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THE SPECTRUM ASSOCIATED TO
A RADICAL OPERATION

LARS ERNSTROM

Introduction.

The Hilbert Nullstellensatz describes the correspondence between the closed
subsets of an affine variety with points in an algebraically closed field and the
radical ideals in the ring of polynomial functions defined on the variety. To
extend this description to varieties with points in not necessarily algebraically
closed fields, Laksov [3] introduced the concept of radial operations. Laksov
[5] constructed a radical operation and gave a Nullstellensatz that states a corre-
spondence between the closed subsets of an affine variety over a not necessarily
algebraically closed field and the invariant ideals under this radical operation.
The points in the variety correspond to the maximal elements in the set of
invariant ideals under the radical operation.

Given a radical operation defined on a ring it is therefore natural to consider
the points corresponding to prime ideals that are invariant for the given radical
operation. We shall in this work study these points and show that they form the
underlying space of a naturally ringed space.

To this end we give a definition of a radical operation that differs from the one
given by Laksov and Westin ([6], §2, page 178) in that it includes two axioms
which assure that our association of affine schemes to rings is functorial. Differ-
ent radical operations can reflect completely different geometries, even when they
are defined on the same category. To illustrate, in the case of a real algebra the
real radical operation alluded to above (the radical operation associated to the
non algebraically closed field of real numbers) describes the geometry of real
zeroes whereas the ususal radical operation more resembles the complex ge-
ometry of the algebra. We give several examples in this situation (Example
1.7,1.8,4.5).

One of the main features in this work is to define the localizations in certain
multiplicatively closed sets that will give us the ringed space structure alluded to
above.
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Finally we define the category of R-schemes for a given radical operation
R defined on a category of rings. Example 4.5 shows that the relationship
between the global sections of the sheaf of regular functions on the spectrum of
a ring and the ring itself is not as simple as in the case of the usual spectrum.
Consequently, the theory for R-schemes seems to be more complicated than the
theory for usual schemes.

ACKNOWLEDGEMENT. D. Laksov suggested the idea to develop a theory of
schemes relative to a radical operation. I appreciate his comments relating to this
work.

1. The functor Specg.

In this section we define the notion of a radical operation. When a radical
operation R is defined on a category of commutative rings ¢ we define what it
means for R to be functorial. When R is a functorial radical operation we
associate to it a contravariant functor Specy taking the category % to the
category of topological spaces. The relations between the algebraic properties of
aring A and the topological properties of the space Specg(A4) are investigated. We
give examples that show that although the definitions are similar the behaviour
of Specg can be fundamentally different from that of Spec.

The following definition of the radical operation was given by Laksov and
Westin [6].

DEFINITION 1.1. Let A be a ring. An operation R which to each ideal I of
A associates an ideal R(I) of A is called a radical operation if

1)) R(I)= () P foranyideal I of A.
RPIZP
Pprimeideal

If there are no prime ideals P satisfying the conditions P = I and R(P) = P then
R(I) = A.

If R is a radical operation defined on ideals of any ring in a category €. We say
that R is functorial if axiom 2 and 3 below hold
(2) for any ring homomorphism ¢: A - B in ¢ and any prime ideal I of
B satisfying R(I) = I we have that R(¢~1(I)) = ¢~ 1(I);
(3) for any surjection ¢: A — B and any ideal I of 4 containing ker(¢) we have
that R(e(D)) = ¢(R().

DEFINITION 1.2. Given a ring 4 and a radical operation R on A, The R-prime
spectrum Specg(A) of a ring A is the set

Specg(4) = {Prime ideals P of A such that R(P) = P}.
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The prime ideals with the property R(P) = P are called R-prime ideals.

Since Specg(A) is a subset of Spec (4), it inherits the subset topology. For any
ideal I of A we denote by Zg(I) the closed set {P|P = I} Furthermore, with
X = Specg(4)and f € A we denote by X the open set {P e Specg(A)| P $ f}. The
open sets {X} .4 form an open base for the topological space Specg(A).

