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PSEUDO-INVERSES, HOLOMORPHIC FUNCTIONS AND
ATKINSON THEORY IN BANACH ALGEBRAS

CHRISTOPH SCHMOEGER

Abstract.

Let A denote a complex Banach algebra with identity e and K an inessential ideal of A. Suppose that
Gisaregionin C and f:G — A is holomorphic such that f(4) is left [resp. right] invertible modulo
K for all A€ G. In this paper we show that the nullity nul (f(4)) [resp. the defect def(f(4))] is constant in
aneighbourhood of A € G if and only if there exists a neighbourhood U < G of A, and a holomorphic
function F: U — A/rad (A) such that

(f(A) + rad (A))F(A)(f(4) + rad(4)) = f(A) + rad(4) forall leU
(rad (4) denotes the radical of A).

Introduction.

In this paper we always assume that A4 is a complex Banach algebra with identity
e$0.

Let K be an inessential ideal of 4, G = C aregion and f: G — A be holomor-
phic. In [5, Theorem 5.6] we proved the following theorem:

Suppose that f(2) is left [resp. right] invertible in A/K for all A€ G. Then there
exist a discrete subset M of G and a constant ce N U {0} such that

nul(f(4)) = c[resp. def(f(A) = c] for all L.e G\M and
nul (f(u)) > c[resp. def(f(w)) > c] for ueM.
For the definitions of nullity and defect see Section 2 and Section 3.

The aim of this paper is to show that the following conditions for 4, are
equivalent;

(A) nul(f(2)) = nul(f (o)) [resp. def(f(4)) = def(f(Ao))] ina neighbourhood of
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(B) There is a neighbourhood U of Ay and a holomorphic function F:U —
A/rad (A) such that

(f(A) + rad (A) F(A)(f(A) + rad (4)) = f(4) + rad (4)
forall AeU.

The first section of the present paper deals with pseudo-inverses of relatively
regular elements in 4. In particular, we extend some results due to S. Ivanov [2].
In Section 2 we first summarize some definitions, notations and results of
Atkinson and Fredholm theory in semisimple Banach algebras. Then we investi-
gate holomorphic function with values in a primitive complex Banach algebra.
Holomorphic functions in general Banach algebras are considered in Section 3.

1. Pseudo-inverses and relatively regular elements.

1.1 DerINITION. For each subset M of A (M + 0) the left annihilator and the
right annihilator are the sets

L(M) = {ye A:yM = {0}} and R(M) = {ye A: My = {0},

respectively. If M = {x} we simply write L(x) and R(x). Note that L(xA) = L(x)
and R(Ax) = R(x), since 4 has an identity.

Let xe A. We say that x is relatively regular if there exists ye 4 such that
xyx = x. We call y a pseudo-inverse of x.

The proof of the first proposition is easy and is left to the reader.

1.2 PROPOSITION. Suppose that y is a pseudo-inverse of x and put p = xy,
q=e — yx. Then

P> =p,q* = q, pA = x4, g4 = R(x),
Ae — q) = Ax and A(e — p) = L(x).
The idea of the next proposition goes back to some results due to S. Ivanov [2].

1.3 PROPOSITION. Suppose that x,y,se€A, xyx =x and |y||s| <1 (then
e + ys and e + sy are invertible). Put
rs)=(e+ys) 'y

(@) r(s) = yle + sy) ' and (e + sy) " 's =s(e + ys) " ..
(b) If R(x) < R(s), then r(s) is a pseudo-inverse of x + s.
(c) If sA < xA, then r(s) is a pseudo-inverse of x + s.

PROOF. (a) is obvious.
(b) and (c): Define g(s) = x + s — (x + s)r(s)(x + s). We have
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g(s) = (x + s)e — r(s)(x + 5))
=(x + 5)[(e + ys) (e + ys — y(x + 9))]
=(x+3)(e + ys) (e — yx)
= [x(e + ys) — (xy — e)s1(e + ys) " '(e — yx)
= x(e — yx) — (xy — e)s(e + ys) " (e — yx),
=0

therefore

(1.1) g(s) = —(xy — e)sle + ys) (e — yx)
and, by (a),

(1.2) g(s) = —(xy — e)(e + sy) " 's(e — yx).

