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EXTENSION OF BILIPSCHITZ MAPS OF
COMPACT POLYHEDRA

JUHA PARTANEN and JUSSI VAISALA

Introduction.

Let X and Y be metric spaces with distance written asja — b|. Amap f: X — Yis
called bilipschitz, abbreviated BL, if there is L > 1 such that

Ix = y/L=|fx—fyl < Lix — )|

for all x, ye X. In this situation we also say that fis L-BL. A1-BLmap f: X -» Y
will be called an isometry.

Aset A < X has the bilipschitz extension property, abbreviated BLEP, in (X, Y)
if there is Lo = Lo(4, X, Y) > 1 such that if 1 £ L £ L, then every L-BL map
f: A— Y has an L,-BL extension g: X — Y, where L, = L,(L,4,X,Y)—1 as
L - 1. This definition is from [V, p. 239].

In this paper we prove that a compact polyhedron X < R" has the BLEP in
(R", Y) whenever Y is a linear subspace of the Hilbert space I, withdim Y = n. In
the special case where X is a finite union of n-simplexes in R", this follows from
[V,6.2]. This result and regular neighborhoods allow us to reduce the theorem to
proving that the BLEP in (R", Y) is preserved under an elementary simplicial
collapse K'\ K in R"; the definition of collapsing will be recalled at the beginning
of the proof of Theorem 1.2. This reduction is accomplished in Section 1.

Supposing that K’ collapses to K through a p-simplex 4 we prove in Sections
2-5 that the BLEP of |K’| indeed implies the BLEP of |K|. Our method resembles
that used in [TV] to prove that R? has the BLEP in (R",R")for 1 Sp<n— 1.

Sections 2 and 3 contain some auxiliary constructions. We first consider
anormalized situation where 4 is a standard p-simplex; in the general case we use
an auxiliary affine map which carries the standard simplex onto 4. We obtain
a Whitney type decomposition &7 of a set 4 = v containing 4\|K|. The
elements of .o/ are p-cubes. To each Q € of we associate a set Eg c |K| near Qand
of roughly the same size as Q.
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In Section 4 we begin the task of extending a given L-BL map f: |K| > Y to
IK'| = |[K|u A.IfQ e o/, welet Tpand T be the affine subspaces of R” spanned by
Ey and E} = Eg U 4, respectively. We first approximate f in each Ey by an
isometry hy:Tp— Y. Then we extend these isometries hy to isometries
h§: T§ — Yin such a way that if Q, R e o intersect, then h§ and hk do not differ
much in Q U R. This is a crucial and laborious technical step in our proof.

In Section 5 we obtain a Whitney triangulation 7 of A by triangulating each
cube Q €.« in a suitable way. For each vertex v of J we then choose a cube
Q(v)e o/ with veQ(v). The desired extension g of f is obtained by setting
g(v) = h§,(v) for the vertices v of 7 and extending affinely to the simplexes of 7.
We prove thatif L= 1 + ¢ with ¢ small enough, then all the steps described above
are possible and that the map g:|K'| —» Yis L;-BL with L; = L (L,K’,Y) - 1l as
L-1.

In Section 6 we apply our main theorem to show that also certain unbounded
polyhedra have the BLEP in (R”, R").

We thank the referee for pointing out and filling a gap in the proof of 4.18 and
for other suggestions and corrections.

NotaTION. Our notation on PL topology is fairly standard. Given a set K of
simplexes, we write |K| = UK. If te K, we let st(r, K) denote the set of the
simplexes of K containing 7. The sets of the vertices of K and t are written as K°
and 7°, respectively.

If 1 <p < n— 1, weidentify R? with the subset {x:x,+; =... =x, =0} of
R". The distance between two sets 4, B in a metric space is written as d(4, B) with
the agreement that d(A4, B) = oo if A4 or Bis empty. The diameter of A is d(A) with
d(@) = 0. We let T(A) denote the affine subspace of R" spanned by a set A = R".
Forr > 0 we set

B"(A,r) = {xeR":d(x,4) < r}.

In the Hilbert space [, of all square summable sequences of real numbers, we let
x -y denote the inner product of x and y, and |x| = (x-x)*/? is the norm of x. If
f and g are two functions defined in a set A and with values in I,, we write

|f — gla = sup|fx — gx]|.

xed

We usually omit parentheses writing fx instead of f(x). A map f: 4 — I, with
A < R"is a similarity if there is 4 > 0 such that

1fx — fyl = Alx — ¥l

for all x,ye A. Every similarity f:4 — I, is the restriction of a unique affine
similarity g: T(A) — [,. The corresponding statement for isometries is also true.
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We let R, Z and N denote the set of real numbers, integers and nonnegative
integers, respectively.

1. The main result and a reduction.
This paper is devoted to proving the following result:

1.1. THEOREM. Let X = R" be a compact polyhedron and let Y be a linear
subspace of the Hilbert space I, with dim Y = n. Then X has the BLEP in (R", Y).

PrOOF. Let N be a regular neighborhood of X in R". Since N is a finite union of
n-simplexes, N is thick in R" in the sense of [V, 6.1]. Hence N has the BLEP in
(R, Y) by [V, 6.2].

A standard result of PL topology (cf. [G], p. 77]) gives a triangulation (N, X")
of (N, X) such that N’ collapses to X’ through a finite sequence of elementary
simplicial collapses

N = No\ N;\...\N, = X".

Since |N’| = N has the BLEP in (R", Y) and since | X'| = X, we have reduced the
theorem to the following result:

1.2. THEOREM. Let K and K' be finite simplicial complexes in R" and suppose
that there is an elementary simplicial collapse K’'\ K through a p-simplex A,
1 £ p < n. Suppose also that |K'| has the BLEP in (R", Y). Then |K| has the BLEP
in (R", Y).

PROOF. Letuv,,...,v, be the vertices of 4. Then 4 is their join v,. .. v,, and the
(p — 1)-faces of A are the simplexes a; = vg. .. ;... v, with vertices v, j % i. The
collapsing condition K\ K through 4 means that K'\ K = {4, g;} for somei. We
may assume that K'\ K = {4,0,}. Using an auxiliary isometry of R", we may
also normalize the situation so that v, = 0 and 4 = R”.

We divide the proof of Theorem 1.2 into four parts, which are presented in
Sections 2-5.

If p = 1, it is possible that {0} is a isolated simplex of K. This easy special case
will be considered in 5.20. Until then, we assume that 0 is not isolated in [K |.

2. The decomposition.

We shall construct a Whitney type decomposition .o/ of a suitable set comair?ing
A\|K|. Lete, = Oand let (e,,. . ., e,) be the standard basis of R”. We first consider
a special case, assuming that v, = ¢;for0 < i< p until the end of Section 3.

2.1. NoTaTION. For each nonempty subset v of {1,...,p} we set

T, = {xeRP:x; =0 forall jev}.
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We let g, denote the orthogonal projection q,: R? — T,. As a special case we
obtain the coordinate hyperplanes T; = T;; = T(s;) of RP. We set R} =
Tyu...uT,

2.2. THE CUBE FAMILY #. Setting I = [0,1] we have 4 < I? < 2I? = [0,2]".
We define some auxiliary families of p-cubes of R”. First, let .#_, = {217},
Proceeding inductively, we obtain .4, , from %, by bisecting the sides of each
cube in .%. Let # be the union of all 4, k = —1,keZ.

For any cube @ — R?, we let 4, denote the side length and z, the center of Q. If
Qe 4, we let k(Q) denote the unique integer with Q € % o). Then 4y = 274@ for
Qe f.

EEEE R

%

Figure 1. The decomposition ¢.

More interesting is the subfamily ¢ = U, # of # where

He={0eA:d(Q,RE) = Ao =27},

The cubes Q € # give adecomposition of 217\ R} into closed p-cubes with disjoint
interiors. In Figure 1 we have p = 2, but the reader should remember that the
corresponding three-dimensional picture is a better guide to a sufficient under-
standing of some important phenomena. The members of #; are shaded. The
simplex 4 is in the lower left corner, and o is the dotted line segment.