REMARK 1.3. Starting with an arbitrary subset B of Spec(4) one can define
a radical operation by setting

R(I) = () P for any ideal I of A.

P2l
PeB

Any radical operation defined on A arises from some B following this procedure.
In general the inclusion B < Specg (A) is strict. However if A is a ring where all
prime ideals are maximal we have equality for any subset B of Spec(4) (compare
Example 2.5).

In the following we fix a functorial radical operation R defined on a category €.
We will show that Specy is a contravariant functor from % to the category of
topological spaces. It follows from axioms 2 of Definition 1.1 that for each
homomorphism ¢: 4 — B in ¥ we can define a map

@* : Specg (B) — Specg (4)

by setting p*(P) = ¢~ 1(P) for any R-prime ideal P of B. Let X = Specg(A) and
Y = Specg(B). The continuity of ¢* is a consequence of the fact that
@* "1 (X) = Yy, for any fe A.

It is now straight forward to verify that Specy is a functor.

PROPOSITION 1.4. Let R be a functorial radical operation on a category €. Then
Specg is a contravariant functor from the category € to the category of topological
spaces.

Axiom 3 of Definition 1.1 has the following geometric counterpart. This
proposition is the only place where axiom 3 is used.

PROPOSITION 1.5. Let ¢: A — B be a surjective homomorphism in €. Then ¢*:
Specg(B) — Specg(A) is a homeomorphism of Specg(B) onto the closed set
Zg(ker ¢).

Several results relating algebraic properties of the ring A to the topology qf the
space Spec(A) have an obvious generalization for arbitrary radical operations.
As an example we state the following result.

PROPOSITION 1.6. Let I be an ideal of A. Then the closed subset Zg(I) of
Specg(A) is irreducible if and only if R(I) is an R-prime ideal.
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The reducibility of Spec(4) and Specg(A4) are not related. In the following
example we give a ring 4 and a radical operation R such that Spec(A) is reducible
while Specg(A) is irreducible. For future reference we will state the generalized
Hilbert Nullstellensatz (Laksov [5], §1). For the definition of the k-radical see [ 5]
or Example 2.2 below.

HiLBERT k-NULLSTELLENSATZ. Let k be a field. Let R be the k-radical operation.
Given an ideal I in the polynomial ring k[x,,...,x,], then

R(I) = {fek[xla"'sxn] |f(a) = O
for all ae k" with g(a) = 0 for all ge I}.

ExaMpLE 1.7. Let R denote the real numbers. Let 4 denote the ring
R[x]/(x(x?* + 1)) and let R be the R-radical [L3]. It is clear that the prime
spectrum of A is a reducible topological space. However it follows from the
Hilbert R-Nullstellensatz that the space Specg(A) consists of the single R-prime
ideal (X) and is consequently irreducible.

In the following example we give a ring A such that Specg(A) is reducible while
Spec(A) is irreducible.

ExaMpLE 1.8. Let R and C denote the real and the complex numbers, respect-
ively. Denote by A4 the ring R[x;, x5, X31/(x?x2 + x2) and let R be the R-radical.
Then Spec(A) is irreducible. However using the Hilbert R-Nullstellensatz it is
easy to see that x, x; belongs to R(x?x% + x2) but neither x, nor x5 does. Hence
R(0)is not an R-prime ideal in A. It follows from Proposition 1.6 that Specy(A4) is
reducible.

2. Radical polynomial operations.

Most radical operations that occur in practice are defined by polynomials. In this
section we show that any radical polynomial operation is functorial. We also
show that all open sets in a spectrum associated to a radical polynomial oper-
ation are quasi-compact.