If R(x) & R(s), Proposition 1.2 gives(e — yx) A = R(x) < R(s), hence s(e — yx) =
0. Use (1.2) to derive g(s) = 0. Now suppose that sA = xA. By Proposition 1.2,
sA € xA = xyA = R(xy — e) thus (xy — e)s = 0. By (1.1), this implies g(s) =

Before we state the main result of this section, we need a simple lemma, which
goes back to a theorem of Sz.-Nagy [6, p. 132]. This lemma will be useful in
Section 2 again.

1.4 LeMMA. Suppose that p and q are idempotents in A such that |p — q| < 1.
Then

(@) R(p)n g4 = R(g)npA = {0};

(b) pA = pgA, qA = qpA.

PrOOF. (a) Letg =e + (p — g)and h = e — (p — g). Then g and h are invert-
ible. If ze R(p) N qA, then pz = 0and gz = z,thus gz = z + pz — z = 0, therefore
z = 0. It follows that R(p) » gA = {0}. Similarly, R(q) » p4 = {0}.

(b) Since ph = pq and hA = A, we have pA = phA = pqA. Similarly, g4 =
qpA.

The following theorem is a generalization of [2, Theorem 3.5]. The proof is
a modification of that in [2, p. 352].

1.5 THEOREM. Let G be aregion in C and let f : G — A be a holomorphic function.
Suppose that f(A,) is relatively regular (o € G). Then the following statements are
equivalent:

(a) Thereis a neighbourhood U, < G of Ao and a holomorphic functionu:Uy -
A such that

FAuA) () = f(A) for all AeU,.
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(b) There is a neighbourhood U, < G of Ay and a holomorphic function q:U, —
A such that
q(A)? = q(A) and q(A)A = R(f(2)) for all AcU,.

(c) There is aneighbourhood Uy < G of Ay and a holomorphic functionp:U, —
A such that

p(A)? = p(A) and p()A = f(W)A forall AeUs,.

PrOOF. (a) = (b): Letq(4) = e — u(A)f(A) (A€ U,). Proposition 1.2 shows g(1)? =
q(4) and g(A)A = R(f(4)) for Ae U,.

(a) = (c): Define p(4) = f(Yu(d)(Ae U,). From Proposition 1.2 we obtain
p(A)A = f(A) A and p(A)? = p(4) for e U,.

(b) = (a): Define h and s on U, by

h(%) = q(D)q(Lo) + (e — q(D))(e — g(4o)),
8(4) = f(DKA) — f(4o)

and suppose that y is a pseudo-inverse of f(4,). Since h(4y) = e and s(4,) =0,
there is a neighbourhood U, < U, of 1, such that

(1.3) 1lgid) — q(Ao)ll < 1, s Iyl < 1 and h(A) is invertible for A€ U,.

Since h(A)q(Ao) = q(A)q(4o), it follows from Lemma 1.4 that h(A)q(iy)A =
4(Dq(A0)A = q()A4, hence h()R(f(40)) = R(f(4), therefore R(f(4o)) =
R(f(A)h(2)). This gives

R(f(40)) € R(s(4)) for all 1e U,.
From (1.3) and Proposition 1.3(b) it follows that
r(s():=(e+ys(A)~'y (Aely)

is a pseudo-inverse of f(4o) + s(4) = f(Dh(A) (AeUy).
In other words,

SRR f(ADhA) = f(Dh(A) for Ae U,
and hence
SAADr(s(AN]f(AD) = f(A) for Ae U,

(recall that h(4) is invertible for all 1e U,).
(c) = (a): Define h on U; by

h(4) = p(A)p(4o) + (e — p(A))(e — p(4o)).
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Since h(4o) = e, thereis aneighbourhood V < U, of A, such that h(4)is invertible
for all Ae V. Next define s on V by

s(2) = h(A)™'f(2) — f(do)

and suppose that y is a pseudo-inverse of f(4,). Since s(4o) = 0, there exists
a neighbourhood U, € V of 4, such that

(1.4) Ip(A) — p(Ao)ll <1 and [s(A)[ Iyl <1 forall ieU,.
Since () p(Ao) = p(A)p(4o), it follows from Lemma 1.4 that

(1.5) h(2)p(20)A = p(A)p(Ao)4 = p(A)A = f()A (LeU),).