If @ = R is a p-cube and ¢ > 0, we let Q(z) be the p-cube of R? with center zg,
side length t4, and edges parallel to those of Q.

We state without proof some obvious properties of #:
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2.3. LeMMA. (1) Let Q€ #, R€ 4.y andlet Q AR + Q. Then R(t) < Q(t) for
t=3.

(2) Let O, Re # andlet Q "R + @. Then R(t) = Q(t + 2) for all t > 0.

(3) LetQy,...,Q;beasequence of cubesin ¢ suchthat k(Q;.,) = k(Q,) + 1 and
Qi+1n Q¥ O forallje{l,...,s—1}. Then Q, = Q,(3).

2.4. NoTATION. We let # S denote the cardinality of a set S. If Q € #, we define
vo = {j:d(Q, T) = 274D}, Iy = #v,.
Then1 =l <p. If1 £j < pand keN, we set
Hl={QeS:jevel = {Qef:dQ T)=27"}.

Then % = %! U... U #F. In Figure 1, #} is the vertical and #2 the horizontal
row of shaded squares.

2.5. PREDECESSORS AND FOLLOWERS. Suppose that Re ¢, with k > 1. Then
there is a unique cube Q in _#, _, satisfying the conditions
(26) VR © vQ’ quR < quQ’ Qn R :*: 0

We say that Q is the predecessor of R and R is a follower of Q, and we write R < Q
and Q > R. We let &% (Q) denote the family of all followers of Q. Then % (Q) is the
union of the mutually disjoint families

F'(Q) = {ReF(Q):ve =},

0 # v < vy. In particular, for jevy we have the sets FI(Q) = #(Q), each
containing 27! cubes. We let P}, be the unique cube of #7(Q) closest to the
origin. We call P}, the principal follower of Q in the directionje vo. Iflg = 1,0 has
only one principal follower, written as Py. This is the case with most cubesin ¢.
For example, if p = 2, then only the corner cube of % has lo = 2; for all other
cubes of # we have [, = 1.

2.7. THEFAMILY . The p-simplex 4 = e, ... e,isa corner of the cube 21”. We
set ¢ =0, U... U, =4 RS We are mainly interested in cubes Q€ ¢ suffi-
ciently near g. We define a family o7 of such cubes:

o = ) sty oty = (Q€ S: Q) ne + O}
k=0

We also set
A=vdd, di=o9nF,

where 1 <j=<pkeN.
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2.8. LEMMA. (1) 4\p < A.

2 If Resdyy1, R< Qe f,Se fand QNS + O, then S € .
(3) IfRety+1,0€ Fiand Q "R £ O, then Q € of,.

4 IfQ,Re %, 0NnR+PandR < S,thenQn S + .

Proor. The statement (1) is obvious, (3) follows from Lemma 2.3(1), and (4) is
easy to verify. To prove (2), assume its situation and observe that it suffices to
prove that R(5)m ¢ = S(5). Let xe R(5)ng and ie{l,...,p}. If ie vy, then (2.6)
gives ievy. Hence 0 < x; < zg; + 5Ag/2 = 244 and zg; = 344 /2. This implies

Ix; — zsil = Ix; — zgil + |2gi — zsil £ 349/2 + Ag = 545/2.
If i¢vg, we get
Ix; — zsil £ 1x; — zpdl + 2R — Zoil + |2gi — Zsil £ SAr/2 + Ag/2 + As = 545/2.
It follows that x & S(5), and thus R(5) n g < S(5).

2.9. THE RUBIK CUBES AND BOXES. Let C be a p-cube. By dividing all edges of
C into three equal parts we get a subdivision of C into 37 subcubes. The family
I’ of these 3?7 cubes is called a Rubik p-cube. Let 0 <r < p, and let B be an
r-dimensional face of C. The family

(2.10) ry=ryI,B)={Qel:QnB+ 0}

will be called an r-face of I'. Such cube families I'; are also called Rubik
(p, r)-boxes. The members of I'; containing a vertex of the r-cube B are called the
vertex cubes of I'y. We let I''; denote the family of all 2" vertex cubes of I';. Given
a Rubik (p,r)-box I';, 0 < r £ p — 1, its representation in the form (2.10) is not
unique, but I'} is clearly independent of the representation. Some Rubik
(3,r)-boxes are shown in Figure 2; the vertex cubes are shaded.

Figure 2. Rubik (3,r)-boxes

Letje{l,...,p} and ke N. We consider the family
(2.11) Pl ={Ph:QeF},

consisting of all principal followers of the cubes Q € #/ in the direction j; for
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definitions, consult 2.4 and 2.5. Then vg = {j} for all Re %/, ,. The following
statement is obviously true:

2.12. LeMMA. Let Q€ % . . Suppose that vy = {j} and that Q does not meet
any of the hyperplanes X = 2, 1 i< p. Then Q belongs to a unique Rubik
(p,r)-box g with I'y = !, and withre {0,...,p — 1} minimal. In fact, we have

o= (Re#l,,:RNQ 4+ 0},
A somewhat less obvious result is:

2.13. LEMMA. Suppose that Q, Re sy, k22, vo =vg = {j},and Qn R % .
Then there exists a Rubik (p,p — 1)-box I’ = # containing Q and R such that the
elements of I'' are principal followers of some members of o, _ ,:

I-v = {P’g:SGFO},FO C‘Mk—l'
Moreover, S; NS, £ @ for all S,S,€T,.

ProoF. Since k = 2, the cubes Q and R do not meet any of the hyperplanes
x; = 2. Hence there clearly exists a Rubik (p,p — 1)-box I' = ¢/ containing
Q and R such that I" = {P}:Sel,} for some I'oc #%-_;. Moreover,
S1nS, + @forall S;,S,eTl,,and the predecessors of Q and R belong to I',. By
Lemma 2.8(2) we have I'y © &/ ;.

3. Corners and estates.

In this section, we associate to every Q € of an estate Eg < |K|in such a way that
the numbers d(E,), 4o and d(Q, E,) are roughly equal. Moreover, if the affine
subspace T, = T(E,) spanned by E, is my-dimensional, we want E, to contain
the vertices of an my-simplex ag, which also is of the size 1o and not too flat.

3.1. CorNERs. We have already called the simplex 4 = ¢,...€e, a corner.
More generally, we say that a set @ < R? is a corner if there are ve R?Pand A >0
such that @ = v + A4. Here v and A are uniquely determined by ©. We say that
vis the basic vertex and 1 is the size of the corner @. Observe that a point x € R” is
in @ if and only if

x; 2 v; for all je{l,...,p},

3.2 p
) Y (x;—v) S A

i=1

Hence O is the intersection of the p + 1 half spaces x; 2 v, 1=j =P, and
27=1 Xj = Z}’: 1 V; + 4 of RP. Conversely, the intersec.tion of half spaces of the
formx; > v;and Y'?_ | x; < tis always a corner or a point or the empty set. From
this we obtain:



242 JUHA PARTANEN AND JUSSI VAISALA

3.3. LEMMA. The intersection of two corners is either a corner or a point or
empty.

If ® and @' are corners in R?, there is a unique homeomorphism f: @ — @’ of
theform fx = Ax + a,4 > 0. In thefollowing lemma we set fo = ¢’ whenever g is
a face of @:

3.4. LEMMA. Suppose that @ and @' are corners in RP such that @' < 0,
@ % O, and @ " 06 % (. Then the following statements are true:

(1) If © meets a(p — l)-face o of O, thene’ = 6 N @',

(2) There is a unique proper face t of © such that ©' N 00 = |st(v/, 0@')|, where
00’ is viewed as a complex in the natural way. In fact, t is the intersection of all
(p — 1)-faces of @ meeting @'.

B)tcr

4) Iftyisafaceof O, thent, N O + Q<=1 14.

Proor. (1) The hyperplanes T(c) and T(¢') are parallel. If T(o¢) $ T(¢’), then
the condition @’ < @ implies that T(¢) and @’ are on different sides of T(¢’). This
is impossible, because ¢ N @ + @. It follows that T(6) = T(s'), and hence
d=0n@.