DerINITION 2.1 (Laksov [3], page 78).
(1) Let k be a ring and R a subset of the polynomial ring k[y,, yy,...] in
a countably infinite set of independent variables y, y;,. .. over k. Given an ideal
I of a k-algebra A we let R(I) be the subset of A defined by

R(I) = {ae A|there exists a polynomial p(yo, V1,-..,Vm) ER
and elements a,,. .., a,€ 4 such that p(a,a,,...,a,)el}.

We say that the operation R on the set of ideals of A4 is a polynomial operation or
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sometimes that it is defined by polynomials. For simplicity we will use the same
notation R for the set of polynomials as for the operation it defines.

(2) If the operation defined by R is a radical operation we say that R is a radical
polynomial operation.

ExaMPLE 2.2. (1) The usual radical is a polynomial radical operation defined
by the set of polynomials {1, yo, y2,...}.

(2) The k-radicalis defined as the unionin k[ y,, y;,. . .] of the following sets for
n=20,1,2,...

{peklyo,-..,yudlif p(ao,...,a,) = 0 for ay,...,a,ck then a, =0}.

In the following we fix a radical polynomial operation R defined on the
category of k-algebras for a ring k. It turns out that axiom 2 and 3 are formal
consequences of the properties of a radical polynomial operation.

PROPOSITION 2.3. Let R be a radical polynomial operation defined on the
category of k-algebras where k is a ring. Then R is functorial.

ProOOF. Axiom 2 of Definition 1.1 follows from Laksov ([3], Proposition 11).
Laksov also showed axiom 3 when R is equal to the K-radical ([3], Proposition
11(v), page 82). The proof generalizes to our situation.

The following result generalizes the fact that affine schemes are quasi-compact.

PrOPOSITION 2.4. Suppose that R is a radical polynomial operation on
ak-algebra A. Let I = (g,,. .., g,) be afinitely generated ideal of A. Then the open
set Specg(A)\Zg(l) is quasi-compact. In particular we have that X, and
Specg(A4) = X, are quasi-compact.

PROOF. Let {X| },..s beacovering of U = Specg(4)\ Zg(I). We want to show
that there is a finite subcover.

We have that Zx(I) 2 Zg(J) where J is the ideal generated by { f, } sc.r. We have
equivalently that I < R(J). By the definition of a radical polynomial operation
we have that for each i = 1,...,r there are integers n; and N;, a polynomial
Pi¥os V15 - - > ¥n) € R and elements a,...,al, bP,. .., b € A such that

Ni
pi(gia a(li)7 LR ’ag? = Z bg).ﬁt
k=1
Now set N = max;{N;}. We claim that U = U}., X,,. To prove the claim let

PeU. Wehave that P I = (g,,...,9,). Hence there is some j such that g;¢ P.
Since P is an R-prime ideal we must have that

N,
pi(g;a?,....ad) = kZI b f & P.



10 LARS ERNSTROM

We conclude that for some ke {1,. .., N;} we have that f, ¢ P or equivalently that
PeX;,,.

Next we shall indicate that there is a radical operation R defined on a ring
A such that the space Specg(A) is not quasi-compact.

ExaMPLE 2.5. Let A be an infinite boolean ring. Then all prime ideals are
maximal and Spec(A4) has a non quasi-compact subset B. Defining R from
B following Remark 1.3 we have that Specg(A4) = B is not quasi-compact.

3. Localizations.

Fix a radical operation R defined on a ring A. In this section we study localiz-
ations of rings in certain sets related to R. These localized rings will be used in §4
to define a sheaf of regular functions on Specg(A4). To define regular functions we
first define regular functions on the fundamental open sets X, for any element
f € A. In the case of the usual spectrum the ring of regular functions on X is the
localization of A in the multiplicatively closed set S, = {1, f,f?,...}. When R is
defined by polynomials we have the following natural generalization of Sy,
introduced by Laksov ([4], page 5).

