EXTENSION OF BILIPSCHITZ MAPS OF COMPACT POLYHEDRA #### JUHA PARTANEN and JUSSI VÄISÄLÄ #### Introduction. Let X and Y be metric spaces with distance written as |a - b|. A map $f: X \to Y$ is called *bilipschitz*, abbreviated BL, if there is $L \ge 1$ such that $$|x - y|/L \le |fx - fy| \le L|x - y|$$ for all $x, y \in X$. In this situation we also say that f is L-BL. A 1-BL map $f: X \to Y$ will be called an *isometry*. A set $A \subset X$ has the bilipschitz extension property, abbreviated BLEP, in (X, Y) if there is $L_0 = L_0(A, X, Y) > 1$ such that if $1 \le L \le L_0$, then every L-BL map $f: A \to Y$ has an L_1 -BL extension $g: X \to Y$, where $L_1 = L_1(L, A, X, Y) \to 1$ as $L \to 1$. This definition is from [V, p. 239]. In this paper we prove that a compact polyhedron $X \subset \mathbb{R}^n$ has the BLEP in (\mathbb{R}^n, Y) whenever Y is a linear subspace of the Hilbert space l_2 with dim $Y \ge n$. In the special case where X is a finite union of n-simplexes in \mathbb{R}^n , this follows from [V, 6.2]. This result and regular neighborhoods allow us to reduce the theorem to proving that the BLEP in (\mathbb{R}^n, Y) is preserved under an elementary simplicial collapse $K' \setminus K$ in \mathbb{R}^n ; the definition of collapsing will be recalled at the beginning of the proof of Theorem 1.2. This reduction is accomplished in Section 1. Supposing that K' collapses to K through a p-simplex Δ we prove in Sections 2-5 that the BLEP of |K'| indeed implies the BLEP of |K|. Our method resembles that used in [TV] to prove that \mathbb{R}^p has the BLEP in $(\mathbb{R}^n, \mathbb{R}^n)$ for $1 \le p \le n-1$. Sections 2 and 3 contain some auxiliary constructions. We first consider a normalized situation where Δ is a standard p-simplex; in the general case we use an auxiliary affine map which carries the standard simplex onto Δ . We obtain a Whitney type decomposition $\mathscr A$ of a set $A = \cup \mathscr A$ containing $\Delta \setminus |K|$. The elements of $\mathscr A$ are p-cubes. To each $Q \in \mathscr A$ we associate a set $E_Q \subset |K|$ near Q and of roughly the same size as Q. Received March 10, 1992. In Section 4 we begin the task of extending a given L-BL map $f: |K| \to Y$ to $|K'| = |K| \cup \Delta$. If $Q \in \mathscr{A}$, we let T_Q and T_Q^* be the affine subspaces of \mathbb{R}^n spanned by E_Q and $E_Q^* = E_Q \cup \Delta$, respectively. We first approximate f in each E_Q by an isometry $h_Q: T_Q \to Y$. Then we extend these isometries h_Q to isometries $h_Q^*: T_Q^* \to Y$ in such a way that if Q, $R \in \mathscr{A}$ intersect, then h_Q^* and h_R^* do not differ much in $Q \cup R$. This is a crucial and laborious technical step in our proof. In Section 5 we obtain a Whitney triangulation \mathscr{T} of A by triangulating each cube $Q \in \mathscr{A}$ in a suitable way. For each vertex v of \mathscr{T} we then choose a cube $Q(v) \in \mathscr{A}$ with $v \in Q(v)$. The desired extension g of f is obtained by setting $g(v) = h_{Q(v)}^*(v)$ for the vertices v of \mathscr{T} and extending affinely to the simplexes of \mathscr{T} . We prove that if $L = 1 + \varepsilon$ with ε small enough, then all the steps described above are possible and that the map $g: |K'| \to Y$ is L_1 -BL with $L_1 = L_1(L, K', Y) \to 1$ as $L \to 1$. In Section 6 we apply our main theorem to show that also certain unbounded polyhedra have the BLEP in (R^n, R^n) . We thank the referee for pointing out and filling a gap in the proof of 4.18 and for other suggestions and corrections. NOTATION. Our notation on PL topology is fairly standard. Given a set K of simplexes, we write $|K| = \bigcup K$. If $\tau \in K$, we let $\operatorname{st}(\tau, K)$ denote the set of the simplexes of K containing τ . The sets of the vertices of K and τ are written as K^0 and τ^0 , respectively. If $1 \le p \le n-1$, we identify \mathbb{R}^p with the subset $\{x : x_{p+1} = \ldots = x_n = 0\}$ of \mathbb{R}^n . The distance between two sets A, B in a metric space is written as d(A, B) with the agreement that $d(A, B) = \infty$ if A or B is empty. The diameter of A is d(A) with $d(\emptyset) = 0$. We let T(A) denote the affine subspace of \mathbb{R}^n spanned by a set $A \subset \mathbb{R}^n$. For r > 0 we set $$\bar{B}^n(A,r) = \{ x \in \mathbb{R}^n : d(x,A) \le r \}.$$ In the Hilbert space l_2 of all square summable sequences of real numbers, we let $x \cdot y$ denote the inner product of x and y, and $|x| = (x \cdot x)^{1/2}$ is the norm of x. If f and g are two functions defined in a set A and with values in l_2 , we write $$|f - g|_A = \sup_{x \in A} |fx - gx|.