{S}_s$ for every $s \in \mathbb{N}$. So \mathcal{S}_1 coincides with the class of suprabarrelled spaces and for every $s \in \mathbb{N}$ we have,

$$\text{Baire-like} \Rightarrow \mathcal{S}_{s-1} \Rightarrow \mathcal{S}_s \Rightarrow \text{barrelled of class } \mathcal{K}_0.$$

The following definition, [4], will help us to obtain other useful characterization of barrelled spaces of class s.

Definition. Given a positive integer s, a countable family of subspaces $W = \{L_{m_1, \ldots, m_p}: m_r \in \mathbb{N}, 1 \leq r \leq p \leq s\}$ of a linear space L is an s-net in L if the sequence $\{L_{m_*}: m \in \mathbb{N}\}$ is increasing, covers L and, for each $p \in \{2, \ldots, s\}$, $\{L_{m_1, \ldots, m_{p-1}, m_*}: m \in \mathbb{N}\}$ is increasing and covers $L_{m_1, \ldots, m_{p-1}}$. The family $\{L_{m_1, \ldots, m_s}: m_* \in \mathbb{N}, 1 \leq i \leq s\}$ will be denoted by W_s.

Proposition 1. Given $s \in \mathbb{N}$, a space E is barrelled of class s if and only if, given any s-net W in E, there is some $F \in W_s$ that is Baire-like (or barrelled and dense in E).

Proof. For $s = 1$ the result is immediate since any dense barrelled subspace of a Baire-like space is Baire-like (see Prop. 1 of [3]).

Let us assume the proposition is true for some $s \in \mathbb{N}$ and suppose $E \in \mathcal{S}_{s+1}$. Let $W = \{E_{m_1, \ldots, m_p}: m_r \in \mathbb{N}, 1 \leq r \leq p \leq s + 1\}$ be an $(s + 1)$-net in E, then there is some $m_1 \in \mathbb{N}$ such that $E_{m_1} \in \mathcal{S}_s$ and is dense in E. Fixing this m_1, $\{E_{m_1, \ldots, m_p}: m_r \in \mathbb{N}, 2 \leq r \leq p \leq s + 1\}$ is an s-net in E_{m_1} and, by the induction hypothesis, some $E_{m_1, \ldots, m_{s+1}}$ is barrelled and dense in E_{m_1} and therefore in E. On the other hand, assume that given any $(s + 1)$-net W in E there is some $F \in W_{s+1}$ that is barrelled and dense. Suppose that $E \notin \mathcal{S}_{s+1}$, then there is an increasing sequence $\{E_n: n \in \mathbb{N}\}$ of subspaces of E covering E such that no $E_n \in \mathcal{S}_s$. As $E \in \mathcal{S}_s \subset \mathcal{S}_0$, every E_n may be assumed to be dense in E. So, by the induction hypothesis, for each $n \in \mathbb{N}$ there will be an s-net $W^n = \{F^n_{m_1, \ldots, m_p}: m_r \in \mathbb{N}, 1 \leq r \leq p \leq s\}$ in E_n such that no $F \in (W^n)_s$ is barrelled and dense in E_n. Setting $E_{nm_1, \ldots, m_p} := F^n_{m_1, \ldots, m_p}$ for each $n, m_r \in \mathbb{N}, 1 \leq r \leq p \leq s$, then $W := \{E_{m_1, \ldots, m_s}: m_r \in \mathbb{N}, 1 \leq r \leq p \leq s + 1\}$ is an $(s + 1)$-net in E and no $F \in W_{s+1}$ is barrelled and dense in E, a contradiction.

In what follows, given $A \in \Sigma$, $e(A)$ will denote the indicator function on A, and by a μ-measurable function we shall mean a function from Ω into X that is the μ-almost everywhere limit of a sequence of μ-simple X-valued functions.

Lemma 1. If $f \in S_c(\mu, X)$, then there is a countable partition $\{A_n: n \in I\}$ of Ω formed by nonempty elements of Σ such that f is essentially constant on each A_n and takes a different value.

