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ESSENTIAL SINGULARITIES OF
QUASIMEROMORPHIC MAPPINGS

D. B. GAULD and G. J. MARTIN!

In their paper “Lindel6f’s theorem for normal quasimeromorphic mappings” [1]
Heinonen and Rossi raised a question concerning removable singularities for
these mappings (Remark 2.4). In this note we give an affirmative answer to their
question. Let B” denote the open unit ball in euclidean n-space and S" the unit
sphere in euclidean (n + 1)-space with chordal metric g(x, y) normalised so that
g(S") = 1. S" is conformally equivalent to R” = R" U {oo} via the stereographic
projection. We refer to [4] and [7] for basic definitions and properties of
quasimeromorphic mappings. Our main result is the following theorem.

THEOREM. Let f: B" — {0} — S" be quasimeromorphic and suppose

limsup g(f(x), f(y)) < L.

|xl=lyl=r-0
Then 0 is a removable singularity for f.

Heinonen and Rossi proved this theorem with the bound 1/4 on the right hand
side. Of course the bound 1 is sharp. Actually we will show a slightly stronger
result to be true, namely that in every deleted neighbourhood of an essential
singularity there is an essential round sphere on which f assumes antipodal
values. With this formulation our result is even stronger than the classical result
of Lehto [3] for meromorphic functions (cf. the comments by Minda on page 71
of [5]). Our proof is based on the following two topological lemmas. In these
lemmas we denote by S and N respectively the south and north poles of S™.

LEMMA 1. Let f: S"~! x [—1,1] — S"bea continuous function with the follow-
ing properties:

(1) Sef(S" x {—1});

(@) Nef(S"* x {1}y

(3) (8"~ x (—1,1)) is contained in S" — {S,N};
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@) f: S" ! x {0} > S" — {8, N} is not homotopic to a constant.
Then there is anre[ —1,1] such that q(f(S"~* x {r})) = 1.

PrOOF. Suppose to the contrary that g(f(S"~! x {r})) < 1, for each r. Let
A= {(x0,...,X,)€S" X, >3}, B={xeS" —xed}
and let
6:S"—(AuB)-»S"!' x[-1,1]

be the homeomorphism defined by

0(xg,...,%s) = (M 2x )

KxO"--;xn—l)l ’ "

Extend f8 to a continuous function g: S" — S" by coning over cl(4) and cl(B)
along great circles. More precisely, define g|A4 as follows. Set g(N) = N. If
xe A — {N} then there is a unique x’€d4 with x’, x, N lying in that order on
a segment of a great circle of S" from N to 0A. If f6(x') = N then set g(x) = N.
Otherwise let g(x) be the unique point on the arc of the great circle from f6(x") to
N so that

a9, N) _ g N)
q(fOx)N)  q(x,N)~

Similar comments apply to g|B using S as the cone point.
Next define i: S"~ 1 - S" ! by

h(xO’ .. 'axn—-l) = Pf((xo,- . 'rxn-l)’o),

where p: S" — {S, N} - S" ! is the retraction of the n-sphere minus its poles
along great circles to its equator which we identify with §"~ !in the usual way. It
is a straightforward exercise to show that the map g is homotopic to the
suspension of h. Thus by (4) and the fact that the suspension of such a map is not
homotopic to a constant (cf., for example, Theorem 2.10 of [2]) it follows that g is
not homotopic to a constant.

On the other hand, suppose that p,: S"— [—1,1] is projection on the last
coordinate and let o: [—1,1] - S"~! be a path so that f(x(t), —1) = S when
t £ —Land f(e(t), 1) = N when t = 4. Extend the function f to §"~! x [—2,2]
by setting f(x,t) = f(x,1)fort = 1and f(x,) = f(x, — ) fort < — 1.

Define the homotopy H,: S" — S" by

(1 - 2t)f9(X) + 2tf(°‘Pn(x), an(x))
(1 — 20)£8(x) + 2tf (@Pa(x), 2P4(X))

when xeS" — (4 U B) and 0 < t < 4, extending this homotopy, with 0 = ¢ = R

H(x) =
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over AUB by coning in the same way as g extends f@ and defining
H(x) = f(a((2 — 20)pa(x)), 2(2 — 2t)p,(x)) when1 < t < 1. Then H, is a homotopy
from g to a constant map. From this contradiction it follows that
q(f(8"~! x {r})) = 1 for some r.

In the sequel we identify 7, _ (S" — {S, N}) with the infinite cyclic group Z by
the isomorphism which sends the homotopy class of the inclusion of S*~! in
S" — {8, N} to the integer 1. S"~!(x,r) denotes the sphere and B"(x,r) the open
ball in euclidean n-space of radius r centred at x; when x is the origin it will be
omitted from this notation.