Combining (1.5) and h(A)p(Ao)A = h(4)f(Ae)A, we conclude f(lg)A =
h(A) ! f(4) A. This gives

s()A < f(Ao)A forall leU,.
In view of (1.4) and Proposition 1.3(c), we find that
r(s():= (e +ys(H) "'y (AeUy

is a pseudo-inverse of f(Ao) + s(A) = (D)~ f(A) (AeU,),
therefore

-h(A) ™ fA)rs(A)RA) T (D) = HA) T (),
thus
FArs(AAA) 11 f(A) = f(A) forall LeU,.

2. Atkinson theery and holomorphic functions in primitive Banach algebras.

For the convenience of the reader we summarize some definitions, notations and
results of Atkinson and Fredholm theory in semisimple Banach algebras (for
details see [1], [4] and [5]).

Given a left ideal L of A the quotient is the ideal L: A = {ac A:ad = L}. The
quotient of a maximal left ideal is called a primitive ideal. We denote the set of all
primitive ideals by IT(4). Note that each P e II(A) is closed. The radical of 4,
denoted by rad(A), is the intersection of all primitive ideals of A.

Ais said to be semisimple if rad (4) = {0}. A is said to be primitive if {0} € I1(A)
(a primitive Banach algebra is semisimple).

In a semisimple Banach algebra A the socle of A, denoted by soc(A), is defined
to be the sum of all minimal right ideals (which equals the sum of all minimal left
ideals [1, p. 23]) or to be {0} if A has no minimal right ideals. Thus soc(4) is an
ideal of A.

The following definitions are fundamental to the rest of this paper.



308 CHRISTOPH SCHMOEGER

2.1 DEfFINITION. Let A be semisimple.
(a) The ideal of inessential elements of A is given by

I(A) = n{P:PeIl(A) and soc(4) < P}.

(b) Anideal K is called inessential if K < I(A).
(c) The K-left Fredholm class and the K-right Fredholm class are the sets

®y(A, K) = {x € A: there exists ye A with yx — ee K}
and ®,(4, K) = {x € A: there exists ye 4 with xy — ee K}.

(d) The set of K-Atkinson elements is
H(A,K) = &(A4,K) L D,(A4, K).

The following proposition contains some important properties of Atkinson
elements (note that soc(A) is an inessential ideal of A).

2.2 PROPOSITION. Let K be an inessential ideal of a semisimple Banach algebra
A.

(a) Pi(A,s0c(A)) = Py(A,1(A)), D,(A4,s0c(4)) = D,(A, I(A)).

(b) xe ®,(A,K) <> there exists p = p> esoc(A) N K such that

Ax = A(e — p).

(¢) xe P (A, K) <> there exists p = p* esoc(A) N K such that
xA = (e — p)A.

(d) xe (A4, K) = is relatively regular.

Proor. (a) [1,F.1.10], [4, Lemma 2.13]. (b) and (c) [4, Proposition 2.19]. (d)
[5, Proposition 2.5].

A non-zero idempotent e, € A4 is called minimal if ey Ae, is a division algebra.
Min (4) denotes the set of all minimal idempotents of A4.

For the rest of this section A will be a primitive algebra such that Min (4) # §.

Observe that Min (4) # @ if and only if soc(4) # {0} [1, BA.3.1].

Fix e;e Min(A4) and denote the set of all bounded linear operators on the
Banach space Ae, by £(Ae,). We shall write

x> X:A4A- P(Aey)

to denote the left regular representation of 4 on the Banach space Ae,, that is
%(y) = xy for ye Ae,. We have

X(Aeg) = xAe, and

ker (%) = {y e Aeo:%(y) = 0} = R(x) N Ae; = R(x)ey.
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Lemma F.2.1in [1] shows that dim (x Ae,), dim R(x)eo and dim (Aey/xAe,) are
independent of the choice of ey € Min (A).
Therefore the rank of x is defined by

rank (x) = dim (x Aey),
the nullity of x is defined by
nul (x) = dim R(x)e,.
We define the defect of x by
def(x) = dim (Aey/xAey).

