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L-THEORY AND DIHEDRAL HOMOLOGY

GUILLERMO CORTINAS*

Abstract.

Let k be a commutative ring with 1/2ek, A an involutive k-algebra, ¢ = + 1. We construct a Chern
class map, ch’ from L (4) to the dihedral homology HD,(A), in such a way that, if ch is Karoubi’s
Chern class, y is Loday’s involution and H: = the hyperbolic functor, the following is a commutative
diagram

ch’

q

:L,(4) —— HD, . ,,(4)

HI 1+,I

Ch :K*(A) -_— HC*+2q(A)

I |

ch;: L, (4) —— HD,,,(4)

§0. Introduction.

Let k be acommutative ring, 1/2 e k, A aninvolutive (or hermitian) k-algebra with
an identity. M. Karoubi has defined Chern classes ([Ka-1])

Ch:: K,,(A) — ch+2q(A) (naq 2 0)

where HC stands for cyclic homology. Since 4 is involutive, fore = +1wecanas
well consider its I*-theory (in the sense of Karoubi [Ka-II]), that is related to
K-theory by means of the “forget” functor. In particular, we can compose chj
with the forgetful map L, (4) - K, (4) and study itsimage. When 1/2 €k, there is
a splitting due to Loday [Lo] HC,(4) = +,HC,(4) @ - HC,(4), + ]HC,(4)is
the dihedral homology of 4, and it is often denoted by HD, (4). In this paper we
prove:
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THEOREM (§3.3). The image of chy : Li(A) - HC,, ; ;,(A) lies in the subgroup
+ IHC* + Zq(A)'

In order to explain the organization of this paper, we give a sketch of the proof
of this theorem. First recall that Karoubi’s chj has a factorization

L(4) = m,(B(.0(4))") — K,(A4) = m,(BGI(4)")

l l

Hn(aO(A)’ k) E— Hn(Gl(A)

1 l

HN,(k[.0(4)]) — HN,(k[GI(4)])

colim HN,(M,,(A4))
Tr

HN,(4)

|
HP,(4)

HCn + 2q(A)

Where a is Goodwillie’s map ([G, I1.3.1]), Tr is the trace map, and the composite
of the right column is the Chern class chj. In §1 we give appropriate definitions
for the ,HP,, HN,, of an involutive algebra, and we provide M,,,(4) with an
involution % (ex. 1.2) which coincides with the standard involution on ,0(A). Thus
we only need to prove

i) Theimage of a: H,(,0(A), k) - HN,(k[,0(4)]) liesin _ ;HN, (k[,0(A4)]). This
is proved for any group G (instead of ,0(4)) in §2

ii) Tr: HN(M;,(4)) > HN, (4) sends .;HN,(M,,(4)) to ,;HN(A4). This
proved in §3 .

§4 is devoted to the study of the compatibility between our Chern classes and
the hyperbolic functor H. We prove the
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THEOREM (4.6). If p: HC,(A) > +,HC,(A) denotes the projection, then
ch;°H = 2pech,.
I am indebted to C. Weibel who had the patience to read the originals and
made useful comments.
§1. Definitions and Notations.

1.0. Let k beacommutative with 1/2 €k, G any fixed group; R : = k[G], the group
algebra, A any unital associative k-algebra. We consider the following chain
complexes (® := @y, A:= A/k, A":= A®")

— The bar resolution of k as a left R-module ([C-E])

(X4 0) X,;=R®R" (n=0)
n—1
0glg1s---»9.0):=9@1[92, -] + Y (=D [g1s-- -1 GiGit15---»Gn] +
i=1

+ (_ l)n[gla' .. 9gn——1])
— The bar resolution of k as a right R°®-module

(XP,0%) XP:=R"®R*® (n 2 0)
n—1 .
aop([gl:---agn]g)::: ([gla- '-agn] + b Z (—1)8[91,"~’gigi+1,-~~’gn] +
i=1