Figure 3

(2) Set F = @ nd6O. Figure 3 illustrates a typical situation with p =3,
dim t = 1; the set F is shaded. Let a,, . . ., a, be the vertices of @, and let 5; be the
(p — 1)-face of @ opposite to a;, 0 < j < p. Write
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Jo=1{0,....p}, I ={jel,i0;n O % @}.

By (1) we have F = U {0):j€eJ}. Since @ + F + 00, we have @ + J % J,. It is
now easy to see that the simplex t = n{g;:je J} with vertices a;, je J,\ J, is the
unique face of @ satisfying the condition

F =) d)=Ist(c,00").

JjeJ

(3) By the proof of (2), we have
1=)o,7 =g}
JjeJ jeJ
By (1) we have o = o, for all je J. Hence 7' < .

(4) If © = 14, then (3) implies that @ # 1" = 1, N @'. Conversely, suppose that
t,n O % 0.1ft, = @, then trivially t = 1,. If 1, O, then 1, is the intersection
ofall (p — 1)-faces o of @ containing it. For each such g, the assertion (2) implies
that 1 < o, because @ + 1, N @ < 6 " O'. Hence 7 < 1,.

3.5. EsTATES. Let us consider the situation of Theorem 1.2, where
K' = Ku{4,0,}. Wefirstassume that 4 = e,. .. e, is the standard corner of R?.

Recall the cube family o from 2.7 and suppose that Q € /. We let 4, denote
the smallest corner containing the cube Q(7). Then the size of 4 is 7pAy, and the
basic vertex of 4y is

Thg &
UQ = ZQ _ “2_“ Z ej.
j=1
Hence 4, is the set of all x € R satisfying the inequalities
X = zg; — Tho/2, Z — z¢9) £ TpAg/2.
Jj=

Writing ¢ = 4 n R as in 2.7 we set

(3.6) ES=A4gne Ko ={reK:tnEy + 0}.
We define the estate E, of Q by the formula
3.7 Eg = U {B"(tnE} Ag)n1:1€Ko}.

3.8. REMARK. We list some observations about the estates Eg: .

1. Let Qe .o. Since Q(5) M o + @ and since Q(7) < 4q, theset dg = dg N 415
a corner by Lemma 3.3. Moreover, we have 45N g = EQ + 0.

If 4, + 4, we can apply Lemma 3.4 (2) with the substitution @ — 45,0 — 4.
We get a proper face t of 4 such that

Ay N 04 = |st(7, 04p)l-
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Here ' # a5, and we can write
i
E?g = [st(7’, ¢)l,

where ¢’ corresponds ¢ viewed as a complex in the natural way.
The case 45, = 4 can only occur for a finite number of cubes Q € 7. In this case
we have

E§ = o = st(0,0)l
2. The diameter d(4,) is 7p/1Q\/§ if p=2and 74, if p = 1. Hence we have

d(Eg) < (Tp\/2 + 2)Ag
for all Qe /.

3.9. LeMMA. Suppose that Q, Re o/ .
(1) IfQ AR + O, then ES ~ E3 + 0.
(2) If Q"R + O and k(R) = k(Q) + 1, then E} < EJ and Eg < E,.

ProoF. We first prove (2). Suppose that Q " R #+ @ and k(R) = k(Q) + 1. By
2.3(1), (3.6) and the definition of 4y, we have E} = EJ. Since Az < ig, We get
Eg < E, from (3.6) and (3.7).

To prove (1), observe that by (2) we may assume that k(R) = k(Q). Then
0(5) = R(7) by 2.3(2), and hence Q(5) < 49N dg. Since Qe.of, we get
O+ Q(5)ne = Ey N E}.

For Q € o we write
The affine subspaces T, play an important role in the sequel. Since each K
contains atleast one g; = €,...¢é;. .. e,, we have Oe Ty for all Q € «#. Hence Ty is
always a linear subspace of R". The assumption that 0 is not isolated in |K| implies

that my = 1 evenifp = 1.
The flatness F(a) of a k-simplex a = aq...a, = R", k = 1, is defined by

d(o)

.1 = —
(3.11) F(a) b@)’
where b(«) is the smallest height of a. Explicitly,

b(a) = min d(aj, T(aj)), a;j=4agp... &j' 7/
0sjsk

The following lemma is the main goal of this section:

3.12. LemMA. For each Q € o there is a simplex ag such that
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(1) 6 < Eg,
() Tp = T(ag),
(3) c1Ag S d(og) < cadg,
(4) F(og) = c3,
where ¢, C,, C3 are positive constants depending only on K'.

ProoF. Let Qe o/ and set 4y = 49N 4 as in 3.8.1. Since 4% = 4 only for
a finite number of cubes R € &/, we may assume that 4}, # 4.

For each face t of 4 with 7 < ¢ we set N(t) = |st(z, K)|. Since 0 € N(t), we can
choose a simplex o(t) with the properties

(3.13) 0ea(r)’ = N(v), T(o(r)) = T(N(z)).

It suffices to find a simplex o4 such that o satisfies the conditions (1)—(3) and is
similar to some o(7).

Asin 3.8.1 we can write Eg = |st(7’, ¢')|. Here 1’ is the face of 44 corresponding
to the intersection 7 of all (p — 1)-faces of 4 meeting 4y; cf. 3.4(2). By 3.4(3) we
have ©" = 7. We first prove that K, = st(t, K).

If gest(r, K), then @ % t' < ¢ N EY, and hence o € K. Conversely, let 6 € K.
Then

OF+cnE)=andy=(a0d)n 4,

Since 6 N 4 is a face of 4, Lemma 3.4(4) implies that ¢ est(r, K). Hence Ky =
st(t, K).

Thereis M = M(K') = 1such that d(N(r)) £ M. Choose ve v’ and consider the
radial similarity f: R" — R" defined by

fx:%(x—v)'f'v'

Since N(7) is starlike with respect to v and since M =12 4g, we have
fN(@)  N(x) = Ist(r,K)| = |[Kol. Moreover, if xeN(r), then |fx —vf=
Jglx — vl/M £ 4y. Hence fN(1) < |Kol n B'(v, Ag). Since vet' < a 1 Eq for all
geKg = st(z,K), we have fN(1) < Eq.
We show that 6, = fa(7) is the desired simplex. Since
0% = fo(1)° = fN(1)  Eq,
the condition (1) holds. Since Kg = st(t, K), we have Eg < N(z). Hence
Tp = T(Eg) « T(N(1)) = T(a(r)) = T(og) < Tos

which implies (2). Finally, we have d(ag) = Agd(c(t))/M. Since K is finite, we get
(3).
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3.14. THE GENERAL CASE. In Sections 2 and 3 we have so far only considered
the special case where v; = ¢; for i = 0,...,p. Now we return to the situation
described in Section 1. There we had 4 = vy...v,,00 =0, K'\K = {4,0,}.

Let %:R" - R" be a linear isomorphism satisfying xe; = v;fori =0,...,p. We
do not know yet whether »~!|K’| has the BLEP in (R", Y) or not; ¢f. [P, 3.7].
Despite of this we can apply the constructions of Sections 2 and 3 to the situation
where x 'K’ collapses to » 'K through » *4 = e,...e,. Thus we have the
cube families #, o, % (Q), #/, , the Rubik cubes and boxes I', the sets 4, EJ, Ko,
and the estates Eg as before.

Figure 4. The decomposition x_¢

Applying the linear isomorphism x to these, we get the corresponding notions
in the general situation. Thus we get the sets xg, xQ, xQ(1), x4, xEQ, xE,, the
families x ¢ = {xQ:Qe ¢}, o, xF(Q), »P., ,, »I and xK,. We also get the
linear supspaces T; = T(x ™ 'a;), Ty, »T;and x T, of dimensions p — 1 and my. See
Figure 4.

For Q € o consider the simplex g, given by Lemma 3.12. Choose H = 1 such
that x» is H-bilipschitz. Then 3.12 yields

(1) %6 < %E,,

(2) Ty = T(xay),

(3) H ', Ap S d(xag) < Hey g,
(4) F(xog) < H?cs,

(3.15)

where ¢y, ¢, and ¢, are the constants of Lemma 3.12, depending only on K.