DEerFINITION 3.1. Let R be a polynomial operation on k-algebras. For any
element f in a k-algebra A let

SR(f) = {p(.f;al"'-’an)lpERy ala"'9anEA}

Laksov defined a subset S of a ring A4 to be semi-multiplicatively closed if for
each pair of elements s, t € S there is an elelement a € 4 such that ast € S ([4], page
8). Furthermore, Laksov showed that the fractions of 4 with denominators in
a semi-multiplicatively closed subset S has a natural ring structure.

It turns out that the sets Sg(f) are semi-multiplicatively closed exactly when
R is radical i.e. satisfying the first axiom in Definition 1.1. Laksov and Westin
([61, §3, page 180) proved the first implication of the following equivalence.

PROPOSITION 3.2. Let R be a polynomial operation on the ring A. Suppose that
RR(I) = R(I)for all ideals of A. Then R is aradical polynomial operation if and only
if Sg(a) is a semi-multiplicatively closed set for each element a in A.

ProoF. To prove the second implication suppose that there is an element ae A
such that Sg(a) is not semi-multiplicatively closed. Then there are elements
r=p(a,a,,...,a,) and s = g(a,by,...,b,) in Sg(a) such that crsé Sg(a) for all
ce A. Hence aeR(r) and ae R(s) but a¢ R(rs). However if R were a radical
operation we would have R(r) n R(s) = R(rs) ([4], Proposition 15).

The following definition introduces sets Cg(f) which are closely related to the
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sets Sg(f). The former sets have the advantage that they do not make use of
polynomials and hence apply to any radical operation.

DEFINITION 3.3. For a radical operation R defined on a ring 4 and an element
f €A we write
Cr(f)= () Pi= N F

xeXy P3f
Pan R-prime ideal

When R is defined by polynomials, Cx(f) is nothing but the saturation of the
semi-multipicatively closed set Sg(f). It is a well-known fact that in this case
Sr(f)"! A and Cg(f) ! A are naturally isomorphic.

In the following example we shall show that in general the inclusion
Sr(f) € Cr(f) can be strict even if Sg(f) is multiplicatively closed.

ExaMpPLE 3.4. Let R denote the usual radical and consider the element
x(x + 1)in the polynomial ring k[ x], where k is an integral domain. We have that
x(x 4+ 1)e(x) = R(x). Hence the element x € Cxr(x(x + 1)). However x is not in
the multiplicatively closed set

Sr(x(x + 1)) = {(x(x + 1)"|neN}.

4. The sheaf of regular functions.

Fix a radical operation R defined on a ring 4. Set X = Specg(4). Motivated by
the results of §3 we define a presheaf on the open basis {X} ;.4 of X by defining
the sections over X, to be Cg(f) ™! A forany f € A. Forany inclusion X, < X, the
restriction map is induced by the inclusion Cg(g) € Cr(f).

DEFINITION 4.1. We define the sheaf of regular functions Ox to be the sheaf
associated to the above presheaf.

For any Pe X we denote by Oy p the stalk of the sheaf Oy at P.

It is easy to see that the stalks can be identified with the corresponding
localization of the ring.

PROPOSITION 4.2. Let Pe X = Specg(A). Then there is a natural isomorphism
(9 X,P >~ A Px

In the case when R is the usual radical of an ideal an important fact is that the
natural homomorphism

pr:Sa(f) 1A > Ox(X))

is an isomorphism for any f € A. We will see in Example 4.5 that this i§ 1.10t t.rue in
general. When R is defined by polynomials we shall prove that p is injective for
all feA.
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LEMMA 4.3. Suppose that X, = U}_, X, and given elements s;e Cg(f;) for
i=1,...N. Then f e R(J) where J is the ideal generated by {s;};-1,.. n-

ProoF. Let I be the ideal generated by the elements {f;};-; .. Then
Z(f) = Zg(I) and it follows that f € R(I). Since s; € Cr{ f;) we have equivalently
that f;e R(s;). Hence f e R(I) & R(J).

PROPOSITION 4.4. Suppose that R is a radical polynomial operation on a ring A.
Then, for any f € A, the homomorphism p is injective.