+ ('— l)n[gla' . ’gn—l]gn)g
— The bar complex of G([C-E])
(X4, 0) = k ®r(X,,0) = (XP, 0°°) ®gk.
~ The Hochschild bar resolution of A([C-E]) as a left A°:= A ® A°*-module
(Ue(A),bY) UA)=A®A"® A® (n20)
b’(ao®... ®a,,+1) = Z (‘*l)ia()@... ®a,~ai+1 ®... ®a,,+1

i=0

— The Hochschild bar complex
(U (4),b) = A @4+ (Up(4), D)

We use the following notations for homology
~ The (k-) group homology of G, H,(G) = H,(X,, ~3)
— The Hochchild homology of 4, HH,(4) = H,(U,(4),b)
The following classical complex maps will be considered (see [Ka-I])
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X, > U,R:t([gis- -1 0n) =(91---6,) ' 91 ® ... ® 4,

cagadif [Tgi=1
i=1

~ ~ [gl’ .
n U*(R) - Xx: 7't(gO ® R ®gn) = {
0 otherwise

Following [G], we provide (U, (A4), b) with a cyclic module structure and consider
its cyclic periodic and negative cyclic homologies, that we denote respectively by
HC,(4), HP,(4), HN(4).

Namely, let B: (7* (4) - UM,,‘+ 1(A4) as in [L-Q] and put
Voa(A):=U,_p:=U,_,(A) = A® A* P q,peZ,q 2 p.

Pictorially
b] b b b b b
(——B—“ 175 4——‘1— U4 £ U~3 B (72 B Ul € B (70
b] b} b] b} b}
<—B—l74<LU3<—L—U~2<LU1<—B—ﬁO
5] b} ! )

p=-2 p=-1 p=0 p=1 p=2 p=3
figure 1. The double complex V,,

then the periodic homology of 4 is the homology of W, (4) = Tot(V,(A4),b, B).
Similarly, if V,(4) (resp. V5 (4)) denotes the second (resp. first) quadrant
truncation of ¥V, (4), then the negative cyclic (resp. cyclic) homology of 4 is the
homology of W~ (A4) = tot, (V' ~(A4)) (resp. of W*(4) = tot,(V*(4)).

1.1. Let 4 be an involutive k-algebra with involution “—”, i.e. 1 = 4, ab =
ba,iek,be A)and ¢ = + 1. Following Loday [Lo] we consider the natural map
of chain complexes

nn+ 1)

2 (@®a,®a8, 1Q...Qa)

YU (A)-> U (A )@, ®...®a,) = (1)
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Let .U, = {xeU,:ya = ea}, HH,(4) = H,(,U,(4)), the e-Hochschild homol-

ogy; then HH, (4) = ,;HH,(4) ® - (HH,(4) ([Lo]). Also from [Lo] we learn
that B(,U,) < (—¢ U*) so that we can consider the complex

ib i,, ib i., i

B 5 B 5 B ~ ~ ~
e Uy — U — U, e -Ux R Uo
L b W b
. <_B_ eﬁS (_E_'_ —eU~2 ‘_B;—' 5(71 "L— ~e[70
b P 1

B 7 B 5 ~
E 8U2 D a— —sUl ‘L eUO
lb lb
B ~ ~
C— U - -:Uo
lb
B ~

figure 2. The double complex .V,

Then we put W, = tot,(,V,,), HP,(4) = H,(;W(A)). We can as well define
W, W, HN(A), HC(A) in the obvious way; , {HC(A) is called the dihedral
homology ([Lo]). In the rest of the paper, we will be interested in the following

1.2. ExaMpLES. i) Let R = k[G], as above; we view R as a hermitian algebra
with the involution g — g~ 1. For reasons that will be uncovered in the next §, the

corresponding involution on U, (R) will be denoted by y,.
ii) Let n = 1, M,,(A) the matrix ring, I € M, (A) the identity matrix, e = £ 1,

put
0 I
a8 1)

We consider two involutions on M,,(4);
a = (a;) > 'a:= (az)
a—d:=h"'(a)h
The corresponding involutions on U, (M,,(A4)) will be named y, y, respectively.