4. The isometries ho and h}.

We assume the situation of Theorem 1.2 and the results and notation of Sections
2 and 3 as explained in 3.14. For example, we have the cube family ./ and the
estates Ey, Q € o, given by the constructions of Sections 2 and 3 when applied to
the collapse » " 'K’\ » " 'K throughx !4 =e,...e,.

Let L > 1 and let f:|K| - Y be an L-BL map. Since |K’| has the BLEP in
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(R", Y), Theorem 1.2 will follow if we can extend f to |K’|. To be more precise, it
suffices to find a number Lo = Lo(K') > 1 such that if L < L,, then S has an
L,-BL extension g:|K'| = Ywith L; = L,(L,K’) > 1 as L > 1. We are going to
do this by finding a number go = qo(K’) > 0 and for every ge]0,q,] two
numbers 1 < L(q,K’) £ L,(q,K’) with L,(q,K') > 1 as g » 0 and such that if
L £ L(g,K’), then f has an L,(q,K')-BL extension g:|K’| - Y. The auxiliary
parameter g will not be needed before Lemma 4.18.

In the rest of the proof (to the end of Section 5) we replace R" by T(|K’|). Then
n depends on |K'|.

We plan to extend f to |K'|\|K| = 4\|K| by making use of the fact that
A\|K| = xA4; see 2.8(1) and 3.14. For this we shall use two families of isometries
hg and h{, Q € /. Before defining them we make a useful normalization.

4.1. NOoRMALIZATION. Using auxiliary isometries of [,, we may assume that
R" < Y and fvo, = f(0) = 0. Since |K| is compact, we can approximate f by an
isometry. Applying [V, 3.1] we can find an isometry h: R" — Y such that h(0) = 0
and

lh = flix < (L, m)d(IK]),
where 6(L, n) is increasing in L and §(L,n) — Oas L — 1. Extending h to a bijective

isometry h: Y — Y and replacing f by h~'f, we see that it suffices to consider the
case where h is the identity map of Y. Then we have f(0) = 0 and

(4.2) |f — idjixy < O(L, m)d(IK]),

where id is the identity map. Later on, we let id also denote various other
inclusions.

4.3. THE ISOMETRIES hy. We shall associate to each Q €./ an isometry hg:
xTy — Y approximating f on xE,. First we set hy = id:xTy — Y for Q€.o/o U
</;. Next assume that Q € o/, k = 2. Since » is H-BL, Remark 3.8.2 implies that
d(xEg) < H(7n./2 + 2) Ag. Applying again the approximation theorem [V, 3.1]
we find an isometry hy: % T, — Y such that

4.4) lhg — fleeg < S(LMH(In/2 + 2)ig.
Write

(4.5) e(L, K') = 6(L, n) max {2d(|K]), H(Tn. /2 + 2)}.
Then (4.2) and (4.4) imply

(4.6) lhg — fleg < &L, K') g

forall Qe .o.
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A linear map ¢: E — F between inner products spaces is called orthogonal if it
preserves the inner product. Each isometry h: E — F can be written as hx =
@x + h(0), where ¢ is orthogonal, called the orthogonal part of h. In the present
situation, we let ¢4 :% Ty — Y denote the orthogonal part of hy.

For Qe o we set

Ef=Equx™'d4, T = T(EY), m} - dim T3

Recalling (3.10) we have T, < Tj. Since K, contains one of the simplexes
eo...é;...e, we have either T, = T or mj§ = my + 1. We want to extend the
isometries hy: x Ty — Y to isometries hjy: % Tf — Y in such a way thatif Q, Re &/
intersect, then hj and hk do not differ much in x[Q U R]. To accomplish this, we
shall extend the maps @g: % To — Y to suitable orthogonal maps ¢§: x Ty — Yin
Lemma 4.18. Before that we make some preparations.

IfQ,Re o, weset Tyg = Ty Trand @gr = @o|xTor:#Tor = Y. If p: E~F
is a linear map between normed spaces, we let |¢| denote the usual norm of ¢:

lp| = sup {|lpx|:x€E, |x| = 1}.

4.7. LEMMA. For every t > 0 there is a number L(t,K') > 1 such that if L <
L(t,K’), then |pgr — @rol < t whenever Q, Re of intersect.

PrOOF. Let t > 0, and suppose that Q, Re.o/ with Q "R + @. We may
assume that k(R) = k(Q). Since @g = id for all Se &/, U o/, we may assume that
k(R) = 2. Obviously we have k(R) £ k(Q) + 1. We consider two cases:

Case 1. k(R) = k(Q) + 1. By 3.9(2) we have Eg c E,, and hence Tyg = Ti.
Consider the simplex o given by Lemma 3.12. If ue 0%, then ue xEg = xEq.
By (4.6) we get the estimate

lhou — hgru| < |hgu — fu| + | fu — hgu| < 2&(L, K')4q.

Fix ve x6%. From [V, 2.11] and from (3.15) it follows that for each x € x Ty we
have

lhgx — hgx| < 2&(L, K")Ao(1 + M,|x — v|/d(xaR))
< 2¢(L,K')Ag + 4e(L, K')M  Hep Hx — v,
where
M; = M{(K') = 4 + 6H?*c3n(1 + H*c3)"" L.
Let x €% Ty, |x| = 1. Since @g(x) = hs(x + v) — hs(v) for Se{Q, R}, we get
|pox — @xx| S lhglx + 1) — ha(x + ) + lhgv — hgol
< 4e(L,K')Ag + 46(L, K )M Hep L.
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We choose L = L(t, K’) > 1 in such a way that 4(1 + 2M Hel Ye(L,K') S t. If
L < L, the estimates above and the fact that A, < 1/2 imply that
loor — Prol S &(L,K')2 +4MHe[ ) St2 < 1.

Case 2. k(R) = k(Q) = k. Let Q < Se # _,. Then Se & by 2.8(2), and hence
the maps @5 and @sg are defined. Suppose that L < L, where Lisasin Case 1. By
2.8(4) we have R N S # @. Hence we can apply the argument of Case 1 to obtain
the estimate

[0or — @rol < 0o — @sol + [@sr — @r| S t.

4.8. REMARK. We may assume that the functiont +— I{t, K') given by Lemma
4.7 is strictly increasing on 0, oo[ and that L(t, K') » 1 ast — 0. For Lemma 4.18
below, let L(t, K') have these properties.

4.9. INTERPOLATION. We next introduce the interpolation technique, which
will be our main tool for controlled extension of the maps ¢, to orthogonal maps
04

In 4.9-4.17 we let E and F be real inner product spaces with inner product
written as x - y and the induced norm as |x|. We also assume that 1 £ dim E < co.

We begin with a technical lemma:

4.10. LEMMA. Let (v;);c; be a finite family of unit vectors in F, and let s =
#J = 1. Suppose that |v; — vj| £ 6 £ \/Efor alli,jeJ, and set
1
vg=— v, k= #K,
k JjekK

for every nonempty K = J. Then
(1) lvgl* = 1 — 6%/2.
Moreover, if L, K = J and LN K #+ O, then
2) lox — v S (1 =571
In particular, we have |v; — vg| < (1 — s~ ")d for all jeK.
PrROOF. First observe that
20,05 = ol + [ojf® — oy — 0y? 22— 6%
Using this we obtain
Rlog? = Y o + ¥ vy 2 k+ kik — 12 — 82 2 k(1 = 6%/2),
JjekK i,jeK
i+
Wwhich gives (1).
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To prove (2), assume that #K = k <l = #L, and set u, = v;, w, = v; for
o= (,j))eK x L. Then

|UK—UL|=',:—I 2 U= Yyl
aeK x L peK x L
Choose an index ip € K n L. Then wy = v;, for all fe K x {io} and u, = v; for
all ae{ip} x L. Since k <, there is a permutation ¥ of K x L satisfying
W[K x {ig}] = {io} x L. Then we have u,4 = wyforall fe K x {ip}. Hence we
obtain
o=l S 72 3 i~ wpl s S0 < (157
PeK x L

4.11. Suppose that E, is a linear subspace of E and that the orthogonal
complement Ej of E, in E is one-dimensional. Let e and —e be the two unit
vectors of Eg.