$$ We usually omit parentheses writing fx instead of f(x). A map $f: A \to l_2$ with $A \subset \mathbb{R}^n$ is a *similarity* if there is $\lambda > 0$ such that $$|fx - fy| = \lambda |x - y|$$ for all $x, y \in A$. Every similarity $f: A \to l_2$ is the restriction of a unique affine similarity $g: T(A) \to l_2$. The corresponding statement for isometries is also true. We let R, Z and N denote the set of real numbers, integers and nonnegative integers, respectively. #### 1. The main result and a reduction. This paper is devoted to proving the following result: 1.1. THEOREM. Let $X \subset \mathbb{R}^n$ be a compact polyhedron and let Y be a linear subspace of the Hilbert space l_2 with dim $Y \ge n$. Then X has the BLEP in (\mathbb{R}^n, Y) . PROOF. Let N be a regular neighborhood of X in \mathbb{R}^n . Since N is a finite union of n-simplexes, N is thick in \mathbb{R}^n in the sense of [V, 6.1]. Hence N has the BLEP in (\mathbb{R}^n, Y) by [V, 6.2]. A standard result of PL topology (cf. [Gl, p. 77]) gives a triangulation (N', X') of (N, X) such that N' collapses to X' through a finite sequence of elementary simplicial collapses $$N' = N_0 \downarrow N_1 \downarrow \ldots \downarrow N_s = X'.$$ Since |N'| = N has the BLEP in (R^n, Y) and since |X'| = X, we have reduced the theorem to the following result: 1.2. THEOREM. Let K and K' be finite simplicial complexes in R^n and suppose that there is an elementary simplicial collapse $K' \downarrow K$ through a p-simplex Δ , $1 \le p \le n$. Suppose also that |K'| has the BLEP in (R^n, Y) . Then |K| has the BLEP in (R^n, Y) . PROOF. Let v_0, \ldots, v_p be the vertices of Δ . Then Δ is their join v_0, \ldots, v_p , and the (p-1)-faces of Δ are the simplexes $\sigma_i = v_0 \ldots \hat{v}_i \ldots v_p$ with vertices $v_j, j \neq i$. The collapsing condition $K' \setminus K$ through Δ means that $K' \setminus K = \{\Delta, \sigma_i\}$ for some i. We may assume that $K' \setminus K = \{\Delta, \sigma_0\}$. Using an auxiliary isometry of \mathbb{R}^n , we may also normalize the situation so that $v_0 = 0$ and $\Delta \subset \mathbb{R}^p$. We divide the proof of Theorem 1.2 into four parts, which are presented in Sections 2-5. If p = 1, it is possible that $\{0\}$ is a isolated simplex of K. This easy special case will be considered in 5.20. Until then, we assume that 0 is not isolated in |K|. # 2. The decomposition. We shall construct a Whitney type decomposition \mathscr{A} of a suitable set containing $A \setminus |K|$. Let $e_0 = 0$ and let (e_1, \dots, e_p) be the standard basis of \mathbb{R}^p . We first consider a special case, assuming that $v_i = e_i$ for $0 \le i \le p$ until the end of Section 3. 2.1. NOTATION. For each nonempty subset v of $\{1, \ldots, p\}$ we set $$T_{\mathbf{v}} = \{ x \in \mathsf{R}^p : x_j = 0 \text{ for all } j \in \mathbf{v} \}.$$ We let q_{ν} denote the orthogonal projection $q_{\nu}: \mathbb{R}^p \to T_{\nu}$. As a special case we obtain the coordinate hyperplanes $T_i = T_{\{i\}} = T(\sigma_i)$ of \mathbb{R}^p . We set $\mathbb{R}^p_0 = T_1 \cup \ldots \cup T_p$. 2.2. THE CUBE FAMILY \mathscr{J} . Setting I = [0,1] we have $\Delta \subset I^p \subset 2I^p = [0,2]^p$. We define some auxiliary families of p-cubes of \mathbb{R}^p . First, let $\mathscr{I}_{-1} = \{2I^p\}$. Proceeding inductively, we obtain \mathscr{I}_{k+1} from \mathscr{I}_k by bisecting the sides of each cube in \mathscr{I}_k . Let \mathscr{I} be the union of all \mathscr{I}_k , $k \ge -1$, $k \in \mathbb{Z}$. For any cube $Q \subset \mathbb{R}^p$, we let λ_Q denote the side length and z_Q the center of Q. If $Q \in \mathscr{I}$, we let k(Q) denote the unique integer with $Q \in \mathscr{I}_{k(Q)}$. Then $\lambda_Q = 2^{-k(Q)}$ for $Q \in \mathscr{I}$. Figure 1. The decomposition \mathcal{J} . More interesting is the subfamily $\mathscr{J} = \bigcup_{k=0}^{\infty} \mathscr{J}_k$ of \mathscr{I} where $$\mathcal{J}_{k} = \{ Q \in \mathcal{J}_{k} : d(Q, \mathsf{R}_{0}^{p}) = \lambda_{Q} = 2^{-k} \}.$$ The cubes $Q \in \mathcal{J}$ give a decomposition of $2I^p \setminus \mathsf{R}_0^p$ into closed p-cubes with disjoint interiors. In Figure 1 we have p=2, but the reader should remember that the corresponding three-dimensional picture is a better guide to a sufficient understanding of some important phenomena. The members of \mathcal{J}_3 are shaded. The simplex Δ is in the lower left corner, and σ_0 is the dotted line segment. If $Q \subset \mathbb{R}^p$ is a p-cube and t > 0, we let Q(t) be the p-cube of \mathbb{R}^p with center z_Q , side length $t\lambda_Q$ and edges parallel to those of Q. We state without proof some obvious properties of \mathcal{J} : - 2.3. LEMMA. (1) Let $Q \in \mathcal{J}_k$, $R \in \mathcal{J}_{k+1}$ and let $Q \cap R \neq \emptyset$. Then $R(t) \subset Q(t)$ for $t \geq 3$. - (2) Let Q, $R \in \mathcal{J}_k$ and let $Q \cap R \neq \emptyset$. Then $R(t) \subset Q(t+2)$ for all t > 0. - (3) Let Q_1, \ldots, Q_s be a sequence of cubes in \mathscr{J} such that $k(Q_{j+1}) = k(Q_j) + 1$ and $Q_{j+1} \cap Q_j \neq \emptyset$ for all $j \in