Proof. If $f \in S_c(\mu, X)$, then I is finite and the result is obvious. If $f \in S_c(\mu, X) \setminus S(\mu, X)$ let g be a canonical representation of f with countable range $\{x_n: n \in \mathbb{N}\}$. Since $g^{-1}(x_n) \in \Sigma$ for each $n \in \mathbb{N}$ (see for example [1, p. 167]), setting $A_n := g^{-1}(x_n), n \in \mathbb{N}$, the sequence $\{A_n: n \in \mathbb{N}\}$ satisfies the lemma.
Hereafter, given $A \in \Sigma$, $S(\mu, A, X)$ and $S_c(\mu, A, X)$ will stand for the spaces $S(\mu/\Sigma \cap A, X)$, and $S_c(\mu/\Sigma \cap A, X)$, respectively. We identify these spaces with their natural embeddings into $L_\infty(\mu, X)$. Although the two following results can be found enunciated in [2], we give an independent proof of the first of them in order to get in touch with the methods of proof that we use afterwards. On the other hand, a proof of Theorem 2 with similar methods to the ones used in our Theorem 1 can be found in [6].

Theorem 1. If X is barrelled, then $B(\mu, X)$ is barrelled.

Proof. Suppose that X is barrelled but there is a barrel T in $B(\mu, X)$ which is not a neighbourhood of the origin in $B(\mu, X)$. Then T cannot absorb the unit sphere S_1 of $S(\mu, X)$ since if it did so it would also absorb the closed unit ball of $B(\mu, X)$. Hence there must be some $f_1 \in S_1$ such that $f_1 \notin 2T$.

According to Lemma 1, let $\{Q_1^1, Q_2^1, \ldots, Q_k^1\}$ be a partition of Ω formed by nonempty elements of Σ such that f_1 is essentially constant on each Q_i^1 and takes a different value.

Now given that $S(\mu, X)$ is the topological direct sum of the subspaces $\{S(\mu, Q_i^1, X) : 1 \leq i \leq k_1\}$, T cannot absorb the unit spheres of all of them, and there must be some $m_1 \in \{1, \ldots, k_1\}$ and $f_2 \in S_2$, the closed unit sphere of $S(\mu, Q_{m_1}^1, X)$, such that $f_2 \notin 4T$. Let $\{Q_1^1, Q_2^1, \ldots, Q_{k_1}^1\}$ be a partition of $Q_{m_1}^1$ formed by nonempty elements of Σ such that f_2 is essentially constant on each Q_i^1 and takes a different value.

Going on by recurrence, we obtain a normalized sequence $\{f_n : n \in \mathbb{N}\}$ of μ-simple functions, a sequence $\{m_n : n \in \mathbb{N}\}$ of positive integers and a countable family $\{Q_{m_n}^n : n \in \mathbb{N}\}$ formed by nonempty elements of Σ such that for each $n \in \mathbb{N}$, f_n is essentially constant on $Q_{m_n}^n$ in such a way that, for each $n \in \mathbb{N}$,

(i) $\text{supp } f_{n+1} \subset Q_{m_n}^n$.

(ii) f_n is essentially constant in $\text{supp } f_m$ for every $m > n$.

(iii) $Q_{m_n+1}^n \subset Q_{m_n}^n$.

(iv) $f_n \notin 2nT$.

Set $Q := \cap \{Q_{m_n}^n : n \in \mathbb{N}\}$. If $\mu(Q) = 0$ then $e(Q)$ is not the identically null mapping and the mapping $x \mapsto e(Q)x$ is an isometry of X onto its image. Therefore if x_n denotes the value taken by f_n on $Q_{m_n}^n$, then $\|x_n\| \leq 1$ $\forall n \in \mathbb{N}$, since $\{f_n : n \in \mathbb{N}\}$ is normalized, and there must be some $n_0 \in \mathbb{N}$ such that $x_n e(Q) \in n_0 T \forall n \in \mathbb{N}$. Hence $x_n e(Q) \in n T \forall n \geq n_0$.

If for each $n \in \mathbb{N}$ we define $g_n := f_n - x_n e(Q) \notin nT$, then

$$\cap \{\text{supp } g_n : n \geq n_0\} \subset \cap \{Q_{m_n}^n \setminus Q : n \geq n_0\} = \emptyset.$$

If $\mu(Q) = 0$, for each $n \in \mathbb{N}$ we define $g_n(\omega) = f_n(\omega)$ if $\omega \notin Q$ and $g_n(\omega) = 0$ if $\omega \in Q$. Taking $n_0 = 1$, then $g_n = f_n \mu$-a.e. $\forall n \geq n_0$ and $\cap \{\text{supp } g_n : n \geq n_0\} = \emptyset$.