Letg:E, - Fbe orthogonal, andlet ¥ = () s be a finite nonempty family of
orthogonal mapsy;: E — F. Set |//}’ =y;|Epandlet 0 £ 6 < 1/2. Wesay that the
pair (@, V) satisfies the interpolation conditions with the constant § if

(4.12) Wi — il <6, —yjl <6°

for all i,jeJ. Assuming this, we present a method which gives an orthogonal
extension @*: E — F of ¢.
Define a linear map {: E — F by

1
l/l=—Zl//j,S= #J.
S jes
Let g: F - @E, be the orthogonal projection, and set a = qiye. We prove in
Lemma 4.13 below that a F e. Hence we can define a unit vector b of F orthog-
onal to ¢ Eq by

b= Ye—a
e —al
There is a unique orthogonal map ¢*: E — F with ¢*e = band ¢*|E, = ¢. If we
choose the other possibility —e instead of e, the process above gives the same

map ¢*. Thus ¢* depends only on the pair (¢, P) satisfying (4.12). We say that ¢*
is obtained by interpolation from (¢, ¥).

4.13. LEMMA. In the situation described in 4.11 we have |a| < 6%, a % e, and
lp*e — el < 82,/5/2.

PrOOF. We assume that dim E = 2; the case dim E = 1is easier. Choose x € Eq
with |x| = 1and a = |a] ¢x. Since e x = 0and a = (Ye- ¢x) px, (4.12) implies that
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lal = Ye- px =“Z['l’19 (px — ¥;x) + Yje¢;x]

]e.l
Z Vel lox — x| < -Z 0% = o2
S jer Je.l

On the other hand, Lemma 4.10(1) implies that |ye| > 3%, because § < 1/2.
Hence a # ye.
To prove the last inequality of the lemma, consider the vector

c=Ye—a=ye— qpe.
Then
lel < el < 1, ¢ =Iclp*e, |yel* = la|* + |c].
Applying 4.10(1) and the estimate |a| < 3% we get
lc? = [el* —lal* 2 1 — §%/2 — &%
Since § < 1/2, an easy computation shows that
le| =1 — 6%/4 — &%

Since p*e — e = (1 — |c|)p* e — a, we obtain

lo*e — yel? = (1 — |cl)* + laf* < (57/4 + 3%)? + &* < 56%/4,
where the last inequality follows from § < 1/2 by direct computation.

In the next lemma we prepare for 4.18 by deriving some estimates for the
extensions obtained by interpolation.

4.14. LEMMA. Let 0 < & < 1/2 and let ¥ = (,);; be a finite family of orthog-
onal maps W;: E — F satisfying [y; — y;| < 6 for all i,jeJ. Let Jy,Jo = J with
hody %0, and set s= #J, ¥, =W))jes,, Vo=W))es,. Suppose that
©1,9,: Eq > F are orthogonal maps such that ¢, — @] = 8% and such that the
pairs (¢;, W), i = 1,2, satisfy (4.12). Let @} : E — F be obtained by interpolation
from (¢;, ¥,). Then

(1) ot — o3l = (1 — 5713 + 38%,

@) lo¥ — ¢l = (1 — 5713 + 35?2
JoralljeJ,i=1,2.

PROOF. Let ie{1,2} and set

Z ‘/’J’ 5 =

S; jeli
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Then Lemma 4.13 gives
4.15) ke — Prel < 52/5/2.

Let u be a unit vector in E. We can write u = Av + ue, where ve Eg, |v| = 1, and
A% + u? = 1. By (4.12) and (4.15) we obtain
lo¥u — Goul < 1Al loso — Puvl + |l loFe — Yol < (41 + 1l /5/2)0%.
By the Schwarz inequality this yields
lo¥ — il < 36%/2.
This and 4.10(2) now imply (1):
ot — 031 S 10 — Tl + By — Pal + 1P — @3 < (1 — 575 + 35

To prove (2), let ie {1,2} and je J;. The last statement of Lemma 4.10 implies
that |y; — ;| < (1 — s™1)é. Hence

lo¥ — ¥l < loF — il + Wi — ¥l £ 38°2+ (1 —s71)é.

4.16. INTERPOLATION AND RESTRICTION. Consider the situation described in
4.11. Let ¢* : E — F be the map obtained by interpolation from (¢, ¥). Let E' < E
be a linear subspace with E’ ¢ E,. Then the linear subspace E, = E' N E, is
a hyperplane in E'. We set §/; = ;| E', ¥’ = ({/})jes, and ¢’ = @|Ej,. Clearly, the
pair (¢, ¥’) also satisfies the interpolation conditions (4.12). Let ¢'*: E' — F be
the extension of ¢’ obtained by interpolation from (¢’, ¥'). The maps ¢'* and
@*|E' are not always equal, but they do not differ too much:

4.17. LEMMA. In the situation above we have |¢'* — (p*|E)| < 3562
PROOF. As in 4.11 we choose a unit vector € € E' n (Ep)* and define
’ 1 ’ i’
Y'=—3 Y;=y|E.
s jeJ
Let ¢': F — ¢'E, be the orthogonal projection, and set
lplel — al
a! = ’ !el’ bl — — —.
W=y —al
Then ¢'*e’ = b’. Write ¢’ = Ae + uv with ve Eq, |v| = 1,and A* + p? = 1. From
4.13 we get
lo*e — y'el < 8% /512, e — p*el < 62./5/2.
Since ¥’ = Y| E’, these estimates, (4.12) and the Schwarz inequality give
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lp*e' — p*e| S |p™*e — Ye| + [Y'e — p*e|

< 6%/5/2 + 1Al le — o*e| + |l Yo — o]

< 6%/5/2 + 162 /5/2 + |ulo? < 362,

Since @'*|Ey = ¢*| Ej, this implies the lemma.

After these preparations we are ready to extend the orthogonal parts ¢, of the
isometries hg, Q € «, chosen in 4.3. This is done in the following central lemma.
To formulate it properly, we need the auxiliary parameter g mentioned in the
beginning of Section 4.

4.18. LEMMA. Let q, = 2" 77/9. There exists a stictly increasing function q —
L(q) = L(g,K’) from ]0,q,] into ]1, o[ satisfying the following two conditions:

(1) L(g) > 1asq—0.

(2) If 0 < g = q, and if L < L(q), then the maps ¢q:x Ty — Y have orthogonal
extensions @ : w T — Y with the following properties:

(@) If Q <R, then |pkr — @kl < q— q*, where obr = 0§|xTsk, Tok =
Ty n Ty

(6) If K(Q) = k(R) and Q A R + O, then |p}x — okl < 4.

PrOOF. Let 0 < g < g, and consider the function L{t, K’) chosen in 4.8. We
define

L(g) = L(g,K') = L(¢*. K.

Then L(q) is strictly increasing in g and satisfies (1).
Suppose that L < I'(g). It remains to construct the extensions ¢§ satisfying (a)
and (b). By 4.7 we already have

(4.19) lPor — Qrol £ qz

whenever Q, R e o intersect.

If Qe s/, U o, then ¢y = id, and we also define o3 = id: » Ty — Y. Then (a)
and (b) are trivially true for Q, Re oo U ;.