\{1, \ldots, s-1\}$. Then $Q_s \subset Q_1(3)$. - 2.4. Notation. We let #S denote the cardinality of a set S. If $Q \in \mathcal{J}$, we define $$v_Q = \{j : d(Q, T_j) = 2^{-k(Q)}\}, l_Q = \#v_Q.$$ Then $1 \le l_0 \le p$. If $1 \le j \le p$ and $k \in \mathbb{N}$, we set $$\mathcal{J}_{k}^{j} = \{Q \in \mathcal{J}_{k} : j \in v_{Q}\} = \{Q \in \mathcal{J}_{k} : d(Q, T_{j}) = 2^{-k}\}.$$ Then $\mathcal{J}_k = \mathcal{J}_k^1 \cup \ldots \cup \mathcal{J}_k^p$. In Figure 1, \mathcal{J}_3^1 is the vertical and \mathcal{J}_3^2 the horizontal row of shaded squares. 2.5. PREDECESSORS AND FOLLOWERS. Suppose that $R \in \mathcal{J}_k$ with $k \ge 1$. Then there is a unique cube Q in \mathcal{J}_{k-1} satisfying the conditions $$(2.6) v_R \subset v_Q, q_{v_R} R \subset q_{v_R} Q, Q \cap R \neq \emptyset.$$ We say that Q is the *predecessor* of R and R is a *follower* of Q, and we write $R \triangleleft Q$ and $Q \triangleright R$. We let $\mathscr{F}(Q)$ denote the family of all followers of Q. Then $\mathscr{F}(Q)$ is the union of the mutually disjoint families $$\mathscr{F}^{\nu}(Q) = \{ R \in \mathscr{F}(Q) : \nu_R = \nu \},$$ $\emptyset \neq v \subset v_Q$. In particular, for $j \in v_Q$ we have the sets $\mathscr{F}^j(Q) = \mathscr{F}^{\{j\}}(Q)$, each containing 2^{p-1} cubes. We let P_Q^j be the unique cube of $\mathscr{F}^j(Q)$ closest to the origin. We call P_Q^j the principal follower of Q in the direction $j \in v_Q$. If $l_Q = 1$, Q has only one principal follower, written as P_Q . This is the case with most cubes in \mathscr{I} . For example, if p = 2, then only the corner cube of \mathscr{I}_k has $l_Q = 2$; for all other cubes of \mathscr{I}_k we have $l_Q = 1$. 2.7. The FAMILY \mathscr{A} . The p-simplex $\Delta = e_0 \dots e_p$ is a corner of the cube $2I^p$. We set $\varrho = \sigma_1 \cup \dots \cup \sigma_p = \Delta \cap \mathsf{R}_0^p$. We are mainly interested in cubes $Q \in \mathscr{J}$ sufficiently near ϱ . We define a family \mathscr{A} of such cubes: $$\mathscr{A} = \bigcup_{k=0}^{\infty} \mathscr{A}_k, \, \mathscr{A}_k = \{ Q \in \mathscr{J}_k : Q(5) \cap \varrho \neq \emptyset \}.$$ We also set $$A = \bigcup \mathscr{A}, \ \mathscr{A}_k^j = \mathscr{A} \cap \mathscr{J}_k^j,$$ where $1 \le j \le p, k \in \mathbb{N}$. - 2.8. Lemma. (1) $\Delta \setminus \varrho \subset A$. - (2) If $R \in \mathcal{A}_{k+1}$, $R \triangleleft Q \in \mathcal{J}_k$, $S \in \mathcal{J}_k$ and $Q \cap S \neq \emptyset$, then $S \in \mathcal{A}_k$. - (3) If $R \in \mathcal{A}_{k+1}$, $Q \in \mathcal{J}_k$ and $Q \cap R \neq \emptyset$, then $Q \in \mathcal{A}_k$. - (4) If $Q, R \in \mathcal{J}_k, Q \cap R \neq \emptyset$ and $R \triangleleft S$, then $Q \cap S \neq \emptyset$. PROOF. The statement (1) is obvious, (3) follows from Lemma 2.3(1), and (4) is easy to verify. To prove (2), assume its situation and observe that it suffices to prove that $R(5) \cap \varrho \subset S(5)$. Let $x \in R(5) \cap \varrho$ and $i \in \{1, ..., p\}$. If $i \in v_R$, then (2.6) gives $i \in v_Q$. Hence $0 \le x_i \le z_{Ri} + 5\lambda_R/2 = 2\lambda_Q$ and $z_{Qi} = 3\lambda_Q/2$. This implies $$|x_i - z_{Si}| \le |x_i - z_{Oi}| + |z_{Oi} - z_{Si}| \le 3\lambda_O/2 + \lambda_O = 5\lambda_S/2.$$ If $i \notin v_R$, we get $$|x_i - z_{Si}| \le |x_i - z_{Ri}| + |z_{Ri} - z_{Qi}| + |z_{Qi} - z_{Si}| \le 5\lambda_R/2 + \lambda_R/2 + \lambda_S = 5\lambda_S/2$$. It follows that $x \in S(5)$, and thus $R(5) \cap \varrho \subset S(5)$. 2.9. THE RUBIK CUBES AND BOXES. Let C be a p-cube. By dividing all edges of C into three equal parts we get a subdivision of C into 3^p subcubes. The family Γ of these 3^p cubes is called a *Rubik p-cube*. Let $0 \le r \le p$, and let B be an r-dimensional face of C. The family (2.10) $$\Gamma_1 = \Gamma_1(\Gamma, B) = \{ Q \in \Gamma : Q \cap B \neq \emptyset \}$$ will be called an r-face of Γ . Such cube families Γ_1 are also called Rubik (p,r)-boxes. The members of Γ_1 containing a vertex of the r-cube B are called the $vertex\ cubes$ of Γ_1 . We let Γ_1' denote the family of all 2^r vertex cubes of Γ_1 . Given a Rubik (p,r)-box Γ_1 , $0 \le r \le p-1$, its representation in the form (2.10) is not unique, but Γ_1' is clearly independent of the representation. Some Rubik (3,r)-boxes are shown in Figure 2; the vertex cubes are shaded. Figure 2. Rubik (3, r)-boxes Let $j \in \{1, ..., p\}$ and $k \in \mathbb{N}$. We consider the family $$(2.11) \mathscr{P}_{k+1}^j = \{ P_Q^j \colon Q \in \mathscr{J}_k^j \},$$ consisting of all principal followers of the cubes $Q \in \mathcal{J}_k^j$ in the direction j; for definitions, consult 2.4 and 2.5. Then $v_R = \{j\}$ for all $R \in \mathcal{P}_{k+1}^j$. The following statement is obviously true: 2.12. LEMMA. Let $Q \in \mathcal{J}_{k+1}$. Suppose that $v_Q = \{j\}$ and that Q does not meet any of the hyperplanes $x_i = 2$, $1 \le i \le p$. Then Q belongs to a unique Rubik (p,r)-box Γ_Q with $\Gamma_Q' \subset \mathcal{P}_{k+1}^j$ and with $r \in \{0,\ldots,p-1\}$ minimal. In fact, we have $$\Gamma_Q' = \{ R \in \mathcal{P}_{k+1}^j : R \cap Q \neq \emptyset \}.