1.3. REMARK. With the notations in the example ii) above, let G = 0, ,(4) =
{g€ M,,(A): 'g(;h)g = ,h}; then the natural morphism R — (M;,(4), ) 1s a mor-
phism of hermitian algebras, i.e. “!(geq).
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§2. Relation between H, (G) and . \HH (k[ G]).

2.0. Following the notations in § 1, we define k-linear maps

Vi Xy = X2 Y1000, gaD) = (D)3 g7 g7 197!
Yo UfR) = Up(R): (0 ®9: ® ... ®gw®h):=h""'®9g,'®...97 ' ®g~*
7: X, = Up(R): g[91,- -, ] 29 ® 91 Q... Q4 ®(91-..9x) 'g™"
n: X > UyR):[g1s-- -5 gndh =791 62) ' ®9:1®01®...®g,®h
0: X, — X3P 0(glg1,- -, 9a)) = [915-- -, 91991 - - - )~

2.1 PROPOSITION. i) All the above are chain complex maps and induce maps
¥ =y (X,9) > (X0, )
Y2 =2 (0,b) > (U,b)
= =(X,0~(U,b)
6 = identity: (X,d) — (X, 0).

where 1, y, are the same as those defined in §1.0.
ii) The following diagram commutes

X, < U,(R)

y',l ly'z
Xp ~"> UR)
iii) There is a chain homotopy h such that
0 — ¥y, = ho + &®h
h(gx) = h(x)g~* for allge G, xe X,

Proor. All the commutativity issues involved are straightforward. As to the
induced maps, it is enough to observe that all X, U are quotients of X, U respect-
ively and then one checks easily that the above maps come down to those
quotients. As to iii), we first need some notations; let M be an R-left module, N an
R°P-right module,™ a group morphism is called an R-skew morphism if f(gm) =

f(m)g~! for all me M, g G. For example @, y, are R-skew morphisms; more-
over,ife: X, — k, & X} — k denote the standard augmentations, then the square

™ Or equivalently, an R-left module.
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(X, 0) — k

o_y;l lo

(X3P, 0%) — k

is commutative. Then we are done if we prove the following statement: Given
a chain complex of free R-left modules (C,, d) and an acyclic complex of R°P-right
modules (D, d’) and a skew morphism f: Co, — D, then there exists a chain skew
morphisma,: C, — D, such that oy = f and a, is unique up to skew-homotopy.

The above becomes a well known fact ([C-E]) if we replace “skew morphism”
by morphism. We can as well mimic the proof in [C-E]; the only crucial point to
prove is that if L is a left R-free module and M - N — 0 is an exact sequence of
R°P-right modules then for any skew morphism a: L — N there is a lifting d (i.e.
nd = «). Now let {e;: ied} be a basis for L, n; = a(e;) and pick m;e M such that
n(m;) = n;; then a(} g;e;) = Y m;g; ' does the job.

2.2. Corollary. The maps
Y2t and T (f*’ a) - (U*(R)a b)
are chain homotopic.

Proor. From 2.1. i), iii) we get that y; is homotopic to the identity map 6.
Then i) and ii) yield the desired result.

As a straightforward consequence of 2.2, we get the

2.3. THEOREM. Let v: H,(G) - HH, (k[G]) as in 1.0; then the image of t lies in
the subgroup +,HH,(k[G])

T+ YT

ProOF. In view of 2.2., both t and are the same thing in homology.