The following theorem collects some important properties of rank, nullity and
defect:

2.3 THEOREM.

(@) x =0 <> rank(x) = 0.

(b) soc(A) = {xe A:rank(x) < o0}.

(©) xe®y(A, I(A)) [resp. x € (A, I(A))] <> x is relatively regular and nul (x) <
oo [resp. def(x) < oo].

(d) If Ax = A(e — p), p* = p and ey e Min (A), then

R(x) = pA and nul(x) = dim R(x)e, = dim (pAe,) = rank (p).
(€) If xA = (e — q)A,q* = q and e, € Min (A), then
Aey = (e — q) Ae; @ qAey = xAey @ qAey and def(x) = dim gAe, = rank (g).
(®) If p and q are idempotents in A such that ||p — q|| < 1, then
rank (q) = rank (p).
(8) Let K be an inessential ideal of A. If x € ®,(A4, K) and e, € Min (A), then
def (x) = dim (eo L(x)).

PROOF. (a) and (b) [1, F.2.4]. (c) [S, Theorem 3.4]. (d) and () clear.

(f) Lemma 1.4 can be applied. It shows that pg4 = pA and R(p) n g4 = {0}.
Hence pgAe, = pAe, for e,e Min(4). Define the linear operator T:gAe, -
PqAeo by Ty = py (y e qAe,). Since R(p) N g4 = {0}, T is bijective. This implies
rank (q) = dim (qgAe,) = dim (T(gAe,)) = dim (pgAeo) = dim (p Aeo) = rank (p).

(8) By Proposition 2.2 (c), there is an idempotent pesoc(4) N K such that
XA = (e — p) A. By (e) and (c), def(x) = rank (p) < co. According to [4, Lemma
2.3], there are es,...,e,eMin(4)suchthatp = e, +... + e,and ¢;e; = 0(i % )).
This gives

PA=e,A®...®e,A and Ap = Ae; @ ... @ Ae,.
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It follows that
pAeg=e Aeg @ ... De,Aeg and egAp = egde; @ ... DegA,.
Since dim (e;Aeo) = dim (egAej) = 1 ([1, F.2.1]) and Ap = L(x), we have
def(x) = rank (p) = dim (pAey) = n = dim (eqAp) = dim (eoL(x)).

If K is an inessential ideal of A, then we have ®,(4, K) = &,(4,1(4)) and
$,(4,K) = ?,(A, I(A)). From Theorem 2.3(c) we obtain:

xe d(A4,K) = nul(x) < oo,
xe®,(A4,K) = def(x) < c0.

For the rest of this paper G will denote aregion in C and f a holomorphic function
on G with values in A.

A subset M of G is called discrete if M has no accumulation points in G. Thus
M is at most countable.

Before we present the main results of this section, we need the following
proposition:

2.4 PROPOSITION. Let p:G — A acontinuous function. If p(A)* = p(A)in G, then
rank (p(2)) must be constant in G.

Proor. Take AoeG. By the continuity of p, there is 6(4y) > O such that
llp(4) — p(A0)ll < 1 whenever |4 — 4o| < §. Theorem 2.3(f) yields rank (p(1)) =
rank (p(4o)) for |4 — Ao| < . In other words: to each A€ G there exists a neigh-
bourhood U(4,) of 44 such that U(4y) & G, and rank (p(4)) is constant in U(4,).
Since G is a region, this implies that rank (p(4)) is constant in G.

2.5 THEOREM. Let K be an inessential ideal of A and suppose that f(1) e ®,(4, K)
for all J.€ G. Then there exist a constant o and a discrete subset M, of G such that

(2.1) nul{f(A)) =a forall leG\M, and nul(f(u)>a forallpeM,.