$$ A somewhat less obvious result is: 2.13. LEMMA. Suppose that $Q, R \in \mathcal{A}_k, k \geq 2, v_Q = v_R = \{j\}$, and $Q \cap R \neq \emptyset$. Then there exists a Rubik (p, p-1)-box $\Gamma \subset \mathcal{J}_k^j$ containing Q and R such that the elements of Γ' are principal followers of some members of \mathcal{A}_{k-1} : $$\varGamma' = \{P_S^j \colon S \in \varGamma_0\}, \varGamma_0 \subset \mathcal{A}_{k-1}.$$ Moreover, $S_1 \cap S_2 \neq \emptyset$ for all $S_1, S_2 \in \Gamma_0$. PROOF. Since $k \ge 2$, the cubes Q and R do not meet any of the hyperplanes $x_i = 2$. Hence there clearly exists a Rubik (p, p - 1)-box $\Gamma \subset \mathcal{J}_k^j$ containing Q and R such that $\Gamma' = \{P_S^i : S \in \Gamma_0\}$ for some $\Gamma_0 \subset \mathcal{J}_{k-1}$. Moreover, $S_1 \cap S_2 \neq \emptyset$ for all $S_1, S_2 \in \Gamma_0$, and the predecessors of Q and R belong to Γ_0 . By Lemma 2.8(2) we have $\Gamma_0 \subset \mathcal{J}_{k-1}$. #### 3. Corners and estates. In this section, we associate to every $Q \in \mathcal{A}$ an estate $E_Q \subset |K|$ in such a way that the numbers $d(E_Q)$, λ_Q and $d(Q, E_Q)$ are roughly equal. Moreover, if the affine subspace $T_Q = T(E_Q)$ spanned by E_Q is m_Q -dimensional, we want E_Q to contain the vertices of an m_Q -simplex σ_Q , which also is of the size λ_Q and not too flat. 3.1. Corners. We have already called the simplex $\Delta = e_0 \dots e_p$ a corner. More generally, we say that a set $\Theta \subset \mathbb{R}^p$ is a *corner* if there are $v \in \mathbb{R}^p$ and $\lambda > 0$ such that $\Theta = v + \lambda \Delta$. Here v and λ are uniquely determined by Θ . We say that v is the *basic vertex* and λ is the *size* of the corner Θ . Observe that a point $x \in \mathbb{R}^p$ is in Θ if and only if (3.2) $$x_j \ge v_j \text{ for all } j \in \{1, \dots, p\},$$ $$\sum_{j=1}^p (x_j - v_j) \le \lambda.$$ Hence Θ is the intersection of the p+1 half spaces $x_j \ge v_j$, $1 \le j \le p$, and $\sum_{j=1}^p x_j \le \sum_{j=1}^p v_j + \lambda$ of \mathbb{R}^p . Conversely, the intersection of half spaces of the form $x_j \ge v_j$ and $\sum_{j=1}^p x_j \le t$ is always a corner or a point or the empty set. From this we obtain: 3.3. Lemma. The intersection of two corners is either a corner or a point or empty. If Θ and Θ' are corners in \mathbb{R}^p , there is a unique homeomorphism $f: \Theta \to \Theta'$ of the form $fx = \lambda x + a, \lambda > 0$. In the following lemma we set $f\sigma = \sigma'$ whenever σ is a face of Θ : - 3.4. Lemma. Suppose that Θ and Θ' are corners in \mathbb{R}^p such that $\Theta' \subset \Theta$, $\Theta' \neq \Theta$, and $\Theta' \cap \partial \Theta \neq \emptyset$. Then the following statements are true: - (1) If Θ' meets a (p-1)-face σ of Θ , then $\sigma' = \sigma \cap \Theta'$. - (2) There is a unique proper face τ of Θ such that $\Theta' \cap \partial \Theta = |st(\tau', \partial \Theta')|$, where $\partial \Theta'$ is viewed as a complex in the natural way. In fact, τ is the intersection of all (p-1)-faces of Θ meeting Θ' . - (3) $\tau' \subset \tau$. - (4) If τ_1 is a face of Θ , then $\tau_1 \cap \Theta' \neq \emptyset \Leftrightarrow \tau \subset \tau_1$. **PROOF.** (1) The hyperplanes $T(\sigma)$ and $T(\sigma')$ are parallel. If $T(\sigma) \neq T(\sigma')$, then the condition $\Theta' \subset \Theta$ implies that $T(\sigma)$ and Θ' are on different sides of $T(\sigma')$. This is impossible, because $\sigma \cap \Theta' \neq \emptyset$. It follows that $T(\sigma) = T(\sigma')$, and hence $\sigma' = \sigma \cap \Theta'$. Figure 3 (2) Set $F = \Theta' \cap \partial \Theta$. Figure 3 illustrates a typical situation with p = 3, dim $\tau = 1$; the set F is shaded. Let a_0, \ldots, a_p be the vertices of Θ , and let σ_j be the (p-1)-face of Θ opposite to a_i , $0 \le j \le p$. Write $$J_p = \{0, \ldots, p\}, J = \{j \in J_p : \sigma_j \cap \Theta' \neq \emptyset\}.$$ By (1) we have $F = \bigcup \{\sigma'_j : j \in J\}$. Since $\emptyset \neq F \neq \partial \Theta$, we have $\emptyset \neq J \neq J_p$. It is now easy to see that the simplex $\tau = \bigcap \{\sigma_j : j \in J\}$ with vertices $a_j, j \in J_p \setminus J$, is the unique face of Θ satisfying the condition $$F = \bigcup_{i \in J} \sigma'_j = |\operatorname{st}(\tau', \partial \Theta')|.$$ (3) By the proof of (2), we have $$\tau = \bigcap_{i \in J} \sigma_j, \tau' = \bigcap_{i \in J} \sigma'_j.$$ By (1) we have $\sigma'_i \subset \sigma_j$