Letk > 1, and assume inductively that g is defined for all Q o/ with k(Q) < k
so that (a) and (b) are true. Let Q € o, ;. If Ty = T, we of course set 9% = 9o

Suppose that T + T. Thenm} = mg + 1and v = {j} forsomeje{l,...,p}.
For notation, see 2.4. Since k + 1 = 2, Q does not meet any of the plaqes Xi =
2,1 £i < p. By Lemma 2.12 there is a unique Rubik (p, r)-box Iy = #l. with

Qely, Iy < I, , and r minimal. In fact, 2.12 gives o = {R€F.;:RNQ *

0}. The family
2(Q) = {Se #i: Phely)
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=

Figure 5.

consists of all predecessors of the members of I. Clearly SN Q + @ for all
S € 2(Q). Hence we have 2(Q) = o by 2.8(3), and thus the maps ¢¥ are defined
for all S e€2(Q). Moreover, by Lemma 3.9(2) we also have Ey — Eg and hence
Ty < Tg* for S€ 2(Q). Thus we can define the family ¥y = (¥s)sca(o) bY

¥s = o3 | % Tg = 9%,

Moreover, if R, S€ 2(Q), then R S + 0, and the inductive hypothesis implies
that

[Yr—¥sl < g
By (4.19) we also have

lpg — WslxTp)l = logs — @sgl = ‘12-

Hence the interpolation conditions (4.12) hold for the pair (¢g, ¥g) with
J=2(0),0=q,Eo=xTy, E=xTy and F = Y. We let ¢§:xT} — Y be the
orthogonal extension of ¢, obtained by interpolation from (¢, ¥y).

It remains to verify the conditions (a) and (b). To prove (a), let Q € & . ; and let
Q <R If T§ = Ty, then T = Ty = Tz = Tg'. By (4.19) we obtain

|‘P5R —~ QRol = logr — ®rol £ @ <q-4~
Assume that T + T,. Since Re2(Q) and since #2(Q) <2°”!, Lemma
4.14(2) implies
I08r — PRl = 10f — vl S (1 —2'"")q + 3¢%/2 < g — ¢,

because g < ¢,. Hence (a) is true.
To prove (b), let Q, Res,1, QR+ Q. If p=1, (b) is trivially true.
Assume that p = 2. Writing

(4.20) &={Qesd:Ty=TH}
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we can divide the proof of (b) into three cases.
Case 1. Q,Re&. In this case we can apply (4.19):
logr — Okol = l9or — Prol £ ¢* < ¢.

Case2. Q,Re o/ \é. We prove in Lemma 4.22 below that in this case we have
vg = {j} = v for some je {L,...,p}. By Lemma 2.13 there is a Rubik (p,p — 1)-
box I' = #,, containing Q and R such that there is Iy < o with I =
{P}:SelL,}. See Figure 5. Since Iy = {P{:Se 2(Q)} < I'", we have 2(Q) < I.
Similarly 2(R) < I,. By 213 we then have S,nS,+@ for all
S1,8,€2(Q) v 2(R). We next show that 2(Q) N 2(R) + (. Suppose that this is
false. Then Iy N Ig =@, and since I} = {SeP},,:SNR % @}, we obtain
SAR=0QforallSer, ¢- This implies that d(Q, R) = Ay, which is a contradiction,
since @ "R # @. Thus 2(Q)~ 2(R) + 0.

Set E' = x T3z and E = % Tyg.

We show that Ej = E' N E, or, equivalently, that Ty 1 Ty = T, n T Clearly
To N Tg © Ty N T Hence it suffices to show that Ty N T < T. By the second
part of Lemma 4.22 below, we have T, « T or Tz < Ty. The former case is
trivial; assume that Ty < Tp. Since T is spanned by T; U {e;} and since e; ¢ Ty,
we obtain To N Tg = Tx.

We now have the situation of 4.16. We write Y5 = 5| E' for Se 2(Q) u Z(R),
and

le = ('/”s)sm@p Y& = Ws)scaw) ¢b = @g| Ey, 9r = ¢r| Ep.
By (4.19), we have |, — @l < ¢* Welet o and ¢ be the extensions obtained
by interpolation from (¢, ¥) and (¢, ¥'r), respectively. From Lemma 4.17 we
get
4.21) 03| E) — 0] < 3¢% (0% E) — 9| < 3¢™
IfS,Ue 2(Q) U 2(R), then S " U + @ and |5 — y| < q. Hence we can apply
Lemma 4.14(1) with the substitution J — 2(Q) U 2(R),J; = 2(Q),J, — Z(R),
E—E,Ey— Ey, F Y, 91 — @p, @2 — @k, Yo Vo, Voo YR, 0 g,
ot > o, 0% — ¥ We get
log — ol < (1 —2""P)g + 3¢*.
This and (4.21) imply the desired estimate
l93r — Pkol = @G| E) — (0k| El
< @3 E) — o) + log — o] + 107 — (9R I El
<9 +(1-2"""g9 =4

because g < gq,.
Case3. Qe o/ \& Reé. LetQ <Sesf. ThenSN R+ 0 by 2.8(4), and hence
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Eg = Esby 3.9(2). Since Re &, this implies that Tg = Tp = Ty = T If xex T

is a unit vector, then x e x Tg¥, and we obtain

lpSrx — PRoxl = l0fx — @kx| < l0gx — 0¥ x| + lpFx — kx|

= [pgsx — @Fox| + |pFrx — ORs X| = [@gs — sl + |03k — Pl
= |ogs — o¥ol + sk —0rsl (@ -9 +q* = ¢,

where the last inequality follows from (a) and (4.19).

In the proof of Lemma 4.18 we needed the following result:

4.22. LEMMA. Let p =2 and let Q, Re o4\ & with Q " R + Q. Then we have
vo = {j} = vg for some je{1,...,p}. Moreover, T, = Ty or T < Tp,.

Proor. Obviously we have l, =1 =I;. This means that v, = {i} and
vg = {j} for some i,je{1,...,p}. We must prove that i = j.

By the definitions of &, vy, vg, Ty and Ty we have @ + Q(5)ng < Q(7)ng <
x o, O+ R(5)no = R(7)ng < % 'o; This implies that Q(7)nx 16, + 0
and R(7) n»x~'6; #+ @, where 6;and 6; are the interiors of 6;and 6;in ¥ T;and x T,
respectively. By Lemma 2.3(2) we have Q(5) = R(7), which now implies that
005)ne cx 'o;. We get

QN nx"t6,+ 0,
and hence we have T, U T; = Ty. Since Ty + T, this is possible only if i = ;.

From now on, we always assume that 0 < g < ¢, and that L < L(q) where L(q)
is given by Lemma 4.18. We also let ¢, Q € o/, be the maps of 4.18(2).

4.23. LeMMA. If Q,Re .o/ with QN R % @, then
lpgr — PRol < 24.

Proor. If k(Q) = k(R), this is a direct consequence of 4.18(b). Suppose that
k(Q) = k(R) + 1, and let Q «Se/. Then SN R + @. Hence we can apply
4.18(2), which gives

lodo — 0bsl < g — % loks — ol = q.
Since Ty = Tgs by 3.9(2), we obtain
logr — PRol = l(@k|x 1) — @3l
S @RI TF) — (@F 1% TF) + l@f 1% T5) — @l
< |oks — o3zl + lodo — 0fsl g+ (@ —9°) < 2.
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4.24. THE ISOMETRIES hj. We close Section 4 by defining the isometries h§:
»Tg — Y promised in 4.3. To do this, we choose vex T and set

hgx = hgv + @f(x ~ 1)

forxexTg . Clearly hj is independent of the choice of v. If Q € .o/, U .«/,, we have
(pa = ha = id.

5. The extension.

5.1. THE BASIC PLAN. We continue the discussion directly from Section 4. Thus
we have the numbers 0 < ¢ < ¢q;, 1 < L < L(q) and the isometries h§: x Ty - Y
of 4.24 extending the isometries hy:% T, — Y defined in 4.3. We want to find
qo = 4o(K')€10,9,] and for every qe€]0,q,] two numbers 1 < L(g,K’) £
Li(g,K') = Ly such that L; — 1 as ¢ —» 0 and such that if L < L(q, K’), then the
L-BL map f:|K| — Y has an L;-BL extension g:|K'| - Y. The exact bounds for
qo(K'), L(g, K') and L, (g, K') will remain somewhat implicit. In the course of the
proof we introduce new restrictions of the right type for them whenever needed.

5.2. THE TRIANGULATION J. We construct a triangulation 4 of the set
A = U & such that the triangulation »7 satisfies a regularity condition needed
in the proof of Lemma 5.16 below.

.
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Figure 6. The triangulation 7.
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Consider the decomposition of A4 into the closed p-cubes Q € & with disjoint
interiors. Clearly, there is a 1-dimensional infinite simplicial complex 7 such
that the 1-simplexes of 7 are the edges of the cubes of .« not containing any
other such edge.

