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ROOT MULTIPLICITIES AND IDEALS IN
QUASISIMPLE LIE ALGEBRAS

HELMER ASLAKSEN, TERJE WAHL and TORE WENTZEL-LARSEN

1. Introduction.

The purpose of this note is to elaborate on some of the results of a paper by
Hoegh-Krohn and Torresani [1]. They determined the possible root systems for
quasisimple Lie algebras, but they did not discuss the multiplicities of the roots.
The nonisotropic roots can only occur with multiplicity one, and the multiplic-
ities of isotropic roots in the affine Lie algebras are known. But for general
quasisimple Lie algebras, the multiplicities of the isotropic roots are more
complicated. We call the dimension of the span of the isotropic roots the type and
denote it by v. We will give examples of quasisimple Lie algebras of type two with
the same sets of roots but with different multiplicities. This shows that although
Heegh-Krohn and Torresani have determined the possible root systems (not
counting multiplicities) and given explicit realizations for the root systems of type
v < 2 it does not follow that we know all quasisimple Lie algebras with v < 2.

There is also the question of whether the root system determines the Lie
algebra. Heegh-Krohn and Torresani mentioned that V. G. Kac had suggested
there might be many Lie algebras corresponding to a given root system when
v > 2. Our examples will show that the root system (not counting multiplicities)
fails to determine the Lie algebra even for v = 2. The question of whether the root
system with multiplicities suffices to determine the isomorphism class of the Lie
algebra will not be addressed in this paper.

Heegh-Krohn and Torresani obtained many of their result through extensive
use of the Weyl group. But since the isotropic roots are fixed by the Weyl group, it
is harder to get infomation about the multiplicities of the isotropic roots. We
believe that the multiplicities of the isotropic roots are hard to determine and that
it will be difficult to classify all the quasisimple Lie algebras. We will, however,
give examples of families of quasisimple Lie algebras with the same root system.

If we say that a Lie algebra g is X-simple (e.g., simple, semisimple or quasi-
simple) we should be able to say something about the ideals (or lack of such) in g.
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Let g(A) be the Kac-Moody algebra corresponding to an indecomposable gener-
alized Cartan matrix A. It is well-known that any ideal is either contained in the
center of g(A4) or contains the derived algebra g'(A). We will show that this holds
for some types of quasisimple Lie algebras, but not all.

The first author would like to thank the NDRE for letting him work on Lie
algebras while doing part of his military service there. The other authors would
like to express their gratitude to the late R. Hoegh-Krohn for introducing them to
the fascinating realm of quasisimple Lie algebras.

2. Extensions of Quasisimple Lie Algebras.
Let us briefly recall the definition of a quasisimple Lie algebra from [1].

DEFINITION 1. A quasisimple Lie algebra is a complex Lie algebra g satisfying
the following conditions.

1. ghasaKilling form ¢, ), i.e., a nondegenerate invariant symmetric bilinear
form.

2. g has a Cartan subalgebra b, i.e., a maximal finite-dimensional Abelian
subalgebra such that the adjoint of ) on g is diagonalizable and the root system is
discrete.

3. Ad(X)is nilpotent for any X in the root space of a nonisotropic root, i.e.,
a root a such that {a,a> + 0.

Let g be a quasisimple Lie algebra with Cartan subalgebra §, and set
h = dim b,. Notice that h = rank g + v where vis the type of g,i.¢., the dimension
of the span of the isotropic roots. Generalizing a construction from [1], we set

8. =DgRZ"®C" B D"

NeR

where for N = (Ny,...,N,) we write ZV = z{*. .. z¥" and C" and D" denote the
spans of c,,...,¢, and d,...,d,, respectively. If we set 4-C = Z};l a;c; and
B-D =Y"_, bd; we have

[XyZ¥ + A-C+ B-D,XyZM + A'-C + B'- D]
= [ Xy, X3 1Z¥*M 4+ (B- M) X}y Z™ — (B'-N) Xy Z¥ + (N, — M){ Xy, X3,>N-C
and
(XNZN + A-C+ B-D,X}yZM + A'-C + B'- D) = (N, — M){ Xy, X)s>
+ A-B +B-A.