For Ay € G the following conditions are equivalent:

(@) Loe G\ M,.

(b) There is a neighbourhood V < G of Aq and a holomorphic functionu:V — A
such that

fRu)f(}) = f(}) forall ieV.

ProoF. The existence of a constant o and a discrete subset M, < G such that
(2.1) holds follows from [5, Theorem 5.4, Theorem 5.6].

(a) = (b): Proposition 2.2 (b), applied to f(4,), shows that there exists p =
p?esoc(A) N K such that
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22 Af(do) = Ale — p).

Therefore

(2.3) R(f(40)) = pA and nul(f(4,)) = rank (p)
(Theorem 2.3(d)). By (2.2), we can find y € 4 such that

24 ¥f(do) =€ —p.

(2.3) yields f(10)yf(4o) = f(Ao) — f(4o)p = f(o), hence y is a pseudo-inverse of
f(4o)- Since f is continuous, there is a neighbourhood V = G\ M, of A, with

1/ — f@)ll < llyl~" for 2eV.
Define the functions q and u on V by

q(A) = (e + y(f(A) — f(4))"'p and

u(d) = (e + y(f (D) — f(Ao)) " y.

Since e + y(f(4) — f(4o)) = € + yf(A) — yf(Ao) = e + yf(A) — (e — p) = yf(A) + p,
we have u(1)f(2) = (e + y(f(A) — f(R)) "' vf(AD) =S/ +p) ' (f(A) +p -
p) =e — (yf(2) + p)~'p. This gives

2.5) u(A)f(A) =e — q(d) for AeV.
It follows that

(2.6) R(f(A) = q()A (AeV).
Now fix e, € Min (4). By (2.6),

2.7 R(f(A))eo = q(A)Aey (A€V).

Since nul (f(4)) = nul (f(4o)) for all A€ V, we derive
dim R(f(2))eo = nul(f(2)) = nul(f(4e)) = rank (p)
= dim (pAeo) = dim ((e + y(f(A) — f(40))) " pAeo)
= dim (q(A) Aey)(< o) forall AeV.

Hence it follows from (2.7) that R(f(4))eo = q(4)4e,, which proves that
Sf(A)q(A)Aey = 0 for 1e V. Therefore

(2.8) f()g(h) =0 for AeV,

because A is primitive and e, + 0 (use [1, p. 29]). (2.6) and (2.8) show that
4qDA = R(f(2) (AeV).

The combination of (2.8) and (2.5) gives
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SAuA) f(A) = f(2) forall AeV.
(b) = (a): Define the function g on V by
q(4) = e — u(A) f ().
Hence Proposition 1.2 implies that g(4)?> = g(4) and "
q(A)A = R(f(A)) for all AeV.
For fixed e, € Min(A) this gives
q(A)Aeo = R(f(A)eo
and therefore
rank (¢(4)) = dim(q(4)Aeo) = dim(R(f(4))eo) = nul(f(4))
for all Ae V. Use Proposition 2.4 to derive
nul(f(4)) = rank(g(2)) = const. = nul(f(4,)) in V.
Thus A€ G\M,.
The second main result of this section reads as follows:

2.6 THEOREM. Let K be aninessential ideal of A and suppose that f (1) € ®,(A4, K)
for all A€ G. Then there exist a constant p and a discrete subset My of G such that

(2.10) def(f(1)) =B forall AeG\M, and def(f()>p forall ueM,.

For Ay € G the following conditions are equivalent:

(@) Aoe G\M;.

(b) There is a neighbourhood V < G of Ay and a holomorphic function u: V — A
such that

FAuA)f() forall AeU.

Proor. Theexistence of a constant and a discrete set My < G such that (2.10)
holds follows from [5, Theorem 5.4, Theorem 5.6].

(a) = (b): Proposition 2.2(c), applied to f(io), shows that there exists
q = q*esoc(A4) N K such that

(2.11) f(Ao)A = (e — @)A.
Therefore L(f(4o)) = Aq. Theorem 2.3(e) shows
2.12) def(f(Ao)) = rank(g).