If Cis a 2-face of some Q € o, we triangulate C by the cone construction from
its center. We get a triangulation J, of the union of all 2-faces C of the cubes
Q € o such that 7 is a subcomplex of 7.

Proceeding similarly to faces of higher dimensions, we obtain a finite sequence
of simplicial complexes I, =« 7, c... © J, = 7 such that each 7; is a tri-
angulation of the union of all i-faces of the cubes of . Thus J is a triangulation
of A. See Figure 6.

5.3. THE EXTENSION g. For each vertex v of 4, we choose a cube Q(v)e ¢
containing v. We set h, = hj,;: x T, — Y and let go: x4 — Y denote the map
which is affine in each simplex of » 7 and satisfies go(xv) = h,(»v) for each vertex
vof 7. Since 4\ |K| = A by 2.8(1), we can define an extension g: |K'| = Y of f by
letting g agree with f in |K| and with g, in 4\|K]|. It remains to prove that
g is L;-BL with L, = L,(¢,K’) > 1 as ¢ — 0, provided that q < go(K’) and
L < L(g,K').

Z, Zp

kigure 7. The sets Z,.

5.4. THE SETS Z,,. For each Q e o we let Z(Q) denote the family of all Re &/
such that there is a finite sequence R = Ry < R; < ... < R in &/ with s =20,
k(R,) = k(Q)and R, Q #+ 0. In other words, 2(Q) consists of the cubes S € g
meeting Q, their followers in &, the followers of these in <, etc. The subsets

Zo =B

of A, illustrated in Figure 7, have the following properties:
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5.5 LEMMA. Suppose that Q € o/. Then

(1) Zg = Q05),

(2 Zone < Ep,

(3) @ <R implies d(Zy, A\Zg) 2 4.

Proor. To prove (1) let xeZ,, and choose Re#(Q) with xeR. Let R =
R, < ... < R, be the sequence of .o/ given by the definition of #(Q) in 5.4. By
2.3(3) and 2.3(2) we have R < Ry(3) = Q(5). Hence x € Q(5).

Since Eg = Ay neand Q(7) < 4, (2) follows from (1). If Q < R, it is easy to see
that #(R) contains all cubes in &/ meeting Q. This implies (3).

5.6. THE APPROXIMATION OF g, BY h}j ON xZ,. We want to obtain a suitable
upper bound for |go — hl.z,. To this end, we first choose L(g) = L(g,K')e
11, L(g)] in such a way that the function &(L, K') given by (4.5) satisfies the
restriction

5.7 elg, K'),K') £ q.
Observe that L{g, K') — 1 as ¢ — 0. We may assume that L(g, K') is increasing in
g€]0,4,]. From now on we also assume that L < L(q, K').
5.8. LeMMA. If Q, Re o/ and Q " R % @, then
|hg — hRlezg < M2d2g, 190 — hlxzg = 2M, 44,
where M, = M,(K') is a positive constant.

Proor. By Lemma 3.9(1) we may choose a pointae EQ n E. Let yexZp, and
set x = %"y, b = xa. By 5.5 we have x€ Q(5), and hence a and x are in 4¢. By
3.8.2 this implies that |x — a| < Tpigy/2. Since x is H-BL, the vector
y — bex Ty satisfies |y — b| < THplg./2. By 4.24 we have

hy = hob + @¥(y — b), hky = heb + @}(y — b).
Applying these facts together with (4.6), 4.23 and (5.7) we get
Ih§y — h§y| < lhob — hgbl + |9 — 9kol Iy — bl

< 36(L, K')lg + 14qHpig/2 £ Magig

with M, = My(K') = 3 + 14H nﬁ. This implies the first inequality of the
lemma.

To prove the second inequality, let be x[7° 1 Z,]. Since go and h} are affine
in the simplexes of ».7, it suffices to prove that |[gob — hgbl = 2M,q4,. For this,
we choose a sequence R, < ... < R in & such that bexRy, k(Ry) = k(Q), and
R,nQ 4+ @. Setting R_, =Q(b) and R, =@ we have bexZg, and
RinR;,, + @ for —1 <j < s. Applying the first inequality of the lemma we
obtain
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lgob — bl < Ih%_ b — kbl + 3 Ik b — hE,, b
j=0
< qu(/lRo + ) }.Rj) = 2M,qly
j=0
as desired.

5.9. LAST PREPARATIONS. In 5.10-5.16 we complete our machinery before
proving in 5.17 that g is L,-BL. We first derive a simple inequality for two
intersecting simplexes:

5.10. LEMMA. Let A and B be two simplexes in R" with A n B + (0. Then there is
a constant C = C(A, B) = 1 such that d(a, A n B) £ Cd(a, B) for all a€ A.

Proor. Using an auxiliary piecewise linear map we may assume that 4 n B =
€y .. .e;and that the vertices of 4 and Barein {¢;:0 < j < n}, where as in Section
2,eo =0and(e,,...,e,)is the standard basis of R". It is easy to see that in this case
we can choose C = 1.

If IK\4 + 0, we set
(5.11) do =d(4,u{ceK:onA=0)}).

Thend, = do(K’) > 0. The following two lemmas give estimates based on the fact
that K'is a simplicial complex. We let M5 and M, denote new positive constants
depending only on K.

5.12. LemMA. If Qe o, then
dxQ N 4,|K|) 2 1o/ M;.

PRrOOF. Suppose that zexQ n 4 and 7€ K. It suffices to show that d(z,7) 2
Ao/M’ with some M’ = M'(t,4)> 0. If tn 4 =@, then d(z,7) = do = Agdo,
where d, is given in (5.11). Hence we can choose M’ = dj .

Suppose thattn 4 = 17" + @. Since »~'ze Q € o/ and since x is H-BL, we have
d(z,7") = A¢/H. By 5.10 we get

d(z,7) 2 d(z,7')/C 2 Ao/M’
with M’ = CH, C = C(4,7).
5.13. LEMMA. If Qe o, then
d(xZy N 4,|K|\xEg) = Ao/ M,.
PROOF. We may assume that x = id. We shall prove the stronger inequality

d(Q(5) N 4, |KI\Eg) Z Ao/ M,.
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Indeed, since Zy = Q(5) by 5.5, this implies the lemma,
Suppose that ze Q(5) N 4 and y e |K|\ E,. It suffices to find an estimate

(5.14) [y =zl 2 Ao/ M.
Let yete K, and set 7' = 1N 4. If 7' = O, we have
Iy =2l 2do 2 Agdy = Ao/M,
with M, = 1/d,. Hence we may assume that ¢’ & @. Recalling 3.5 and (3.6) we set
F = 49Nt = E§ n 1. We consider two cases:

Case 1. F = @. By (3.6) this is equivalent to 7 ¢ K. Since Q(7) ¢ 4p, we have
Q(N Nt = 0. Since ze Q(5), this implies d(z,7') = Ay. Thus 5.10 gives

ly — 2l 2d(z,7) 2 d(z,7)/C 2 29/C

with C = C(4, 7). Since K is finite, we obtain (5.14).

Case2. F + O or, equivalently, te K. Since y € |[K|\ E, the definition (3.7) of
E, implies the estimate d(y, F) > o.

Subcase 2a. d(y,7') 2 Ao/2. Then 5.10 gives

ly =zl 2 d(y,4) 2 d(y,7)/C 2 49/(2C)

with C = C(z, 4). Again this yields (5.14).

Subcase 2b. d(y,7') < Ag/2. Choose xe1' with |x — y| < A¢/2. Sinced(y, F) >
g, we have x e 7\ F and hence x ¢ Q(7). Since z € Q(5), this implies that |z — x| 2
4o. Consequently,

ly—dzlz—xl—Ix—)>4/2
which proves (5.14).
We still need one technical lemma before the final conclusions. For Q € ./ set
(5.15) Yo=uU{Red:RnQ# 0}, Wy={0eT 0 Yp}.
Then W, is a finite simplicial complex with |[Wp| = Yo.