2.4. In [G;II-3.1] it is shown that the chain map (X,,0) — (U,b) has
a natural lifting (unique up to natural homotopy)

X, — U,
where W~ is asin §1 and x is the canonical projection. This result, together with
2.3 give the following
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2.5. COROLLARY. Let o: H,(G) » HN, (k[G]) be Goodwillie’s map (see 2.4.),
then the image of o lands in , {HN,(k[G])

Proor. We will go through some steps. First, we prove the existence of
acomplexmap & X — . ; W (using the notations of § 1.1) that makes the following
into a commutative diagram

+ IW;;

X~* _}T’ +1U~*(R)
For that sake, we mimic Goodwillie’s proof of [ G, I1.3.1]; the only crucial point is
that, if F, is the free group in p letters, then H,(, W, (F,)) must be zero for
n 2 p — 1. But H,(,; W, (F,))is a direct summand of H, (W, (F,)), which is zero
forn = p— 1, done.

Next, we know from 2.2. that 1, y, 7 are naturally chain homotopic through
say, h; as a second step, we choose a natural lifting /, such that nh = h. The
existence of such a lifting is clear from Goodwillie’s arguments, i.e., we can choose
alifting for the free groups and then extend by naturally. Last, let 4: W7 - W, _,
be the boundary map, and put f:= 4(hd + 4h), o’ := & + B. Then

!

M=m+nﬁa+mﬁ= h6+bh_.'c+y21+r—y21

2 et 2 2

In view of the uniqueness of a (2.4), o’ is chain homotopic to «, so that H,(x) =
H,(¢') = H, (), done.
§3. Orthogonal Chern Characters.

Let A be a hermitian k-algebra (§1.1), ¢ = + 1 the purpose of this § to define Chern
characters

Ch;(")iLf.(A) =+ HP,(4) » + (HC, 4 3,(4) (n,920)

We first need to have a corresponding Dennis trace map; this is provided by the
following

3.0. THEOREM. Let n = 0, A a hermitian k-algebra, D the Dennis trace map.
There is a commutative diagram

L(4) —>> . HH,(4)

| I

K.(4) —2- HH,(4)
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where the left column is the “forget” morphism, i is the natural split inclusion. In
other words, the image of D lies in . HH,(A).

In view of 2.0., it seems natural to state the following

3.1. DerINITION. The map D’ of 2.0. will be called the orthogonal Dennis trace
map.

In order to prove 3.0., we need the following (refer to 1.1 for notations).
3.2. LemMA i) Let n = 1, Tr:= the trace map; the diagram
Up(My(4) — Uy(4)
yl ly
Up(My(4)) —— U, ()

is commutative.
ii) Let P e Gl,(A), and consider the map

Sp:1 Up(My(A)) — U (My(A)):
fr(0®...®a,):=0P '®...® Pa,_;P"' @ Pa,

then fp is an A°-chain complex map, k-linearly chain homotopic to the identity.
iii) Let y,: U, (M,(A)) - U,(M,(A)) be the chain complex involution correspond-
ing to ° (cf. 1.1); the following diagram is commutative

HH, (M,,(4)) —— HH,(4)

HH, (M;,(4) —— HH,(4)

iv) Let m=1 eeM,,(A), JheM,,(A4) as in 1.1. and suppose e’ =e and
(@)h(l —e)=0
(that is, e is an e-orthogonal projector) then

:
é=e
PROOF. Letr 2 0,a,® ... ® a, e U,(M,(A),ai’0 <1 <r 1 <i,j S nwill de-
note the (i, j)-th entry of ;. Then

Ti(a®... ®a) = (~1*F ¥ a0 @& @ 84" =
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This proves i).
ii) Since proving that fp is a chain map is trivial, we only prove our second
assertion. Let u: M, (A4°) - M,(A4) be the canonical augmentation of U,; then

Uy(My(4)) —— M,(4)

fpl |

Up(M,(4)) —— M,(4)

is commutative. The assertion is now clear since u is a relative projective
resolution.

iii) is a trivial consequence of i) and ii), since, for P = h = ,h, iff;: U, - U, is
the induced map, then y, = f, * y.

