TRIVIAL FIXED POINT SUBALGEBRAS OF THE ROTATION ALGEBRA

CARLA FARSI and NEIL WATLING

Abstract.

Here we prove that the fixed point subalgebras of the rotation algebra \mathcal{A}_{θ} under parabolic and hyperbolic automorphisms induced by $SL(2, \mathbb{Z})$ in the standard representation are trivial.

In this note we study the fixed point subalgebras of the rotation algebra \mathscr{A}_{θ} , the universal C^* -algebra generated by two unitaries U and V satisfying $VU = \rho UV$ with $\rho = e^{2\pi i\theta}$ and $0 \le \theta < 1$, induced by $SL(2, \mathbb{Z})$, where any $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z})$ induces the automorphism τ_A of \mathscr{A}_{θ} ,

$$\tau_A(U) = e^{ac\pi i\theta} U^a V^c, \, \tau_A(V) = e^{bd\pi i\theta} U^b V^d,$$

see [11]. We will prove the results we announced in [5], concerning the fixed point subalgebras of the infinite order automorphisms of \mathcal{A}_{θ} , namely the parabolic and the hyperbolic ones (See Theorem 2.0.8 of [5]). These results are valid for any $\theta \in [0, 1)$. If $A \in SL(2, \mathbb{Z})$, we shall denote by \mathcal{A}_{θ}^{A} the fixed point subalgebra of the automorphism τ_{A} of \mathcal{A}_{θ} .

Many new results concerning the fixed point subalgebras associated to elements of $SL(2, \mathbb{Z})$ have been found recently. In [1] and [2] Bratteli, Elliott, Evans and Kishimoto started studying $\mathscr{A}_{\theta}^{-I_2}$, $\theta \in [0, 1)$. Subsequently Kumjian [10] computed the K-theory of $\mathscr{A}_{\theta}^{-I_2}$ for θ irrational. In [6], [7], [8] and [9] we give a characterization of the fixed point subalgebra associated to any finite order, i.e. elliptic, element of $SL(2, \mathbb{Z})$, respectively in the rational and irrational case. Very recently in [3] Bratteli and Kishimoto have shown that $A_{\theta}^{-I_2}$ is an AF algebra, while in [4] Elliott and Evans have shown that \mathscr{A}_{θ} is an inductive limit of direct sums of two circle algebras (both results require θ to be irrational). There are still many open problems. For example an interesting question to ask is if the fixed point subalgebras of the elliptic elements are AF for θ irrational. Unfortunately

the techniques in [3] and [4] are not directly applicable in these more general examples.

We would like to thank Prof. O. Bratteli for comments on a previous draft of this note.

We now describe the situation for the (parabolic and hyperbolic) infinite order elements of SL(2, Z). Recall the following proposition from [5].

PROPOSITION. If A is an infinite order element of $SL(2, \mathbb{Z})$, then $|\operatorname{Trace}(A)| \ge 2$. Moreover if $A \in SL(2, \mathbb{Z})$, $|\operatorname{Trace}(A)| = 2$, and $A^n \ne I_2$ for any $n \in \mathbb{Z} \setminus \{0\}$, then A is conjugate in $SL(2, \mathbb{Z})$ to $\pm W^n$ for some $n \in \mathbb{Z} \setminus \{0\}$, where $W = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

THEOREM. 1. If $A \in SL(2, \mathbb{Z})$, $A \neq I_2$, and Trace(A) = 2, then $\mathscr{A}_{\theta}^A \cong C(S^1)$.

- 2. If $A \in SL(2, \mathbb{Z})$, $A \neq -I_2$, and Trace(A) = -2, then $\mathscr{A}_{\theta}^A \cong C([-2, +2])$.
- 3. If $A \in SL(2, \mathbb{Z})$, and $|\operatorname{Trace}(A)| > 2$, then $\mathscr{A}_{\theta}^{A} \cong \mathbb{C}$.

For the proof of 3. of this theorem in the irrational case see also [11].

