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TRIVIAL FIXED POINT SUBALGEBRAS
OF THE ROTATION ALGEBRA

CARLA FARSI and NEIL WATLING

Abstract.

Here we prove that the fixed point subalgebras of the rotation algebra 2/, under parabolic and
hyperbolic automorphisms induced by SL(2, Z) in the standard representation are trivial.

In this note we study the fixed point subalgebras of the rotation algebra </,
the universal C*-algebra generated by two unitaries U and V satisfying
VU = pUV with p =¢e®™® and 0 <0 <1, induced by SL(2,2Z), where any

b
A= (3 d)e SL(2,Z) induces the automorphism 7, of <,

TA(U) _ eacm'o UnVc, ‘CA(V) = e”“"“’U"V",

see [11]. We will prove the results we announced in [5], concerning the fixed
point subalgebras of the infinite order automorphisms of .oy, namely the para-
bolic and the hyperbolic ones (See Theorem 2.0.8 of [5]). These results are valid
for any 6 €[0, 1). If A e SL(2, Z), we shall denote by .74 the fixed point subalgebra
of the automorphism 74 of o#,.

Many new results concerning the fixed point subalgebras associated to el-
ements of SL(2, Z) have been found recently. In [1] and [2] Bratteli, Elliott, Evans
and Kishimoto started studying =7, '3, 8 [0, 1). Subsequently Kumjian [10]
computed the K-theory of o/, 2 for @irrational. In [6], [7], [8] and [9] we give
a characterization of the fixed point subalgebra associated to any finite order, i..
elliptic, element of SL(2, Z), respectively in the rational and irrational case. Very
recently in [3] Bratteli and Kishimoto have shown that 4,72 is an AF algebra,
while in [4] Elliott and Evans have shown that &/, is an inductive limit of direct
sums of two circle algebras (both results require 6 to be irrational). There are still
many open problems. For example an interesting question to ask is if the fixed
point subalgebras of the elliptic elements are AF for 6 irrational. Unfortunately
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the techniques in [3] and [4] are not directly applicable in these more general
examples.

We would like to thank Prof. O. Bratteli for comments on a previous draft of
this note.

We now describe the situation for the (parabolic and hyperbolic) infinite order
elements of SL(2, Z). Recall the following propsition from [5].

PROPOSITION. If A is an infinite order element of SL(2,Z), then |Trace(4)| = 2.
Moreover if AeSL(2,2), |Trace(A)| = 2, and A" % I, for any neZ\ {0}, then A is

conjugate in SL(2,Z) to + W" for some neZ\ {0}, where W = ((1) i)

TuEOREM. 1. If AeSL(2,2), A + I,, and Trace(A) = 2, then /3 = C(S*).
2. If AeSL(2,2), A + —1I,, and Trace(4) = —2, then o4 = C([-2, +2]).
3. If AeSL(2,2), and |Trace(A)| > 2, then o/ = C.

For the proof of 3. of this theorem in the irrational case see also [11].
PrOOF. 1. Since A is conjugate to W* for some ke Z \ {0}, we consider the case

in which

4= <(1) ';) t(U) = U, 14(V) = "% UV, keZ, k + 0.

Let x be a fixed point of 7, and take its Fourier expansion,

x= Y cpmU"V™

n,meZ

So,
T4(%) = o mTa(U"V™) = ¥ Cpme™ ™ U Y™,
Therefore, by recursion,
X(x) = Y cpmeXmom yntKmkym yK eN.
But if x e o/ is a fixed point of 14, it follows by equating coefficients that,
Crm = Co+ kmkme€ X70m: YK eN.
Thus,

Ienmll = lCn+ kmbmll

But by Riemann-Lebesgue’s lemma, we have c,,, — 0 as the indices tend to
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infinity, so c,,, = 0 for all m # 0. Therefore x = Y c,U" i.e. the fixed point
subalgebra of 1, is C(S?). This proves 1.

2. Since A is conjugate to — W* for some ke Z \ {0}, we now consider the case

-1 %

in which 4 =
in whic < 0 —1
defined by 7,(U) = U™}, 14(V) = e ™*U*V !, Let x be a fixed point of 7, and
let,

), k 4 0. Then A4 induces the automorphism 7, of o/,

x= Y CpmU"V™

n,meZ

be the Fourier decomposition of x. Then one computes by recursion,
TiK(X) — Z Cn,mp“mz“( U~ 2Kmk Vm’ VK e N,
TﬁK + l(x) — Z cn,me_(2K+ 1)mi@km?2 U(2K+ 1)mk—n V—m’ VK € N

Since x € &7, is a fixed point of 74, one obtains by equating coeflicients,

K

— m2k.
Com = Cn—2Kmk,mP s and

— 2K + 1)ni6km?
Cnm = C2K + l)mk—n,—me( eiBkm 5 VKeN.

Therefore ¢,,, =0 for all m+0 and ¢, =c_, for all n. Thus, x =Y .5,
cno(U" + U™ — co.0, 50 that ofy* = C*U + U*) = C[—2, +2]. This proves

2.
3. Now suppose that,
ab
A=
(c2)
where |T| > 2, T= Trace(4). Note that (t,)* = 14, and so we will compute
T4%). By inductionon K = 1,
s Sxka — Sg—1 Skb
SKC SKd - SK—l ’

where Sq = 0,5, = 1and Sg,, = ST — Sk _. Note that b and c cannot be zero
since the requirement that |a + d| > 2 and ad = 1 is impossible in Z. Similarly, if
K21,

ok (Sxd =Sk —Seb
—SKC SKa—SK_l ’

Soifx = Y\ mezCn.mU" V™ is a fixed point of 74, then using 7 4, one computes, as in
cases 1 and 2, that
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”Cn.m” = ”c(S,(d—Sx-l)n—SKbm,'SKcn+(SKa—SK_,)m”
= ”Cs,(x—sx_.y,sKX'—s,(_ly' I, YK 21,

where X =dn — bm, X' = —cn + am, Y= nand Y’ = m. Note that X, X’, Y and
Y ' are integers and if (n, m) % (0, 0), then (X, Y), (X", Y") & (0,0). Now,

e () (=

T? -4 2 2

so assuming (X, Y) # (0,0) we have,

/T2 _ 4\K-1
SkX —Sg_, Y= ! (T+ T 4) T+ /T2 —4)X —2Y] -

2./T*—4 2

1 T— 2 _ K-1
T 4( 2T 4) [(T—JT?—4)X —2Y].
T+./T*—4

But as |T] > 2, at least one of the numbers —— >

greater than one, and since the product of these numbers is one, the other has
absolute value less than one. Since Tis an integer with |T| > 2, T+ /T? — 4 are
irrational and hence (T'+ ./T?—4)X —2Y +£0. Thus limg.,|SxX —
Sx_1Y| = o0.

In combination with the above relation for |c, |, this implies [c, [ =
0V(n,m) % (0,0). So any fixed point is a constant, i.e., /" = C.

This ends the proof of the Theorem.

has absolute value
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