In any of these two cases, the sequence $\{g_n : n \geq n_0\}$ is bounded in $S(\mu, X)$.

Therefore if \(\xi \in l_1 \), \(\sum_{n=n_0}^{\infty} \xi_n g_n \) converges in the completion of \(B(\mu, X) \) and, essentially, takes at most a countable number of values in \(X \). Indeed if \(\omega \in Q \),
\[\sum_{n=n_0}^{\infty} \xi_n g_n(\omega) = 0, \]
and if \(\omega \notin Q \), there exists some positive integer \(m_0 \geq n_0 \) such that
\[\omega \notin Q_m \] for all \(n > m_0 \) and so
\[\sum_{n=n_0}^{\infty} \xi_n g_n(\omega) = \sum_{n=n_0}^{\infty} \xi_n f_n(\omega) = \sum_{n=n_0}^{m_0} \xi_n f_n(\omega) \in X. \]
Therefore,
\[\sum_{n=n_0}^{\infty} \xi_n g_n \in B(\mu, X). \]

Hence, denoting by \(B_{l_1} \) the closed unit ball of \(l_1 \), the Banach disk
\[D := \left\{ \sum_{n=n_0}^{\infty} \xi_n g_n : \xi \in B_{l_1} \right\} \]
in the completion of \(B(\mu, X) \) is contained in \(B(\mu, X) \).
Thus, by the Baire category theorem, there exists some integer \(q \geq n_0 \) with
\(D \subset qT \) and hence \(g_q \in qT \), a contradiction.

Theorem 2. If \(X \) is barrelled, then \(S_c(\mu, X) \) is barrelled.

In the following results we suppose that \(s \) is any positive integer,
\(W = \{ E_{m_1, \ldots, m_p} : m_r \in \mathbb{N}, 1 \leq r \leq p \leq s \} \) is an \(s \)-net in \(E \) formed by dense subspaces of \(S_c(\mu, X) \) covering \(S_c(\mu, X) \). For each \(m_1, \ldots, m_s \in \mathbb{N} \), suppose \(T_{m_1, \ldots, m_s} \) is a barrel of \(E_{m_1, \ldots, m_s} \), \(B_{m_1, \ldots, m_s} \) is its closure in \(S_c(\mu, X) \) and \(L_{m_1, \ldots, m_s} := \langle B_{m_1, \ldots, m_s} \rangle \). By decreasing recurrence, for \(p = s - 1, \ldots, 1 \), define the subspaces \(F_{m_1, \ldots, m_{p+1}} := \cap \{ L_{m_1, \ldots, m_p} : m \geq m_{p+1} \} \), \(L_{m_1, \ldots, m_p} := \cup \{ F_{m_1, \ldots, m_p, m} : m \in \mathbb{N} \} \), and \(F_{m_1} := \cap \{ L_{m} : m \geq m_1 \} \). Notice that \(\{ F_m : m \in \mathbb{N} \} \) and \(\{ F_{m_1, m_2, \ldots, m_p} : m \in \mathbb{N} \} \) are 1-nets in \(S_c(\mu, X) \) and \(L_{m_1, \ldots, m_p} \), \(\forall m_r \in \mathbb{N} \), \(1 \leq r \leq p \leq s - 1 \), and \(E_{m_1, \ldots, m_p} \subset F_{m_1, \ldots, m_p} \), \(\forall m_r \in \mathbb{N} \), \(1 \leq r \leq p \leq s \).

Lemma 2. If \(\{ A_n : n \in \mathbb{N} \} \) is a sequence of nonempty pairwise disjoint elements of \(\Sigma \), then there exists some \(n_0 \in \mathbb{N} \) such that \(S_c(\mu, \cup \{ A_n : n \geq n_0 \}, X) \subset F_{n_0}. \)

Proof. Assume the lemma is false and that for each \(p \in \mathbb{N} \) there is some \(f_p \in S_c(\mu, \cup \{ A_n : n \geq p \}, X) \setminus F_p \) so that \(\| f_p \| = 1 \). Then \(\{ f_n : n \in \mathbb{N} \} \) is bounded in
\(S_c(\mu, X) \) and if \(\xi \in l_1 \),
\[\sum_{n=1}^{\infty} \xi_n f_n \] converges in the completion \(L_{\infty}(\mu, X) \) of \(S_c(\mu, X) \).