PROOF. 1. Since A is conjugate to W^k for some $k \in \mathbb{Z} \setminus \{0\}$, we consider the case in which

$$A = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}, \tau_A(U) = U, \tau_A(V) = e^{\pi i \theta k} U^k V, k \in \mathbb{Z}, k \neq 0.$$

Let x be a fixed point of τ_A and take its Fourier expansion,

$$x = \sum_{n,m \in \mathbb{Z}} c_{n,m} U^n V^m.$$

So.

$$\tau_A(x) = \sum c_{n,m} \tau_A(U^n V^m) = \sum c_{n,m} e^{\pi i \theta k m^2} U^{n+mk} V^m.$$

Therefore, by recursion,

$$\tau_A^K(x) = \sum c_{nm} e^{K\pi i \theta k m^2} U^{n+Kmk} V^m, \forall K \in \mathbb{N}.$$

But if $x \in \mathcal{A}_{\theta}$ is a fixed point of τ_A , it follows by equating coefficients that,

$$c_{n.m} = c_{n+Kmk.m}e^{-K\pi i\theta km^2}, \forall K \in \mathbb{N}.$$

Thus,

$$||c_{n,m}|| = ||c_{n+Kmk,m}||.$$

But by Riemann-Lebesgue's lemma, we have $c_{n,m} \to 0$ as the indices tend to

infinity, so $c_{n,m} = 0$ for all $m \neq 0$. Therefore $x = \sum c_n U^n$, i.e. the fixed point subalgebra of τ_A is $C(S^1)$. This proves 1.

2. Since A is conjugate to $-W^k$ for some $k \in \mathbb{Z} \setminus \{0\}$, we now consider the case in which $A = \begin{pmatrix} -1 & k \\ 0 & -1 \end{pmatrix}$, $k \neq 0$. Then A induces the automorphism τ_A of \mathscr{A}_{θ} defined by $\tau_A(U) = U^{-1}$, $\tau_A(V) = e^{-\pi i \theta k} U^k V^{-1}$. Let x be a fixed point of τ_A and let,

$$x = \sum_{n m \in \mathbb{Z}} c_{n,m} U^n V^m,$$

be the Fourier decomposition of x. Then one computes by recursion,

$$\begin{split} \tau_A^{2K}(x) &= \sum c_{n,m} \rho^{-m^2kK} U^{n-2Kmk} V^m, \, \forall K \in \mathbb{N}, \\ \tau_A^{2K+1}(x) &= \sum c_{n,m} e^{-(2K+1)\pi i \theta k m^2} U^{(2K+1)mk-n} V^{-m}, \, \forall K \in \mathbb{N}. \end{split}$$

Since $x \in \mathcal{A}_{\theta}$ is a fixed point of τ_A , one obtains by equating coefficients,

$$c_{n,m} = c_{n-2Kmk,m} \rho^{m^2kK}, \text{ and}$$

$$c_{n,m} = c_{(2K+1)mk-n,-m} e^{(2K+1)\pi i\theta km^2}, \forall K \in \mathbb{N}.$$

Therefore $c_{n,m} = 0$ for all $m \neq 0$ and $c_{n,0} = c_{-n,0}$ for all n. Thus, $x = \sum_{n \geq 0} c_{n,0}(U^n + U^{-n}) - c_{0,0}$, so that $\mathscr{A}_{\theta}^A \cong C^*(U + U^*) \cong C[-2, +2]$. This proves 2.

3. Now suppose that,

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

where |T| > 2, T = Trace(A). Note that $(\tau_A)^K = \tau_{(A^K)}$, and so we will compute $\tau_{(A^K)}$. By induction on $K \ge 1$,

$$A^{K} = \begin{pmatrix} S_{K}a - S_{K-1} & S_{K}b \\ S_{K}c & S_{K}d - S_{K-1} \end{pmatrix},$$

where $S_0 = 0$, $S_1 = 1$ and $S_{K+1} = S_K T - S_{K-1}$. Note that b and c cannot be zero since the requirement that |a + d| > 2 and ad = 1 is impossible in Z. Similarly, if $K \ge 1$,

$$A^{-K} = \begin{pmatrix} S_{K}d - S_{K-1} & -S_{K}b \\ -S_{K}c & S_{K}a - S_{K-1} \end{pmatrix}.$$