It is easy to see that g, also is a quasisimple Lie algebra with Cartan subalgebra
b, =ho @ C"® D". If e e h} is aroot of g, we can extend it to a root of g, (that we
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for simplicity of notation will also denote by o) by defining it to be equal to 0 on
C"® D" If N e Z" we can define an element of b¥ (that we for simplicity will also
denote by N) by N(H, 4, B) = B- N. The multiplicities of the roots of g, are given
in Table 1.

root root space multiplicity
0 b h+2n
N#£0 boZ¥ h
a+ N 8. Z" 1

Table 1. Multiplicities of the roots of g,

We can also construct

gm=(gn)m={ Y (Z XNZ”@C"®D">ZM@C'"@DM}

MeZ™ \NezZ™
where ZM = M: ... zM»  C"isthespan ofcy,...,c,, C™isthe span of ¢,y q, ...,

C+m and similarly for D" and D™. It is easy to see that
bim =Bo@C"® D) B C" D D™
is a Cartan subalgebra and we have
[(H+ A,-C, + B,-Dy)+ A5-C, + B, D,,
Y(Y.XyZN + A, Cy + B;"D)ZM + A,-C, + B, D, ]
=Y[H+ A, C, +B,-D,Y XyZ" + A,-C, + B;-D,1ZM
+ (B, M)Y.(Y. XyZ" + A4, Cy + B D) ZM
= Y.([H, Xy] + (By*N) Xy + (By M)Xy)Z" ZM
+ Y. (B, M)(4, - Cy)ZM + Y (B, M)(B, ‘Dy)ZM.

We extend the isotropic roots as above, and for NeZ" and M eZ™ we define
(N,M)eb?, by(N,M)(H, A, By, A2, B;) = B;*N + B, M. The multiplicities of
the roots of g,, are given in Table 2.

Let us now compare g, and g;;. We have

92 € 911

and the elements of the form (ac, + bd;)z; arein g;; butnoting,. The two tables
show that the multiplicity of (0,7) is hin g, but h + 2 in g, . Taking g to be
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root root space multiplicity
0 Bum h+2n+2m
(v, M) + (0, M) hoZNZM h
0, M) % (0,0) (Bo + C" + D" ZM h+2n
o« + (N, M) 8. Z%Y 1

Table 2. Multiplicities of the roots of g,

a finite-dimensional, simple Lie algebra, the table shows that the same root
system can occur with different multiplicities even for quasisimple Lie algebras of
type two. Hence a classification of the root systems (not counting multiplicities)
does not give us all the possible quasisimple Lie algebras. It also shows that V. G.
Kac’s suggestion that there might be several quasisimple Lie algebras corre-
sponding to a given root system (not counting multiplicities) is true, and in fact it
can happen already for quasisimple Lie algebras of type two. The question of
whether the root system with multiplicities suffices to determine the isomorphism
class of the Lie algebra will not be addressed in this paper.

This is in fact just a special example of a more general construction. We can
construct the following two hierarchies of quasisimple Lie algebras.

O CO8n-1,1< ... 01,1

and

O ©G81n-1<... < G1..1-

All these quasisimple Lie algebras have the same root system.

In general, to each set of positive integers py,.. ., p, with Z p; = n, we can form
root system, but with different multiplicities for the isotropic roots.

If g has a root system of the form (R, v,7) or (BC,, v, 7, iy, o), then g, , will
have a root system of the form (R,v + n,7) or (BC,,v + n,1, Uy, i2).

3."Ideals in Quasisimple Lie Algebras.

Ifg(A)is aKac-Moody algebra corresponding to an indecomposable generalized
Cartan matrix 4, then any ideal is either contained in the center of g(A4) or
contains the derived algebra g'(4) ([2, Proposition 1.7 and exercise 1.1] or
[4, 1.10]).

Let g be a finite-dimensional, simple Lie algebra and let o be an automorphism
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of g of order k where k = 1, 2 or 3. We first decompose g in the standard way
k-1
g= @ g.
i=0
We then choose a grading mod k of Z" for N € Z" by choosing a homomorphism
from Z" to Z and considering the grading induced by the standard grading on Z.
We then define

3= ® SN ®ZV D C"® D".
NezZn

For k = 1 we get gV’ = g,. We will call g,. We will call g, the untwisted extension
of g. For k = 2 or 3 we will call g the twisted extension of g. These xtensions are
the quasisimple Lie algebras described in Theorems 20 and 21 in [1]. Forn = 1
they coincide with the affine Lie algebras g(X%) ([2]).

It is easy to see that the center of g% is 2 (g*)) = C" and the derived algebra is
@® Nezn Onmoak D ZY @ C™. The following was proved in [3, Theorem 1].

PRrOPOSITION 1. Let g™ be a untwisted or twisted extension of a finite-dimen-
sional, simple Lie algebra g. Any ideal in g is either contained in the center or
contains the derived algebra. In particular, any ideal in g has either finite
dimension or finite codimension.

Unfortunately, this does not generalize to arbitrary quasisimple Lie algebras.
If g is an arbitrary quasisimple Lie algebra, then it is easy to see that the center of
8,18 Z(g,) = Z(g) @ C" and the derived algebra of g,is g, = D nezng ® YARCY 68
But then

I= Z g(gn)®ZM@Cmcgnm

MezZm™

is an ideal of both infinite dimension and infinite codimension in g,, with

Z(8wm) < I < Gum-

This shows that in general quasisimple Lie algebras are very far from being
simple, and in this respect the name “quasisimple” may not be that appropriate.
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