5.16. LEMMA. There exists a number q, = q2(K') > 0 such that if q < q; and
Qe oA, then go|x Yy is A,-BL with A, = A,(¢,K') > 1 asq—0.

PROOF. Let Qe.of. Then Y, = Zg where R=0 if k(@) =0 and Q <R if
k(Q) = 1. This and 5.8 give

190 ~ B3lerg < g0 — hhlzg + Ik — hBliz, < 6M2040-

We can now apply [V, 2.14] with the substitution K — xWo, f = golnYy,
h— g xWQ. This gives a number ag > 0 such that if o = 6M,qAq £ %, then
9ol% Yy is A-BL with A = A(«, Q) — 1 as « —» 0. Moreover, the last statement of
[V, 2.14] allows us to choose @ = #od and A =A;(qK’) where % =
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2o(K’) > 0 and A,(q,K’) > 1 as g — 0. To justify this, observe that by the
construction of 7 in 5.2, the family =/ can be divided into a finite number of
classes such that if 0 and R belong to the same class, then W, is mapped onto W,
by the similarity map y: x = Ag/Ag(x — Xxg) + zg. Then kW = uxWp, where u is
the similarity map uy = xkyk ™'y = Ag/Ag(y — Kzg) + kzg with Lipschitz con-
stant L, = Ag/Ao. Hence the lemma is true with g, = 0y/6M,.

From now on, we assume that g < ¢,.

5.17. THE BILIPSCHITZ PROOF. We are finally ready to prove that the function
g:|K’| = Y constructed in 5.3 is L;-BL. For this, consider two points x, y € |K'|,
x £ y. We must find an estimate

(5.18) |x — yl/Ly = lgx — gyl < Ly|x — yl,

where L, = L(q,K') > 1as g > 0.

Sinceg||K| = fis L-BLand L £ L(q, K’) by 5.6,(5.18) holds with L, = L(g,K’)
if x, y €|K|. Hence we may assume that x € 4\ |K|. Choose Q € of with xexQ. We
consider four cases.

Case 1. ye 4\|K|. Choose Re &/ with yexR. We may assume that k(Q) =
k(R). If x € » Yg, then 5.16 gives (5.18) with L, = A,(g, K'). Thus we may assume
that x¢xYz. Set k = k(R) and consider the sequence R = Rg< ... Ry =
[1,2]7. Then R;e o/ by 2.8(3). Since A\p = xZy, by 2.8(1), we can choose the
least index j with xexZg,.

We show that

(5.19) Ix — yl 2 Ag,/4H.

Since d(R,» 1 4\ Yg) = Ag/2 and since x is H-BL, this is clear if j < 1. If j = 2,
then yexZg, ,, x¢xZg,_, and 5.5(3) gives |x — y| 2 Az, ,/H 2 g /4H and
proves (5.19).

Applying (5.19) and 5.8 with @ — R; we obtain

lgx — gyl < |h%,x — gyl + |hg,x — gx| + |hg,y — 9y
S |x =yl + 4M,qig, = (1 + 16HM, g)Ix — yl.
In a similar manner we see that
lgx — gyl = (1 — 16H M;q)|x — )|.

By restricting g we may assume that q < 1/(16H M,). Then we get (5.18) with
L, =(1 —16HM,q)" .

Case 2. yexE,y. Now Lemma 5.12 implies |x — y| 2 4o/M;. By (4.6) and
(5.7) we have |gy — h}yl = |fy — hoyl £ qlo. Moreover, Lemma 5.8 gives
lgx — h§x| < 2M,qA,. These facts imply
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lgx — gyl = |hgx — kg ¥l + lgx — h¥x] + |gy — hy)y)|
= e =yl + (1 + 2M;3)M;q),
lgx — gyl 2 Ix — yI(1 = (1 + 2M;) M5q).

Again, by restricting g, we get (5.18) with L, = (1 — (1 + 2M,)M,q)~*.

Case 3. yex[Es\Eq], where S =[1,2]". Now there is a sequence Q =
0, < ...<Q; such that j =2 and yex[Eg\Eg, ] Since xexQ c ®Zg, .,
Lemma 5.13 implies that |x — y| 2 Ay _,/2M, = ], ,/2M4. By Lemma 5.8 we
have |gx — h§ x| < 2M,q4p,. From (4.6) and (5.7) we get |gy — hg,yl =
|fy — hg, ¥l < g/, As in Case 2 we now get the estimates

(1 — Msq)|x — y| < lgx — gyl < (1 + Msq)|x — y)|

where Ms = 2M,(1 + 2M,). After restricting g we obtain (5.18) with L, =
(1-Msq)~ "

Case 4. ye|K|\xEs, S = [1,2]?. Choose te K with yet. If 7' =tnd =0,
then (5.11) gives [x — y| 2 do. If T + @, then (3.7) gives d(y,7’) = H !, because
x is H-BL. By Lemma 5.10 this implies

bx — yl 2 d(y,4) 2 1/(HC)

where C = C(t, 4). In both cases we may write |x — y| = 1/Mg with Mg = M(K").
By (4.2),(4.5)and (5.7) we get |gy — y| = | fy — y| £ q. Since h¥ = id and x e xZg,
Lemma 5.8 gives |gx — x| = |gx — h¥x| < 2M,q. Hence we get the estimates

(1 = M;q)lx — y| £ lgx — gyl (1 + Mqq)|x — )|

where M, = (1 + 2M,)M,. After restricting g, this gives (5.18) with L, =
(1= M;q)~1.

5.20. THE CASE p = 1, {0} 1soLATED. The proof of Theorem 1.2 is now com-
plete except for the special case where p = 1 and {0} is an isolated simplex of K,
which was postponed until this point. In this case we first normalize a given L-BL
map f:|K| - Y by f(0) = 0 and |f — id|x, < 6(L,n)d(K]) as in 4.1. We extend
S 1o g:|K'| - Y by g|4 =id. A straightforward computation shows that if
(L, n)d(IK|) < d(4, K|\ 4), then g is L,-BL with

Ly = max {L,(1 — (L, n)d(KI)/d(4,|KI\4)""'}.

Theorem 1.2 is now completely proved. Theorem 1.1 was reduced to Theorem
1.2 in Section 1. Hence Theorem 1.1 is also proved.

5.21. REMARK. Let X < R" and Y be as in Theorem 1.1. Then tl'1e BL_EP of
Xin(R" Y) gives the numbers L,y(X, R, Y)and L, (L, X,R", Y) mentioned in the
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definition of the BLEP in the introduction. However, the proof shows that they
can be chosen to be independent of Y.

6. Raylike polyhedra.

Wesshall apply Theorem 1.1 to prove the BLEP for some noncompact polyhedra,
We say that a set 4 = R"is raylike with vertex ve A if v + t(x — v) e A whenever
xeAandt =0.

6.1. THEOREM. Suppose that X is a raylike closed polyhedron in R". Then X has
the BLEP in (R", R").

ProoF. Wemay assume that the vertex of X is the origin. For positive integers
k, we let Q, denote the n-cube [ —k, k]". Then X, = X n Q, is a compact polyhed-
ron. By Theorem 1.1, X has the BLEP in (R", R") Moreover, the sets X, are
mutually similar. From this it easily follows that the numbers L, = Ly(X;, R")
and L, = L(L, X;, R") of the definition of the BLEP do not depend on k. We
show that these can be chosen to be the corresponding numbers for X.

Let 1 £ L < Ly, and let f: X — R" be L-BL. Then each f|X, extends to an
L,-BL map g,: R" — R". The family of all g, is equicontinuous. Moreover, for
x e R"we have |g, x| £ |f(0)] + L,|x| for all k. From the Ascoli theorem it follows
that a subsequence of (g;) converges to a map g: R" — R", which is the desired
L,-BL extension of f.

6.2. COROLLARY. Let E and F be affine subspaces of R" with ENF # Q. Then
E U F has the BLEP in (R", R").

6.3. ReMark. Corollary 6.2 is not true without the condition En F # @. For
example, the union of two parallel lines does not have the BLEP in (R3, R?). This
is seen by screwing one of the lines slowly around the other; cf. [Gh, 3.3].
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