iv) Let h = ,h; then

e—6=e—h"'%h=e—h'(ehe=(1—h (h)e =

= h (1 — (&) he = h"e(‘((’é)h(l = e))) -0

Proor oF 3.1. First consider the case n = 0. An element in L(A) can be
thought of as the equivalence class of a projector e as in 3.2iv). Then Dy(e) is the
homology class of Tr(e); but in view of 3.2 iii), iv)

yTr(e) = Tr(y,(e) = Tr(é) = Tr(e).
As to the case n = 1, 3.2 iii) and 2.4 yield the commutative diagram (recall 1.3.)
L(4) = m,(B(O(4))") 2> =,(BGIA)") = K,(A)

Hurewicz Hurewicz
g ~

H,(B(0(4)" k) —— H,(BGUA)",k)

L ~

H,(.0(4)k) H,(Gl(A4), k)

T T

+ yHH,(k[,O(4)]) —— HH,(k(Gl(4)])

colim(,,HH,(M,,(4)) —— colim'HH,,(M,,, (4)

Tr Trl
A

+1HH,(4) ————— HH,(4)
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The ordinary Dennis map is the composite of the right side column in the above
diagram; the theorem is done by calling D': = the composite of the left column.
Just as we have done in 2.4., we can extend 3.0. to cyclic homology.

3.3. THEOREM. Let
chy:K,(4) —— HN,(4) —— HP,(4d) — HC,,,,(4)

be the Karoubi Chern character (see [Ka-1], [We]). Then there is a commutative
diagram

chg: K,(4) —— HN,(4) — HP,(4) —— HC,.,,(4)

I I | 1

chy:L(A) — 4+ HNy(4) — + HP((4) — 1HC, . 24(4)

ProoF. Takinginto account Karoubi’s explicit computation for ch, then = 0
case is trivial after 3.1. Let n = 1; in view of 1.1., we only need to prove the
commutativity of the left side square. Now that square can be decomposed as
follows

L(A) —— K (4)

Hurewicz l
v

H,(B(.0(4))",k) —— H,(BLI(4)",k)

|

H,(.,0(4) —— H,(Gl(4),k)

<

1HC, (k[,O(4)]) - HC, (K[.O(4)]) -~ HC, (k[GI(4)])

YA

colim, , HC, (M,(4)) — colimHC, (M,(A4))

" nl nl

+1HC; () —— HC, (1)

|l

where o, & are as in 2.4. Moreover, 2.4., 3.1 prove that the above is a commutative
diagram
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3.4. DerINITION. The map ch,”: I5,(4) - +,HC, 1 5,(4) above is the orthog-
onal Chern class.
§4. Compatibility with the hyperbolic map.

4.0. Tam grateful to C. Weibel, who insisted that something like 4. 1. should hold.
Let A be a hermitian k-algebra, 1/2€k; put

P(A):= the category of all finitely-generated-projective-right-A-modules
and for ¢ = +1 ([Ka-II])
.0(A):= the category of all right-4-¢-quadratic modules in the sense of Karoubi.
Recall that the hyperbolic functor is (see for example [Ka-II]).
H=,H:2(4) — ,0(4)

H(P)= <P ®P, [O (1)]) (Pe2(4))

[

H() = [g ?,O_C)_,] (« an isomorphism in 2(A)).

where
P:={f:P - A, klinear/f(pl) = Af (p), pe P, Ac A}

then H induces maps from K, (4) to L, (4) and from H,(Gl(4)) to H,(.0(4)), all
of which will be denoted by H. We have a commutative diagram

K,(4) — H,(Gl(4))
d ’|
L(4) — H,(0(4))
In what follows, we study the composite map ch; o H.