By (2.11), we can find ye 4 such that f(d,)y = e — g, this gives (recall that
g€ L(f(40))
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S (40)yf (20) = f(Ao),

hence y is a pseudo-inverse of f(4,). Now choose a neighbourhood V < G\M; of
Ao such that

If(A) — f)ll < llyll~* for AeV.
Define the functions p and u on V by
p(A) = gle + (f(A) — f(Ro)y)”! and
u(2) = e + (f(A) — f(Ao))y) ™" = (e + W f(A) — f(A0)) "'y (Proposition 1.3(a)).
Since e + (f(A) — f(Ao))y = f(A)y + g, we derive
SOu() = fOyfDy + 9" =(fAy + 9 - (fAy +9)~!
=e—q(f(y +97"

Therefore

(2.13) S(Au(2) = e — p(4) for all AeV.
It follows that

(2.14) L(f(A) = Ap(4) (AeV)
Fix e, € Min(A). By (2.14),

(2.15) eoL(f(A) < egAp(4) for AeV.

Since Aq = L(f(4o)) and def(f(4)) = def(f(4o))in ¥, we have (use Theorem 2.3(g))
dim(eo L(f(4))) = def(f(4)) = def(f(4o)) = dim(eo L(f (o))
= dim(eoAg) = dim(eoAgle + (f(2) — f(2)¥)™")
= dim(epAp(A))(< o) forall AeV.

By (2.15), eq L(f(4)) = eoAp(4), which shows that e, Ap(4) f (1) = O for A€ V. Since
A'is primitive and e, % 0, we conclude (use [1, p. 297)

(2.16) p(A)f(A) =0 for AeV.
(2.16) and (2.14) show that
Ap(A) = L(f(A)) forall AeV.
The combination of (2.16) and (2.13) gives
S f(A) = f(4) forall AeV.
(b) = (a): Define the function p on V by
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p(4) = e — f(Du(d).

Proposition 1.2 implies that p(1)?> = p(4) and

f(A)A =(e—p(A))A forall ieV.
Use Theorem 2.3 (e) to derive

def(f(4)) = rank(p(1)) for all AeV.
Proposition 2.4 asserts now that

def(f(4)) = rank (p(A)) = const. = def(f(4,)) in V.

Thus Ay e G\M;.

We close this section with a corollary which we need in the next section. The
proof of this corollary is implicitly contained in the proofs of the preceding
theorems.

2.7 COROLLARY. Suppose
(@) f(A) e DA, soc(A)) [resp. f(A)e D.(A,soc(A))] for all LeG;
(b) Ao€G, ye A is a pseudo-inverse of f(Ao) and p*> = pesoc(A) such that
¥(ho) =e—p [resp. f(Ao)y = e — p];
(c) V is a neighbourhood of Ay with
£ = fo)ll < llyl~! and
nul(f(4)) = nul(f(40)) [resp. def(f(4)) = def(f(4o))]
for all A€V,
(d) u: V — A is defined by
u) = (e + Y(f(D) — f(Ao)) ™ 'y.
Then

SAuA) f(A) = f(A) forall AeV.

3. General Banach algebras.

In this section we assume that A4 is an arbitrary Banach algebra. Therefore the
socle of A might not exist. But the quotient algebra A’ = A/rad (A) is semisimple
[1, BA.2.2], thus soc(A4’) exists. We write x’ for the coset x + rad(4)e A'(x € A),
and for § < A write §' = {x": xeS}.

The presocle of A is defined by psoc(4) = {x € A: x' esoc(4’)}. Observe that
psoc(A) is an ideal of 4 and that soc(A4) = psoc(A) if A is semisimple.

In order to extend Atkinson and Fredholm theory we need the following
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important fact: If P € I1(4), then the quotient algebra A/P is primitive [1, BA.2.6].
The ideal of inessential elements of A is defined to be
I(A) = n{P: PeIl(A) and psoc(4) < P}.
An ideal K of A is essential if K < I(A). If K is an inessential ideal of A, the sets
P(A.K), ?,(A,K) and (A4,K)

are defined as in Definition 2.1.
In the following proposition we collect some properties of left and right
Fredholm elements. For further information and details see [1], [4] and [5].