for all $j \in J$. Hence $\tau' \subset \tau$. - (4) If $\tau \subset \tau_1$, then (3) implies that $\emptyset \neq \tau' \subset \tau_1 \cap \Theta'$. Conversely, suppose that $\tau_1 \cap \Theta' \neq \emptyset$. If $\tau_1 = \Theta$, then trivially $\tau \subset \tau_1$. If $\tau_1 \neq \Theta$, then τ_1 is the intersection of all (p-1)-faces σ of Θ containing it. For each such σ , the assertion (2) implies that $\tau \subset \sigma$, because $\emptyset \neq \tau_1 \cap \Theta' \subset \sigma \cap \Theta'$. Hence $\tau \subset \tau_1$. - 3.5. Estates. Let us consider the situation of Theorem 1.2, where $K' = K \cup \{\Delta, \sigma_0\}$. We first assume that $\Delta = e_0 \dots e_p$ is the standard corner of \mathbb{R}^p . Recall the cube family \mathscr{A} from 2.7 and suppose that $Q \in \mathscr{A}$. We let Δ_Q denote the smallest corner containing the cube Q(7). Then the size of Δ_Q is $7p\lambda_Q$, and the basic vertex of Δ_Q is $$v_Q = z_Q - \frac{7\lambda_Q}{2} \sum_{i=1}^p e_i.$$ Hence Δ_Q is the set of all $x \in \mathbb{R}^p$ satisfying the inequalities $$x_j \ge z_{Qj} - 7\lambda_Q/2$$, $\sum_{i=1}^{p} (x_j - z_{Qj}) \le 7p\lambda_Q/2$. Writing $\varrho = \Delta \cap \mathbb{R}_0^p$ as in 2.7 we set $$(3.6) E_Q^0 = \Delta_Q \cap \varrho, K_Q = \{ \tau \in K : \tau \cap E_Q^0 \neq \emptyset \}.$$ We define the estate E_Q of Q by the formula (3.7) $$E_{\mathcal{O}} = \bigcup \{ \bar{B}^n(\tau \cap E_{\mathcal{O}}^0, \lambda_{\mathcal{Q}}) \cap \tau : \tau \in K_{\mathcal{Q}} \}.$$ - 3.8. Remark. We list some observations about the estates E_Q : - 1. Let $Q \in \mathscr{A}$. Since $Q(5) \cap \varrho \neq \emptyset$ and since $Q(7) \subset \Delta_Q$, the set $\Delta'_Q = \Delta_Q \cap \Delta$ is a corner by Lemma 3.3. Moreover, we have $\Delta'_Q \cap \varrho = E_Q^0 \neq \emptyset$. If $\Delta'_{Q} \neq \Delta$, we can apply Lemma 3.4(2) with the substitution $\Theta' \mapsto \Delta'_{Q}, \Theta \mapsto \Delta$. We get a proper face τ of Δ such that $$\Delta'_{Q} \cap \partial \Delta = |\operatorname{st}(\tau', \partial \Delta'_{Q})|.$$ Here $\tau' \neq \sigma'_0$, and we can write $$E_Q^0 = |\operatorname{st}(\tau', \varrho')|,$$ where ϱ' corresponds ϱ viewed as a complex in the natural way. The case $\Delta_Q' = \Delta$ can only occur for a finite number of cubes $Q \in \mathscr{A}$. In this case we have $$E_Q^0 = \varrho = |\operatorname{st}(0, \varrho)|.$$ 2. The diameter $d(\Delta_Q)$ is $7p\lambda_Q\sqrt{2}$ if $p \ge 2$ and $7\lambda_Q$ if p = 1. Hence we have $$d(E_Q) \le (7p\sqrt{2} + 2)\lambda_Q$$ for all $Q \in \mathcal{A}$. - 3.9. LEMMA. Suppose that $Q, R \in \mathcal{A}$. - (1) If $Q \cap R \neq \emptyset$, then $E_Q^0 \cap E_R^0 \neq \emptyset$. - (2) If $Q \cap R \neq \emptyset$ and k(R) = k(Q) + 1, then $E_R^0 \subset E_Q^0$ and $E_R \subset E_Q$. PROOF. We first prove (2). Suppose that $Q \cap R \neq \emptyset$ and k(R) = k(Q) + 1. By 2.3(1), (3.6) and the definition of Δ_Q , we have $E_R^0 \subset E_Q^0$. Since $\lambda_R < \lambda_Q$, we get $E_R \subset E_Q$ from (3.6) and (3.7). To prove (1), observe that by (2) we may assume that k(R) = k(Q). Then $Q(5) \subset R(7)$ by 2.3(2), and hence $Q(5) \subset \Delta_Q \cap \Delta_R$. Since $Q \in \mathscr{A}$, we get $\emptyset \neq Q(5) \cap \varrho \subset E_Q^0 \cap E_R^0$. For $0 \in \mathcal{A}$ we write (3.10) $$T_O = T(E_O), \quad m_O = \dim T_O.$$ The affine subspaces T_Q play an important role in the sequel. Since each K_Q contains at least one $\sigma_j = e_0 \dots \hat{e}_j \dots e_p$, we have $0 \in T_Q$ for all $Q \in \mathcal{A}$. Hence T_Q is always a linear subspace of \mathbb{R}^n . The assumption that 0 is not isolated in |K| implies that $m_Q \ge 1$ even if p = 1. The flatness $F(\alpha)$ of a k-simplex $\alpha = a_0 \dots a_k \subset \mathbb{R}^n$, $k \ge 1$, is defined by (3.11) $$F(\alpha) = \frac{d(\alpha)}{b(\alpha)},$$ where $b(\alpha)$ is the smallest height of α . Explicitly, $$b(\alpha) = \min_{0 \le j \le k} d(a_j, T(\alpha_j)), \ \alpha_j = a_0 \dots \hat{a}_j \dots a_k.$$ The following lemma is the main goal of this section: 3.12. Lemma. For each $Q \in \mathcal{A}$ there is a simplex σ_Q such that - (1) $\sigma_Q^0 \subset E_Q$, - (2) $T_O = T(\sigma_O)$, - (3) $c_1 \lambda_Q \leq d(\sigma_Q) \leq c_2 \lambda_Q$, - (4) $F(\sigma_Q) \leq c_3$, where c_1, c_2, c_3 are positive constants depending only on K'. PROOF. Let $Q \in \mathscr{A}$ and set $\Delta'_Q = \Delta_Q \cap \Delta$ as in 3.8.1. Since $\Delta'_R = \Delta$ only for a finite number of cubes $R \in \mathscr{A}$, we may assume that $\Delta'_Q \neq \Delta$. For each face τ of Δ with $\tau \subset \varrho$ we set $N(\tau) = |\operatorname{st}(\tau, K)|$. Since $0 \in N(\tau)$, we can choose a simplex $\sigma(\tau)$ with the properties $$(3.13) 0 \in \sigma(\tau)^0 \subset N(\tau), \ T(\sigma(\tau)) = T(N(\tau)).$$ It suffices to find a simplex σ_Q such that σ_Q satisfies the conditions (1)–(3) and is similar to some $\sigma(\tau)$. As in 3.8.1 we can write $E_Q^0 = |\operatorname{st}(\tau', \varrho')|$. Here τ' is the face of Δ'_Q corresponding to the intersection τ of all (p-1)-faces of Δ meeting Δ'_Q ; cf. 3.4(2). By 3.4(3) we have $\tau' \subset \tau$. We first prove that $K_Q = \operatorname{st}(\tau, K)$. If $\sigma \in \operatorname{st}(\tau, K)$, then $\emptyset \neq \tau' \subset \sigma \cap E_Q^0$, and hence $\sigma \in K_Q$. Conversely, let $\sigma \in K_Q$. Then $$\emptyset \neq \sigma \cap E_Q^0 = \sigma \cap \Delta_Q' = (\sigma \cap \Delta) \cap \Delta_Q'.