PROOF. Suppose that a/se Cr(f)~' A and p,(a/s) = 0. Since X is quasi-com-
pact (Proposition 2.4) it follows that there is a finite cover X; = U}, X, such
that a/s = 0in Cg(f;) A fori=1,...,N. Then there are elements s; in Cg(f;)
suchthats;a = Ofori = 1,...,N. It follows from Lemma 4.3 that f € R(J) where
Jis the ideal generated by {s;}i- ,. Since R is a radical polynomial operation there
is a polynomial p in R and elements ay,...,a,, by,...,by in 4 such that

N
p(fiag,....a,) = Z b;s;.
i=1

We multiply the last equality by a and get

N

ap(f, Agsens ,am) = Z b,—asi =0.
i=1
Since Cr(f) is multiplicatively closed and the elements g and p(f, a,,...,a,,) are
in Cg(f) we have that

ap(f’ab“'sam) — 0
gp(f.as,. .., am)

a_
g
in Cg(f)™ ' A. Hence the map p, is injective.

The homomorphism p, is not always surjective as we will see from the
following example.

ExaMrLE 4.5. Let R denote the real numbers. Denote by R the R-radical and
let A be the ring

R[x, y1/((x* — 1)* + y?).

Set X = Specg(A). It is easy to see that X is the disjoint union Xz4; U Xz ;.
Hence any pair of functions on X; , ; and X5 _ | glue together to a global section of
Oy. We shall construct such a section and show that it is not in the image of p,. In
fact let s be the global section of Oy defined by the zero-section over X5, and by
the constant section 1 over X _ ;. Using the fact that A is an integral domain it is
clear that s is not in the image of p,.
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5. The category of R-schemes.

In this last section we introduce the notion of an R-scheme in analogy with the
well-known notion of a scheme. We fix a functorial radical operation R defined
on a category of commutative rings 4.

DEFINITION 5.1. Let A be a ring in %. The R-prime spectrum of A is the space
X = Specg(A) together with the sheaf Oy.

The following results are generalizations of well known results for affine
schemes.

PROPOSITION 5.2. Let A and B be in €. Set X = Specg(A) and Y = Specg(B).

(1) The pair (X, Oy) is a locally ringed space.

(2) If : A — B is a homomorphism in %, then ¢ induces a natural morphism of
locally ringed spaces

¢:(Y,0y) = (X, Ox).

ProoF. (1) This follows from Proposition 4.2.

(2) We know already from Proposition 1.5 that we have an induced map ¢ on
the level of topological spaces. Furthermore it is easy to see that for any f € 4 we
have that ¢ maps Cg(f) into Cg(e(f)) so there is an induced morphism of
presheaves. Of course the morphism of presheaves induces a morphism
Ox - ¢, Oy of sheaves.

DEFINITION 5.3. (1) An affine R-scheme is a locally ringed space (X, Ox) which
is isomorphic to the R-prime spectrum of a ring 4 in 4.

(2) An R-scheme is a locally ringed space (X, Ox) in which every point has an
open neighborhood U such that the topological space U, together with the
restricted sheaf Oy,y, is an affine R-scheme. A morphism of R-schemes is a mor-
phism of locally ringed spaces.

An important fact in the theory of schemes is that the functor Spec induces an
equivalence of categories between the category of commutative rings and the
category of affine schemes. In the case of the category of affine R-schemes one
asks whether there is an equivalence with the full subcategory of ¢ consisting of
rings A € ¢ such that the canonical homomorphism A — Cg(1)~ 1 4is anisomor-
phism. However this is impossible since Example 4.7 shows that the ring of global
sections of Specg(A4) can be different from the ring Cx(1)~ 1 4. Because of this fact
one would like to modify the theory developed here to something which is more
well-behaved. One possible strategy would be to consider a Grothen-
dieck-topology on a given R-scheme. It is beyond my knowledge how and
whether this can be carried out.
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