So if $x = \sum_{n,m \in \mathbb{Z}} c_{n,m} U^n V^m$ is a fixed point of τ_A , then using τ_{A^k} , one computes, as in cases 1 and 2, that

$$||c_{n,m}|| = ||c_{(S_K d - S_{K-1})n - S_K bm, -S_K cn + (S_K d - S_{K-1})m}||$$

= $||c_{S_K X - S_{K-1} Y, S_K X' - S_{K-1} Y'}||, \forall K \ge 1,$

where X = dn - bm, X' = -cn + am, Y = n and Y' = m. Note that X, X', Y and Y' are integers and if $(n, m) \neq (0, 0)$, then $(X, Y), (X', Y') \neq (0, 0)$. Now,

$$S_{K} = \frac{1}{\sqrt{T^{2} - 4}} \left[\left(\frac{T + \sqrt{T^{2} - 4}}{2} \right)^{K} - \left(\frac{T - \sqrt{T^{2} - 4}}{2} \right)^{K} \right], |T| > 2,$$

so assuming $(X, Y) \neq (0, 0)$ we have,

$$S_{K}X - S_{K-1}Y = \frac{1}{2\sqrt{T^{2} - 4}} \left(\frac{T + \sqrt{T^{2} - 4}}{2}\right)^{K-1} \left[(T + \sqrt{T^{2} - 4})X - 2Y \right] - \frac{1}{2\sqrt{T^{2} - 4}} \left(\frac{T - \sqrt{T^{2} - 4}}{2}\right)^{K-1} \left[(T - \sqrt{T^{2} - 4})X - 2Y \right].$$

But as |T| > 2, at least one of the numbers $\frac{T \pm \sqrt{T^2 - 4}}{2}$ has absolute value greater than one, and since the product of these numbers is one, the other has absolute value less than one. Since T is an integer with |T| > 2, $T \pm \sqrt{T^2 - 4}$ are irrational and hence $(T \pm \sqrt{T^2 - 4})X - 2Y = 0$. Thus $\lim_{K \to \infty} |S_K X - S_{K-1} Y| = \infty$.

In combination with the above relation for $||c_{n,m}||$, this implies $||c_{n,m}|| = 0 \,\forall (n,m) \neq (0,0)$. So any fixed point is a constant, i.e., $\mathscr{A}_{\theta}^{A} = \mathbb{C}$.

This ends the proof of the Theorem.

REFERENCES

- O. Bratteli, G. A. Elliott, D. E. Evans and A. Kishimoto, Non commutative spheres I, International J. Math. 2 (1991), 139-166.
- O. Bratteli, G. A. Elliott, D. E. Evans and A. Kishimoto, Non commutative spheres II, Rational Rotations, J. Operator Theory, to appear.
- O. Bratteli and A. Kishimoto, Non commutative spheres III, Irrational Rotations, Commun. Math. Phys. 147 (1992), 605-624.
- 4. G. A. Elliott and D. E. Evans, The structure of Irrational Rotation C*-algebras, preprint.
- C. Farsi and N. Watling, Fixed point subalgebras of the rotation algebra, C.R. Math. Rep. Acad. Sci. Canada XIII (1991), 75-80.
- 6. C. Farsi and N. Watling, Quartic algebras, Canad. J. Math., to appear.
- 7. C. Farsi and N. Watling, Cubic algebras, preprint.
- 8. C. Farsi and N. Watling, Elliptic algebras, preprint.
- 9. C. Farsi and N. Watling, Irrational fixed point subalgebras I, II, preprint.

- A. Kumjian, On the K-theory of the symmetrized non-commutative torus, C. R. Math. Rep. Acad. Sci. Canada XII (1990), 87–89.
- 11. Y. Watatani, Toral automorphisms on the irrational rotation algebra, Math. Japon. 26 (1981), 479-484.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF COLORADO CAMPUS BOX 395 BOULDER CO 80309 U.S.A. DEPARTMENT OF MATHEMATICS SUNY AT BUFFALO BUFFALO, NEW YORK 14214 U.S.A