$$ Since $\sigma \cap \Delta$ is a face of Δ , Lemma 3.4(4) implies that $\sigma \in st(\tau, K)$. Hence $K_Q = st(\tau, K)$. There is $M = M(K') \ge 1$ such that $d(N(\tau)) \le M$. Choose $v \in \tau'$ and consider the radial similarity $f: \mathbb{R}^n \to \mathbb{R}^n$ defined by $$fx = \frac{\lambda_Q}{M}(x - v) + v.$$ Since $N(\tau)$ is starlike with respect to v and since $M \ge 1 \ge \lambda_Q$, we have $fN(\tau) \subset N(\tau) = |\operatorname{st}(\tau,K)| = |K_Q|$. Moreover, if $x \in N(\tau)$, then $|fx - v| = \lambda_Q |x - v|/M \le \lambda_Q$. Hence $fN(\tau) \subset |K_Q| \cap \bar{B}^n(v,\lambda_Q)$. Since $v \in \tau' \subset \sigma \cap E_Q^0$ for all $\sigma \in K_Q = \operatorname{st}(\tau,K)$, we have $fN(\tau) \subset E_Q$. We show that $\sigma_Q = f\sigma(\tau)$ is the desired simplex. Since $$\sigma_Q^0 = f\sigma(\tau)^0 \subset fN(\tau) \subset E_Q,$$ the condition (1) holds. Since $K_Q = \operatorname{st}(\tau, K)$, we have $E_Q \subset N(\tau)$. Hence $$T_{\mathcal{O}} = T(E_{\mathcal{O}}) \subset T(N(\tau)) = T(\sigma(\tau)) = T(\sigma_{\mathcal{Q}}) \subset T_{\mathcal{Q}},$$ which implies (2). Finally, we have $d(\sigma_Q) = \lambda_Q d(\sigma(\tau))/M$. Since K is finite, we get (3). 3.14. THE GENERAL CASE. In Sections 2 and 3 we have so far only considered the special case where $v_i = e_i$ for i = 0, ..., p. Now we return to the situation described in Section 1. There we had $\Delta = v_0 ... v_p, v_0 = 0$, $K' \setminus K = \{\Delta, \sigma_0\}$. Let $\kappa\colon \mathsf{R}^n\to\mathsf{R}^n$ be a linear isomorphism satisfying $\kappa e_i=v_i$ for $i=0,\ldots,p$. We do not know yet whether $\kappa^{-1}|K'|$ has the BLEP in (R^n,Y) or not; cf. [P, 3.7]. Despite of this we can apply the constructions of Sections 2 and 3 to the situation where $\kappa^{-1}K'$ collapses to $\kappa^{-1}K$ through $\kappa^{-1}\Delta=e_0\ldots e_p$. Thus we have the cube families $\mathscr{J},\mathscr{A},\mathscr{F}(Q),\mathscr{P}_{k+1}^j$, the Rubik cubes and boxes Γ , the sets A,E_Q^0,K_Q , and the estates E_Q as before. Figure 4. The decomposition $\varkappa \mathcal{J}$ Applying the linear isomorphism \varkappa to these, we get the corresponding notions in the general situation. Thus we get the sets \varkappa_Q , \varkappa_Q , $\varkappa_Q(t)$, \varkappa_A , $\varkappa_{E_Q}^0$, $\varkappa_{E_Q}^0$, the families $\varkappa_J = \{\varkappa_Q : Q \in J\}$, \varkappa_A , $\varkappa_J \in \mathcal{F}(Q)$, \varkappa_{k+1}^0 , $\varkappa_I \in \mathcal{F}(Q)$, \varkappa_{k+1}^0 , $\varkappa_I \in \mathcal{F}(Q)$. We also get the linear supspaces $T_j = T(\varkappa^{-1}\sigma_j)$, T_Q , $\varkappa_I \in \mathcal{F}(Q)$, $\varkappa_I \in \mathcal{F}(Q)$ of dimensions p-1 and m_Q . See Figure 4. For $Q \in \mathcal{A}$ consider the simplex σ_Q given by Lemma 3.12. Choose $H \ge 1$ such that κ is H-bilipschitz. Then 3.12 yields - (1) $\kappa \sigma_Q^0 \subset \kappa E_Q$, - $(3.15) \qquad (2) \quad \varkappa T_Q = T(\varkappa \sigma_Q),$ - $(3) H^{-1}c_1\lambda_0 \le d(\varkappa\sigma_0) \le Hc_2\lambda_0,$ - (4) $F(\varkappa\sigma_Q) \leq H^2 c_3$, where c_1 , c_2 and c_3 are the constants of Lemma 3.12, depending only on K'. ## 4. The isometries h_0 and h_0^* . We assume the situation of Theorem 1.2 and the results and notation of Sections 2 and 3 as explained in 3.14. For example, we have the cube family $\mathscr A$ and the estates E_Q , $Q \in \mathscr A$, given by the constructions of Sections 2 and 3 when applied to the collapse $\varkappa^{-1}K' \downarrow \varkappa^{-1}K$ through $\varkappa^{-1}\Delta = e_0 \dots e_p$. Let L > 1 and let $f: |K| \to Y$ be an L-BL map. Since |K'| has the BLEP in (\mathbb{R}^n,Y) , Theorem 1.2 will follow if we can extend f to |K'|. To be more precise, it suffices to find a number $L_0=L_0(K')>1$ such that if $L\leq L_0$, then f has an L_1 -BL extension $g:|K'|\to Y$ with $L_1=L_1(L,K')\to 1$ as $L\to 1$. We are going to do this by finding a number $q_0=q_0(K')>0$ and for every $q\in]0,q_0]$ two numbers $1< L(q,K')\leq L_1(q,K')$ with $L_1(q,K')\to 1$ as $q\to 0$ and such that if $L\leq L(q,K')$,