3.1 PROPOSITION.

(@) Dy(A4, 1(4)) = D,(A, psoc(A4)) and D,(A, 1(A)) = D,(A, psoc(A)).

(b) Let xe€ ®i(A, 1(A)) [resp. xe D,(A, I(A))]. Then there exist Py,..., P,eI1(A)
such that

x + Pe ®,(A/P,soc(A/P)) [resp. x + Pe ®,(A/P,soc(A4/P))]
for all PeII(A) and
nul(x + P) = 0 [resp. def(x + P) = 0] for all PeI(A)\{Py,...,P,}.
PRrROOF. [4, Proposition 2.19, Theorem 2.22].

In view of part (b) of the preceding proposition the concepts of nullity and
defect can be extended as follows:

We define the nullity function and defect function on /(A,I(A)) x I1(4) -
N U {0, 0} by

v(x)(P) = nul(x + P) and (x)(P) = def(x + P).
If x e </(A, I(A)) we define
nul(x) = [ Ps;m v(x)(P) for xe®(A4,I(A)),
1 oo for x¢ D4, I1(A)),
def(x) = 'Pegh) dx)(P) for xed.(A,I(A)),
1 oo for xdéd,(A,I(A4)).

3.2 REMARK. If A is primitive and x € @,(4, I(4)) then we have v(x)(P) = 0 for
all {0} + Pe I1(A). Therefore nul(x) = v(x)({0}). Similarly def(x) = d(x)({0}) (see
[1, p. 38], [5, Remark 4.5] for details). So our two definitions for nullity and defect
coincide.

Notation: For the rest of this paper we write ®;,(4) and 9,(4) instead of
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®,(A, I(A)) and D,(A4, I(A4)). Recall that G denotes a region in C and f a holomor-
phic function on G with values in A.

The tools developed so far suffice to establish the main results of this paper.

3.3. THEOREM. Let K be an essential ideal of A and suppose that f (4) € (4, K)
Jor all A€ G. Then there exists a discrete subset M, of G such that

V(f(A)) is independent of A for Ae G\M,
(3.1) and for each ue M, there is a primitive ideal P with

WS(W)P) > Wf(A)(P) (AeG\M,).

For Ay € G the following conditions are equivalent:
(a) nul(f(4) = nul(f(4o)) in a neighbourhood of A.
(b) There is a neighbourhood U < G of A, such that

V(f(A))P) = v(f(Ao))(P) forall PeIl(A) and all AeU.

(c) There is a neighbourhood V = G of Ay and a holomorphic function
F:V — A" = A/rad(A) such that

(f(A) + rad(A)F(A)(f(A) + rad(4)) = f(A) + rad(4) for all A€ V.

Proor. The existence of a discrete subset M, such that (3.1) holds follows from
[5, Theorem 5.6]. By (3.1) and Proposition 3.1(b), there exist J >0,
Pi,...,P,ell(A) and ay,...,a,e N U {0} with

(.2 WANP) =ao; =v(f(A)P) (j=1L....m 0<|d— 4| <),
(3:3) WfENP) = Wf(A)P) =0 (PelI(AN{Py,...,P}; |2 — Aol < 6),

(3.4 and nul(f(4) = i o; S nul(f(de)) (0 <A — Aol <)
j=1

This gives the equivalence of (a) and (b).

Since &,(A4, K) = &,(4) = &,(A, psoc(A)) (Proposition 3.1(a)) there is ae 4 with
af (o) — eepsoc(A), hence a'(f(4y)) — € €soc(A4’). Therefore (f(4o)) € Py(A4,
soc(A")). Proposition 2.2 shows the existence of pe A4 such that

A(f(Ao)) = A'(¢ — p)) and (p)* = p'esoc(4)).
Therefore y'(f(Ao)) =€ — p' for some ye A and R((f(4))) = p’A’ (Theorem
2.3(d)). Thus (f(40))'Y'(f(A0)) = (f(4o)). It follows that

(3.5) (o) (Ro) = f(Ro), ¥f(Ao) — (e — p), p* — perad(4).
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Since p e psoc(4), [1, BA.3.4] shows p’ + P’ esoc(A'/P’') for all P € [1(A), thus, by
[1, BA.2.6],

(3.6) p + Pesoc(4/P) for all Pell(A).