LEMMA 2. Suppose f: B" — {0} — S" is a discrete, open, orientation preserving
and continuous function,r€(0, 1), and S € f(S"~ (r)) but N & f(S"~ '(r)). Then there
is a number ¢ with 0 < ¢ < r and ¢ < 1 — r satisfying:

(i) for each t,if 0 < |t — 1| <, then f(S"~(t)) lies in S" — {S,N};

(i) if o, fE My 1(S" — {S, N}) are such that o (respectively B) is the homotopy
class of the composition of the radial contraction S"~* — S"~(t) followed by f for
some te(r — &,r) (respectively (r,r + €)), (i.e., « and B are the respective degrees of
these maps) then a < B.

ProoF. Use the discreteness of f to choose ¢ satisfying (i). Up to homotopy the
composition in (ii) depends only on whether t <rort>r,forO<|t —rl <e.
Thus a and B are well defined. Suppose x € S"~!(r) with f(x) = S. Choose J so
that 0 <25 <& and f~Y(S)n B"x,28) = {x}. If x is the only point of
f7YS) N S" Y(r), then B — ais represented by f|S"~ !(x, 5) and this is positive as
f is orientation preserving. Otherwise, f ~1(S) n $"~ !(r) contains more than one
point (but still finitely many) and  — « is a sum of positive integers, one for each
point of f1(8) N S" ().

ReMARK 1. Interchanging the roles of S and N in Lemma 2 leads to « > f§ since
in this case the map f|S" ~!(x, §) represents a negative integer in m, - (S" — {S, N}).

ProOF OF THEOREM. Suppose that O is an essential singularity. Let U be
a neighbourhood of 0 in B". We assume U = B"(q) and will find r such that
0O<r<aandq(f(S" '(r)) = 1.

If thereis r with 0 < r < aand {S, N} = f(S"~'(r)) then the proof is complete,
so suppose that this is not the case. As f is discrete, the set

D = {re(0,a) /{S,N} n f(S""(r)) + 0}

is discrete. By the Big Picard Theorem for quasimeromorphic mappings [6] the
set D contains arbitrarily small s [but by our supposition thereis no value of s < a
for which {S,N} = f(S"~!(s))].

We will select positive numbers b, ¢, d with b < ¢ < d < a such that
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(@) {S,N} n f(B"(d) — c1B"(b)) = 0,

(i) f1S" " *c): 8" '(c) > S" — {S, N} has non-zero degree,

(i) either Sef(S" (b)) and Nef(S" 'd) or Sef(S" d) and
Nef(S"~'(b)).

Consider the degree of f|S"~'(r), i.e. the integer which is the homotopy classin
,_1(S" — {S, N}) determined by f|S"~'(r): this integer is undefined when re D
and is constant on any interval disjoint from D. By Lemma 2 and Remark 1, when
r, decreasing from a, crosses a point s D, the degree decreases if Se f(S"~1(s))
and increases if N e f(S"™!(s)). Thus the degree determined by f|S" () in-
creases, decreases, increases, decreases, etc. as r decreases to 0. In particular for
some values of r this degree will be non-zero; more precisely there will be b, de D
with b < d, (b,d)n D = 0, f]S" " '(r) has non-zero degree for re(b, d) and either
Se f(S" (b)) and Ne f(S" !(d)) or Se f(S" '(d)) and N e f(S"~*(b)). Choose
any ce(b, d).

Now define the homeomorphism

k: cl B*(d) — B"(b) » S"~* x [—1,1]

by
i’LVYI_“E_ if c<w<sd
wl” d—c¢
k(w) = i —c
B if b< W<
w]> ¢—b

Theneither fk ! or —fk~ ! satisfies the conditions demanded of f in Lemma 1, so
there is te[—1,1] with g(fk~(S"~! x {t})) = 1. Finally, since k™'(S"" x
{t}) = S"~ () for some r, we have g(f(S"~'(r))) = 1 as required.

REMARK 2. For simplicity of exposition we have used the Big Picard Theorem
for quasiregular mappings in our proof. This is perhaps the deepest known result
concerning quasimeromorphic mappings and is due to Rickman [6]. However
closer examination will reveal that the Casorati-Weierstrass property, together
with the discrete open and orientation preserving propertigs of quasiregular
mappings, suffice for our proof. One needs only slight modifications of our
argument. The details are easy and it is interesting to note how entirely topologi-
cal methods result in this analytic result.
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