Now \(\sum_{n=1}^{\infty} \xi_n f_n \) is essentially countably valued in \(X \) since if \(\omega \in \Omega \setminus \cup \{ A_n : n \in \mathbb{N} \} \),
then \(\sum_{n=1}^{\infty} \xi_n f_n(\omega) = 0 \) and if \(\omega \in \cup \{ A_n : n \in \mathbb{N} \} \) there is some \(r \in \mathbb{N} \) such that \(\omega \in A_r \), i.e. \(\omega \notin \cup \{ A_n : n > r \} \) and, since \(\text{supp } f_n \subset \cup \{ A_i : i \geq n \} \),
\[\sum_{n=1}^{\infty} \xi_n f_n(\omega) = \sum_{n=1}^{r} \xi_n f_n(\omega). \]
Moreover, the sequence \(\left\{ \frac{m}{n} \xi_n f_n, \ m \in \mathbb{N} \right\} \) of \(S_c(\mu, X) \) converges to \(\sum_{n=1}^{\infty} \xi_n f_n \) in the completion \(L_\infty(\mu, \hat{X}) \) of \(S_c(\mu, X) \). Hence, \(\sum_{n=1}^{\infty} \xi_n f_n \in S_c(\mu, X) \).

Therefore \(D := \left\{ \sum_{n=1}^{\infty} \xi_n f_n : \xi \in B_1 \right\} \) is a Banach disk and, denoting by \(E_D \) the normed space \(\langle D \rangle \) whose norm is the gauge of \(D \), there is some \(m_1 \in \mathbb{N} \) such that \(F_{m_1} \cap E_D \) is a dense Baire subspace of \(E_D \) \(\forall m_1 \geq m_1 \). By finite induction, suppose that we have found \(m_1 \) and the functions \(m_i(m_1, \ldots, m_{i-1}), 2 \leq i \leq s - 1 \), such that for any positive integer \(m_1 \geq m_1, \ m_i \geq m_i(m_1, \ldots, m_{i-1}), 2 \leq i \leq p \), \(F_{m_1, \ldots, m_i} \cap E_D \) is a dense Baire subspace of \(E_D \). Then, for any \(m_1 \geq m_1, \ldots, m_p \geq m_p(m_1, \ldots, m_{p-1}) \) given that \(\{ F_{m_1, \ldots, m_{p+1}} : m \in \mathbb{N} \} \) covers \(F_{m_1, \ldots, m_p} \), there is some \(m_{p+1}(m_1, \ldots, m_p) \in \mathbb{N} \) such that \(F_{m_1, \ldots, m_{p+1}} \cap E_D \) is a dense Baire subspace of \(E_D \) \(\forall m_{p+1} \geq m_{p+1}(m_1, \ldots, m_p) \). Hence \(D \subseteq L_{m_1, \ldots, m_p} \) if \(m_1 \geq m_1, \ldots, m_s \geq m_s(m_1, \ldots, m_{s-1}) \), since \(B_{m_1, \ldots, m_s} \cap L_{m_1, \ldots, m_s} \cap E_D \) is a barrel and consequently a nonempty subset of the origin in the Baire space \(L_{m_1, \ldots, m_s} \cap E_D \) for \(m_1 \geq m_1, \ldots, m_s \geq m_s(m_1, \ldots, m_{s-1}) \). It follows from this that \(D \subseteq F_{m_1, \ldots, m_s} \) for \(m_1 \geq m_1, \ldots, m_s \geq m_s(m_1, \ldots, m_{s-1}) \) and therefore \(D \subseteq L_{m_1, \ldots, m_s} \) if \(m_1 \geq m_1, \ldots, m_s \geq m_s(m_1, \ldots, m_{s-2}) \). This implies that \(D \subseteq F_{m_1, \ldots, m_{s-1}} \) for \(m_1 \geq m_1, \ldots, m_{s-1} \geq m_{s-1}(m_1, \ldots, m_{s-2}) \). Going on in this way, we obtain that \(D \subseteq F_{m_1} \) for \(m_1 \geq m_1 \), and, consequently, \(f_{m_1} \in F_{m_1} \), a contradiction.