Since rad(4) = N{P: PeII(A)}, the combination of (3.5) and (3.6) gives the
following result:

(3.7) (f(4o) + P)y + P)(f(Z0) + P) = f(o) + P,
(3.8) O+ P)Nf(h) +P)=(e—p)+ P
(3.9) and p?>+ P =p+ Pesoc(A/P)

for each P e I1(A).

We show next that (b) implies (c): There is a neighbourhood V < U of 4, such
that || f(4) — f(Ao)ll < |yl ~* for A€ V. It follows that

(3.10) (D) — f(Ro) + Pl < If (D) = fGo)l < Iyl ™ < ly + PII7}
(AeV, Pell(A)).
Thus the functions
ud)=(e+y(f(4) — f(A))~'y and
uA) + P =[le+ yf() — fAo))"'y + P1[y + P]

(P eII(A)) are holomorphic in V. From (3.7), (3.8), (3.9), (3.10) and Corollary 2.7
we derive

(f() + P)u(A) + P)(f(A) + P) = f(A) + P forall AeV and all PeII(A).
Hence
SAuA)f(A) — f(A)e n{P: PeIl(A)} =rad(4) forall AeV.

Now define F: V — A/rad(A) by F(4) = u(4) + rad(A), and (c) follows.

To complete the proof, we show that (c) implies (b). [7, Lemma 2.1] shows that
there is a neighbourhood W < V of 4, and a holomorphic function u: W — A
such that

u(4) + rad(4) = F(A) (Ae W)
This gives f(A)u() f(A) — f(A)erad(A4) = N{P: PeII(A)} for all Ae W. Hence
(f(A) + P)Yw(d) + P)(f(A) + P) = f(A) + P for all Ae W and all PeTI(A).
From Theorem 2.5, (3.2) and (3.3), we obtain
VS ()(P) = v(f (Ao))P)
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for all PeII(A4) and all e {AeC: |A — o] < J}.

3.4 THEOREM. Let K be aninessential ideal of A and suppose that f () € ®,{A, K)
for all A€ G. Then there exists a discrete subset Mg of G such that

6(f(A)) is independent of A for A€ G\M,
and for each pe M there is a primitive ideal P with

o(f(W)(P) > o(f(AN(P) (A€ G\Mp).

For ) € G the following conditions are equivalent:
(a) def(f(4)) = def(f(o)) in a neighbourhood of A,.
(b) There is a neighbourhood U < G of A, such that

(S (A)P) = (f(Ao))(P) for all Pell(A) and all Ac U.

(c) There is a neighbourhood V < G of Ay, and a holomorphic function
F:V - A’ = A/rad(A) such that

(f(A) + rad(A)F(A)(f(4) + rad(4)) = f(4) + rad(A4) forall AeV.

We omit the proof, because this theorem can be proved in the same way as
Theorem 3.3.
An immediate consequence of the last theorems and Theorem 1.5 is

3.5 THEOREM. Let A be semisimple and K be an inessential ideal of A. Suppose
f(A) e ®y(A4, K) [resp. D,(A, K)] for all A€ G. For Ay € G the following conditions are
equivalent:

(a) nul(f(4)) [resp. def(f(4))] is constant in a neighbourhood of .

(b) There is a neighbourhood U, = G of Ay and a holomorphic function
u: U, = A such that

SAuA)f(A) = f(A) forall AeU,.

(c) There is a neighbourhood U, < G of Ay and a holomorphic function
p: U, — A such that

p(A)?* = p(4) and p(A)A = f()A for all AeU,.

(d) There is a neighbourhood U;s = G of Ay and a holomorphic function
q: U3 — A such that

q(4)? = q(4) and q(A)A = R(f (1)) for all A€ Us;.
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