then f has an $L_1(q,K')$ -BL extension $g:|K'|\to Y$. The auxiliary parameter q will not be needed before Lemma 4.18. In the rest of the proof (to the end of Section 5) we replace R^n by T(|K'|). Then n depends on |K'|. We plan to extend f to $|K'| \setminus |K| = \Delta \setminus |K|$ by making use of the fact that $\Delta \setminus |K| \subset \varkappa A$; see 2.8(1) and 3.14. For this we shall use two families of isometries h_Q and h_Q^* , $Q \in \mathscr{A}$. Before defining them we make a useful normalization. 4.1. NORMALIZATION. Using auxiliary isometries of l_2 , we may assume that $R^n \subset Y$ and $fv_0 = f(0) = 0$. Since |K| is compact, we can approximate f by an isometry. Applying [V, 3.1] we can find an isometry $h: R^n \to Y$ such that h(0) = 0 and $$|h - f|_{|K|} \leq \delta(L, n) d(|K|),$$ where $\delta(L, n)$ is increasing in L and $\delta(L, n) \to 0$ as $L \to 1$. Extending h to a bijective isometry $h: Y \to Y$ and replacing f by $h^{-1}f$, we see that it suffices to consider the case where h is the identity map of Y. Then we have f(0) = 0 and $$(4.2) |f - \mathrm{id}|_{|K|} \leq \delta(L, n) d(|K|),$$ where id is the identity map. Later on, we let id also denote various other inclusions. 4.3. THE ISOMETRIES h_Q . We shall associate to each $Q \in \mathcal{A}$ an isometry h_Q : $\varkappa T_Q \to Y$ approximating f on $\varkappa E_Q$. First we set $h_Q = \operatorname{id} : \varkappa T_Q \to Y$ for $Q \in \mathscr{A}_0 \cup \mathscr{A}_1$. Next assume that $Q \in \mathscr{A}_k$, $k \ge 2$. Since \varkappa is H-BL, Remark 3.8.2 implies that $d(\varkappa E_Q) \le H(7n\sqrt{2}+2)\lambda_Q$. Applying again the approximation theorem [V, 3.1] we find an isometry $h_Q : \varkappa T_Q \to Y$ such that $$(4.4) |h_Q - f|_{\varkappa E_Q} \le \delta(L, n) H(7n\sqrt{2} + 2)\lambda_Q.$$ Write (4.5) $$\varepsilon(L,K') = \delta(L,n) \max \{2d(|K|), H(7n\sqrt{2}+2)\}.$$ Then (4.2) and (4.4) imply $$(4.6) |h_Q - f|_{\kappa E_Q} \le \varepsilon(L, K') \lambda_Q$$ for all $Q \in \mathcal{A}$. A linear map $\varphi: E \to F$ between inner products spaces is called *orthogonal* if it preserves the inner product. Each isometry $h: E \to F$ can be written as $hx = \varphi x + h(0)$, where φ is orthogonal, called the *orthogonal part* of h. In the present situation, we let $\varphi_O: \varkappa T_O \to Y$ denote the orthogonal part of h_O . For $Q \in \mathcal{A}$ we set $$E_Q^* = E_Q \cup \varkappa^{-1} \Delta, T_Q^* = T(E_Q^*), m_{C}^* = \dim T_Q^*.$$ Recalling (3.10) we have $T_Q \subset T_Q^*$. Since K_Q contains one of the simplexes $e_0 \dots \hat{e}_j \dots e_p$, we have either $T_Q = T_Q^*$ or $m_Q^* = m_Q + 1$. We want to extend the isometries $h_Q : \varkappa T_Q \to Y$ to isometries $h_Q^* : \varkappa T_Q^* \to Y$ in such a way that if $Q, R \in \mathscr{A}$ intersect, then h_Q^* and h_R^* do not differ much in $\varkappa [Q \cup R]$. To accomplish this, we shall extend the maps $\varphi_Q : \varkappa T_Q \to Y$ to suitable orthogonal maps $\varphi_Q^* : \varkappa T_Q^* \to Y$ in Lemma 4.18. Before that we make some preparations. If $Q, R \in \mathcal{A}$, we set $T_{QR} = T_Q \cap T_R$ and $\varphi_{QR} = \varphi_Q | \varkappa T_{QR} : \varkappa T_{QR} \to Y$. If $\varphi : E \to F$ is a linear map between normed spaces, we let $|\varphi|$ denote the usual norm of φ : $$|\varphi| = \sup \{ |\varphi x| : x \in E, |x| = 1 \}.$$ 4.7. LEMMA. For every t > 0 there is a number $\bar{L}(t, K') > 1$ such that if $L \le \bar{L}(t, K')$, then $|\varphi_{OR} - \varphi_{RO}| \le t$ whenever $Q, R \in \mathscr{A}$ intersect. **PROOF.** Let t > 0, and suppose that Q, $R \in \mathscr{A}$ with $Q \cap R \neq \emptyset$. We may assume that $k(R) \ge k(Q)$. Since $\varphi_S = \text{id for all } S \in \mathscr{A}_0 \cup \mathscr{A}_1$, we may assume that $k(R) \ge 2$. Obviously we have $k(R) \le k(Q) + 1$. We consider two cases: Case 1. k(R) = k(Q) + 1. By 3.9(2) we have $E_R \subset E_Q$, and hence $T_{QR} = T_R$. Consider the simplex σ_R given by Lemma 3.12. If $u \in \varkappa \sigma_R^0$, then $u \in \varkappa E_R \subset \varkappa E_Q$. By (4.6) we get the estimate $$|h_{Q}u - h_{R}u| \leq |h_{Q}u - fu| + |fu - h_{R}u| \leq 2\varepsilon(L, K')\lambda_{Q}.$$ Fix $v \in \kappa \sigma_R^0$. From [V, 2.11] and from (3.15) it follows that for each $x \in \kappa T_R$ we have $$|h_{Q}x - h_{R}x| \leq 2\varepsilon(L, K')\lambda_{Q}(1 + M_{1}|x - v|/d(\varkappa\sigma_{R}))$$ $$\leq 2\varepsilon(L, K')\lambda_{Q} + 4\varepsilon(L, K')M_{1}Hc_{1}^{-1}|x - v|,$$ where $$M_1 = M_1(K') = 4 + 6H^2c_3n(1 + H^2c_3)^{n-1}.$$ Let $x \in \kappa T_R$, $|x| = 1$. Since $\varphi_S(x) = h_S(x + v) - h_S(v)$ for $S \in \{Q, R\}$, we get $$|\varphi_Q x - \varphi_R x| \le |h_Q(x + v) - h_R(x + v)| + |h_Q v - h_R v|$$ $$\le 4\varepsilon(L, K')\lambda_Q + 4\varepsilon(L, K')M_1Hc_1^{-1}.$$ We choose $\bar{L} = \bar{L}(t, K') > 1$ in such a way that $4(1 + 2M_1Hc_1^{-1})\varepsilon(\bar{L}, K') \le t$. If $L \le \bar{L}$, the estimates above and the fact that $\lambda_Q \le 1/2$ imply that $$|\varphi_{QR} - \varphi_{RQ}| \le \varepsilon(L, K')(2 + 4M_1Hc_1^{-1}) \le t/2 < t.$$ Case 2. k(R) = k(Q) = k. Let $Q \triangleleft S \in \mathscr{J}_{k-1}$. Then $S \in \mathscr{A}$ by 2.8(2), and hence the maps φ_{SQ} and φ_{SR} are defined. Suppose that $L \leq \overline{L}$, where \overline{L} is as in Case 1. By 2.8(4) we have $R \cap S \neq \emptyset$. Hence we can apply the argument of Case 1 to obtain the estimate $$|\varphi_{QR} - \varphi_{RQ}| \le |\varphi_Q - \varphi_{SQ}| + |\varphi_{SR} - \varphi_R| \le t.