Lemma 3. If \(X \) is barrelled of class \(s \), then there exists some \(q \in \mathbb{N} \) such that \(S(\mu, X) \subseteq F_q \).

Proof. Suppose the lemma is false and there is some \(f_1 \in S(\mu, X) \), \(f_1 \notin F_1 \) so that \(\| f_1 \| = 1 \). Let \(\{ Q_1^1, Q_2^1, \ldots, Q_r^1 \} \) be a partition of \(\Omega \) formed by nonempty elements of \(\Sigma \) such that \(f_1 \) is essentially constant on each \(Q_i^1 \) and takes a different value.

Now given that \(S(\mu, X) \) is the topological direct sum of the subspaces \(\{ S(\mu, Q_i^1, X) : 1 \leq i \leq k_1 \} \), there must be some \(m_1 \in \{ 1, \ldots, k_1 \} \) such that \(S(\mu, Q_{m_1}^1, X) \) is not contained in \(F_n \) for each \(n \in \mathbb{N} \) and, consequently, there is some \(f_2 \in S(\mu, Q_{m_1}^1, X) \), \(f_2 \notin F_2 \) so that \(\| f_2 \| = 1 \). Let \(\{ Q_1^2, Q_2^2, \ldots, Q_r^2 \} \) be a partition of \(Q_{m_1}^1 \) formed by nonempty elements of \(\Sigma \) such that \(f_2 \) is essentially constant on each \(Q_i^2 \) and takes a different value. Now there is some \(m_2 \in \{ 1, \ldots, k_1 \} \) such that \(S(\mu, Q_{m_2}^1, X) \) is not contained in \(F_n \) for each \(n \).

Assume that we have obtained by induction a sequence \(\{ f_n : n \in \mathbb{N} \} \) of \(\mu \)-simple functions, a sequence of positive integers \(\{ k_n : n \in \mathbb{N} \} \), and a countable family \(\{ Q_i^m : n \in \mathbb{N}, 1 \leq i \leq k_n \} \) formed by nonempty elements of \(\Sigma \) such that:

a) for each \(n \in \mathbb{N} \), \(f_n \) is essentially constant on each \(Q_i^m \) and takes a different value, and
b) for each \(n \in \mathbb{N} \), the following properties are satisfied

(i) \(\| f_n \| = 1 \).

(ii) \(\operatorname{supp} f_{n+1} \subset Q_{m_n}^n \) for some \(m_n \in \{1, \ldots, k_n\} \).

(iii) \(Q_{m_n+1}^{n+1} \subset Q_{m_n}^n \).

(iv) \(f_n \notin F_n \).

Set \(Q := \cap \{ Q_{m_n}^n : n \in \mathbb{N} \} \). In case \(\mu(Q) \neq 0 \) we define \(g_n := f_n - x_n e(Q) \) for each \(n \in \mathbb{N} \) where \(x_n \) denotes the value taken by \(f_n \) on \(Q_{m_n}^n \). Then, since the mapping of \(X \) into \(S_c(\mu, X) \) such that \(x \mapsto e(Q)x \) is an isometry and \(X \in C_s \), using Proposition 1 it is easy to find some \(m_1 \in \mathbb{N} \) such that \(e(Q)x_j \in F_n \forall j \in \mathbb{N} \) and for all \(n \geq m_1 \). Thus, \(g_n \notin F_n \) for each \(n \geq m_1 \) and

\[\cap \{ \operatorname{supp} g_n : n \in \mathbb{N} \} = \emptyset. \]

In case \(\mu(Q) = 0 \), we define \(g_n(\omega) := f_n(\omega) \) for \(\omega \notin Q \) and \(g_n(\omega) := 0 \) for \(\omega \in Q \) for each \(n \in \mathbb{N} \). Then \(g_n = f_n \mu \text{-a.e.} \) and \(\cap \{ \operatorname{supp} g_n : n \in \mathbb{N} \} = \emptyset \) as well.