4.1. THEOREM. With the notations of 3.0, 3.1, the following is a commutative
diagram

K,(4) —2— HH,(4)

Hl Hyl (n=0)
L(4) —— HH,(4)
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Proor. We first do the case n = 0. Let n, Q e #(4) such that P@ Q = A"
(n = 1), and consider the idempotent matrix e € M, (4) of the projection to P with
respect to the canonical basis. Then e @ ‘¢ is the matrix corresponding to the
orthogonal projection from H(A") to H(P). Now 3.2.i) yields D'(H(P)) =
Tr(e @ ‘e) = Tr(e @ ye) = Tr(e) + yTr(e) = (1 + y)D(P). We now proceed with
the case n 2 1. Consider the involution on the complex X of 1.0. given by

(42) 3: X(GUA) > X (GUA): y3[g1,- - .gn] = (= 1T [, *d1]

It is easy to see that y; is a chain map; moreover

Y1J’3[91,-~-,gn] = yl((_l) [tgm . 7'g-1]> = [(tg-l)_lsn ',('g.n)—l]'

Consequently we get that H = 1 + y, y; as chain morphisms from X (G1(4)) to
X(,0(4)). We know from 2.1 iii) that y, is homotopic to the identity, so that, at the
level of group homology, H is the same as 1 + y;. But if ge ,0(A4), then 'g =
h(h~'('g)h)h~* = hg™'h~?!, which in view of 3.2. ii) implies that the restriction of
y3 to X(0(A)) is homotopic to the identity. Summing up, we have a commutative
diagram

H,(G1(4))
4.
(4.3) u l 4y,

H,(,0(4)) —— H,(0(4)) — H,(0(4)
Next, if welet y, : U(k[G1(4)]) — U(k[G1(4)])be the “ ”-map corresponding to

the involution g — g (i.e. ya(go ® . ® gn) = (— ™7 (4, ® ... ® 'g)). Then
it is easy to see that Ty, = y,7 (7 is defined in §1.0), and in view of 3.2.i), we can
complete (4.3) to yield

D:K,(4) — H,GI(4) —— HHK[GIA]) —— HH,)
i e
D' I,(4) — H,(0(4)) —— HH,(K[HH,LOA]) —— .HH,(4)

where HH, (k[,0(4)]) is the “ +”-summand in the decomposition corresponding
to the involution o — ‘&, (see 1.1.).

4.4. Consider the involution y; defined in (4.2), and let ¢ = £ 1. In the spirit of
1.1., it is natural to define (¢ stands for transpose)



34 GUILLERMO CORTINAS

«X (Gl(4)) = {xe X(GI(4)): y3(x) = ex}.
«H(GU(A), k) = «H,(GI(4)) = H,(.X(GI(4))
and, since we are assuming that 1/2 ek,
H,(Gl(4)) = H,(Gl(4)) @ -.H,(Gl(4))
Now by choosing the diagram (4.3) we get the

4.5. COROLLARY. If 1/2€k, then H,(,0O(A),k) is a direct summand of
H,(GI(A), k). Moreover, with the notations of 3.8.,

H,(;,0(4), k) = H(Gl(A), k).
PrOOF. See 4.4. above.

4.6. COROLLARY. With the notations of 3.3, 3.4., the following diagram is com-
mutative

ch,:K,(4) — HC,.,(4)

HI Iw

ch: I5,(4) — +;HD,, 2,(4)

Proor. The case n = 0 is derived from the arguments in the proof of 3.3,
taking into account Karoubi’s explicit computation of chfl’ ([Ka-I, 2.17]). Now
we go to the case n = 1. Consider the automorphism g: G1(4) — GI(A4) B(g) =
(‘g)~*; then B induces chain automorphisms on both X(Gl(4)), U(k[G1(A4)] that
we denote also by B. Next, let a: H,(Gl(4)) > HN,(k[GI(4)] be Goodwillie’s
map (as in 2.4.); in the proof of 2.5, we showed that y,a = ay,; keeping in mind
the naturality of «, and the fact that y,, y, can both be extended to HN,, (see 1.1.),
we get

ays = (@ysy)y1 = @B)yr = Pay, = (yay2)ays = ysayi = yao.
Now this computation, together with 4.3 and 3.2 i) yield the desired result.
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