As in Theorem 1, \(D := \left\{ \sum_{n=1}^{\infty} \xi_n g_n : \xi \in B_{l_1} \right\} \) is a Banach disk in \(L_\infty(\mu, \hat{X}) \) which is contained in \(S_c(\mu, X) \) and there must be some \(p \geq m_1 \) such that \(D \subset F_p \).

Hence \(g_p \in F_p \), a contradiction.

Theorem 3. Given \(s \in \mathbb{N} \), if \(X \) is barrelled of class \(s \) then \(S_c(\mu, X) \) is barrelled of class \(s \).

Proof. By Theorem 2, \(S_c(\mu, X) \in C_0 \) since it is a metrizable barrelled space. Proceeding by recurrence, let \(p \in \{1, \ldots, s\} \) and assume \(S_c(\mu, X) \in C_{p-1} \setminus C_p \). Then, by Proposition 1, there is a \(p \)-net \(W := \{ E_{m_1, m_2} : m_2 \in \mathbb{N}, 1 \leq r \leq i \leq p \} \) in \(S_c(\mu, X) \) formed by dense subspaces such that no \(E_{m_1, m_2} \in W_1 \) is barrelled of class \(i - 1, 1 \leq i \leq p \). And as \(S_c(\mu, X) \) is metrizable, no \(E_{m_1, m_2} \) is barrelled. For each \(m_1, m_2 \in \mathbb{N} \), suppose \(T_{m_1, m_2} \) is a barrel of \(E_{m_1, m_2} \) which is not a neighbourhood of the origin in \(E_{m_1, m_2} \), let \(B_{m_1, m_2} \) be the closure of \(T_{m_1, m_2} \) in \(S_c(\mu, X) \) and let \(L_{m_1, m_2} := \{ B_{m_1, m_2} \} \). By decreasing recurrence, for \(i = p - 1, \ldots, 1 \), define the subspaces \(F_{m_1, \ldots, m_i+1} := \cap \{ L_{m_1, \ldots, m_i} : m \geq m_{i+1} \} \), \(L_{m_1, \ldots, m_i} := \cup \{ F_{m_1, \ldots, m_i} : m \in \mathbb{N} \} \), and \(F_{m_1} := \cap \{ L_m : m \geq m_1 \} \). Then \(\{ F_m : m \in \mathbb{N} \} \) and \(\{ F_{m_1, \ldots, m_i} : m \in \mathbb{N} \} \) are respectively 1-nets in \(S_c(\mu, X) \) and in \(L_{m_1, \ldots, m_i}, \forall m_i \in \mathbb{N}, 1 \leq r \leq i \leq p - 1 \). Besides \(E_{m_1, \ldots, m_i} \subset F_{m_1, \ldots, m_i}, \forall m_i \in \mathbb{N} \) with \(1 \leq r \leq i \leq p \). Now if there is a \(m_1 \in \mathbb{N} \) such that \(S_c(\mu, X) \) coincides with \(F_{m_1} \), then \(L_{m_1} \in C_{p-1} \) and there must be some \(m_2 \in \mathbb{N} \) such that \(F_{m_1, m_2} \in C_{p-2} \) and is dense in \(S_c(\mu, X) \). Thus, \(L_{m_1, m_2} \in C_{p-2} \) and is dense in \(S_c(\mu, X) \). Continuing in this way we would find some \(F_{m_1, \ldots, m_p} \in C_0 \). So \(B_{m_1, \ldots, m_p} \cap F_{m_1, \ldots, m_p} \) would be a neighbourhood of zero in \(F_{m_1, \ldots, m_p} \) and \(E_{m_1, \ldots, m_p} \) would be barrelled, a contradiction.

Hence, no \(F_n \) may coincide with \(S_c(\mu, X) \). Now by the previous Lemma we may assume that \(S(\mu, X) \subset F_n \forall n \in \mathbb{N} \). Let \(f_1 \in S_c(\mu, X) \setminus F_1 \) be such that \(\| f_1 \| = 1 \) and
let \(\{Q^1_i : i \in \mathbb{N}\} \) be a partition of \(\Omega \) formed by nonempty elements of \(\Sigma \) determined by Lemma 1 and defined by the \(\mu \)-measurable function \(f_1 \) so that \(f_1 \) is essentially constant on each \(Q^1_i \) and takes a different value.

By Lemma 2 there is some positive integer \(n_2 > n_1 = 1 \) so that \(S_c(\mu, \cup \{Q^1_i : i \geq n_2\}, X) \subseteq F_{n_2} \). Thus, setting \(\Omega_1 := \cup \{Q^1_i : 1 \leq i \leq n_2\} \), \(S_c(\mu, \Omega_1, X) \) cannot be contained in any \(F_n \), \(n \geq n_2 \), and there must be some \(f_2 \in S_c(\mu, \Omega_1, X) \cap F_{n_2} \) so that \(\|f_2\| = 1 \). Let \(\{Q^n_i : i \in \mathbb{N}\} \) be a partition of \(\Omega_1 \) formed by nonempty elements of \(\Sigma \) determined by the \(\mu \)-measurable function \(f_2 \) so that \(f_2 \) is constant on each \(Q^n_i \) and takes a different value.

Continuing in this way, we obtain a sequence of positive integers \(\{n_i : i \in \mathbb{N}\} \) and a sequence \(\{f_n : n \in \mathbb{N}\} \) of \(\mu \)-measurable functions of \(S_c(\mu, X) \) which determine the sequence \(\{Q^n_i : n \in \mathbb{N}, i \in \mathbb{N}\} \) formed by nonempty elements of \(\Sigma \) such that, for each \(n \in \mathbb{N} \), \(f_n \) is essentially constant on each \(Q^n_i \) and takes a different value, in such a way that setting \(\Omega_n := \cup \{Q^n_i : 1 \leq i \leq n_{i+1}\} \) \(\forall n \in \mathbb{N} \), for each \(i \in \mathbb{N} \) we have that,

(i) \(\text{supp } f_{i+1} \subseteq \Omega_i \).
(ii) \(e(\Omega_i)f_i \in S(\mu, \Omega_i, X) \subseteq S(\mu, X) \).
(iii) \(\Omega_{i+1} \subseteq \Omega_i \).
(iv) \(f_i \notin F_{n_i} \).

Now let \(g_i := f_i - e(\Omega_i)f_i \) for each \(i \in \mathbb{N} \). Then \(g_i \notin F_{n_i} \) for each \(i \in \mathbb{N} \) and \(\text{supp } g_i \cap \text{supp } g_j = \emptyset \) for \(i \neq j \). Hence \(\langle \{g_n : n \in \mathbb{N}\} \rangle \), where the closure is in \(L_\infty(\mu, \hat{X}) \), is a copy of \(c_0 \) since \(\{g_n/\|g_n\| : n \in \mathbb{N}\} \) is equivalent to the unit vector basis of \(c_0 \). As it is easy to see that \(\langle \{g_n : n \in \mathbb{N}\} \rangle \subseteq S_c(\mu, X) \), using the Baire category theorem as above, there must be some \(q \in \mathbb{N} \) such that \(\{g_n : n \in \mathbb{N}\} \subseteq F_k \) for each \(k \geq n_q \). Hence \(g_q \in F_{n_q} \), a contradiction. Thus \(S_c(\mu, X) \subseteq c_p \).

Hence \(S_c(\mu, X) \subseteq c_p \) and the proof is over.

THEOREM 4. If \(X \) is a barrelled space of class \(s \) (barrelled of class \(\kappa_0 \)), then both \(L_\infty(\mu, X) \) and \(B(\mu, X) \) are barrelled of class \(s \) (barrelled of class \(\kappa_0 \)).

PROOF. The first affirmation is an obvious consequence of the previous theorem, since \(S_c(\mu, X) \) is dense in \(L_\infty(\mu, X) \). The argument to prove the second affirmation is analogous to the one given in theorems above, but working with \(B(\mu, X) \) instead of \(S_c(\mu, X) \), and using Theorem 1 instead of Theorem 2.

ACKNOWLEDGEMENT. The authors are very grateful to the referees.

REFERENCES

DEPARTAMENTO DE MATEMÁTICA APLICADA
UNIVERSIDAD POLITÉCNICA DE VALENCIA
46071 VALENCIA
SPAIN