$$ - 4.8. REMARK. We may assume that the function $t \mapsto \overline{L}(t, K')$ given by Lemma 4.7 is strictly increasing on $]0, \infty[$ and that $\overline{L}(t, K') \to 1$ as $t \to 0$. For Lemma 4.18 below, let $\overline{L}(t, K')$ have these properties. - 4.9. Interpolation. We next introduce the interpolation technique, which will be our main tool for controlled extension of the maps φ_Q to orthogonal maps φ_Q^* . - In 4.9-4.17 we let E and F be real inner product spaces with inner product written as $x \cdot y$ and the induced norm as |x|. We also assume that $1 \le \dim E < \infty$. We begin with a technical lemma: - 4.10. LEMMA. Let $(v_j)_{j\in J}$ be a finite family of unit vectors in F, and let $s=\#J\geq 1$. Suppose that $|v_i-v_j|\leq \delta\leq \sqrt{2}$ for all $i,j\in J$, and set $$v_{\mathbf{K}} = \frac{1}{k} \sum_{j \in \mathbf{K}} v_j, \, k = \# K,$$ for every nonempty $K \subset J$. Then $$|v_K|^2 \ge 1 - \delta^2/2.$$ Moreover, if $L, K \subset J$ and $L \cap K \neq \emptyset$, then (2) $$|v_K - v_L| \le (1 - s^{-1})\delta.$$ In particular, we have $|v_j - v_K| \leq (1 - s^{-1})\delta$ for all $j \in K$. Proof. First observe that $$2v_i \cdot v_j = |v_i|^2 + |v_j|^2 - |v_i - v_j|^2 \ge 2 - \delta^2.$$ Using this we obtain $$k^{2}|v_{K}|^{2} = \sum_{j \in K} |v_{j}|^{2} + \sum_{\substack{i,j \in K \\ i \neq j}} v_{i} \cdot v_{j} \ge k + k(k-1)(2-\delta^{2})/2 \ge k^{2}(1-\delta^{2}/2),$$ which gives (1). To prove (2), assume that $\#K = k \le l = \#L$, and set $u_{\alpha} = v_i$, $w_{\alpha} = v_j$ for $\alpha = (i, j) \in K \times L$. Then $$|v_K - v_L| = \frac{1}{kl} \left| \sum_{\alpha \in K \times L} u_\alpha - \sum_{\beta \in K \times L} \omega_\beta \right|.$$ Choose an index $i_0 \in K \cap L$. Then $w_\beta = v_{i_0}$ for all $\beta \in K \times \{i_0\}$ and $u_\alpha = v_{i_0}$ for all $\alpha \in \{i_0\} \times L$. Since $k \leq l$, there is a permutation ψ of $K \times L$ satisfying $\psi[K \times \{i_0\}] \subset \{i_0\} \times L$. Then we have $u_{\psi(\beta)} = w_\beta$ for all $\beta \in K \times \{i_0\}$. Hence we obtain $$|v_K - v_L| \leq \frac{1}{kl} \sum_{\theta \in K \times L} |u_{\psi(\theta)} - w_{\theta}| \leq \frac{(kl - k)\delta}{kl} \leq (1 - s^{-1})\delta.$$ 4.11. Suppose that E_0 is a linear subspace of E and that the orthogonal complement E_0^{\perp} of E_0 in E is one-dimensional. Let e and -e be the two unit vectors of E_0^{\perp} . Let $\varphi: E_0 \to F$ be orthogonal, and let $\Psi = (\psi_j)_{j \in J}$ be a finite nonempty family of orthogonal maps $\psi_j: E \to F$. Set $\psi_j^0 = \psi_j | E_0$ and let $0 \le \delta \le 1/2$. We say that the pair (φ, Ψ) satisfies the *interpolation conditions* with the constant δ if $$(4.12) |\psi_i - \psi_i| \le \delta, |\varphi - \psi_i^0| \le \delta^2$$ for all $i, j \in J$. Assuming this, we present a method which gives an orthogonal extension $\phi^*: E \to F$ of ϕ . Define a linear map $\psi: E \to F$ by $$\psi = \frac{1}{s} \sum_{i \in J} \psi_i, s = \#J.$$ Let $q: F \to \varphi E_0$ be the orthogonal projection, and set $a = q \psi e$. We prove in Lemma 4.13 below that $a \neq \psi e$. Hence we can define a unit vector b of F orthogonal to φE_0 by $$b = \frac{\psi e - a}{|\psi e - a|}.$$ There is a unique orthogonal map $\varphi^* : E \to F$ with $\varphi^* e = b$ and $\varphi^* | E_0 = \varphi$. If we choose the other possibility -e instead of e, the process above gives the same map φ^* . Thus φ^* depends only on the pair (φ, Ψ) satisfying (4.12). We say that φ^* is obtained by *interpolation* from (φ, Ψ) . 4.13. LEMMA. In the situation described in 4.11 we have $|a| \le \delta^2$, $a \ne \psi e$, and $|\varphi^* e - \psi e| \le \delta^2 \sqrt{5}/2$. **PROOF.** We assume that dim $E \ge 2$; the case dim E = 1 is easier. Choose $x \in E_0$ with |x| = 1 and $a = |a| \varphi x$. Since $e \cdot x = 0$ and $a = (\psi e \cdot \varphi x) \varphi x$, (4.12) implies that $$|a| = \psi e \cdot \varphi x = \frac{1}{s} \sum_{j \in J} \left[\psi_j e \cdot (\varphi x - \psi_j x) + \psi_j e \cdot \psi_j x \right]$$ $$\leq \frac{1}{s} \sum_{j \in J} |\psi_j e| |\varphi x - \psi_j x| \leq \frac{1}{s} \sum_{i \in J}
\delta^2 = \delta^2.$$ On the other hand, Lemma 4.10(1) implies that $|\psi e| > \delta^2$, because $\delta \le 1/2$. Hence $a \ne \psi e$. To prove the last inequality of the lemma, consider the vector $$c = \psi e - a = \psi e - q \psi e$$. Then $$|c| \le |\psi e| \le 1$$, $c = |c| \varphi^* e$, $|\psi e|^2 = |a|^2 + |c|^2$. Applying 4.10(1) and the estimate $|a| \le \delta^2$ we get $$|c|^2 = |\psi e|^2 - |a|^2 \ge 1 - \delta^2/2 - \delta^4$$ Since $\delta \leq 1/2$, an easy computation shows that $$|c| \ge 1 - \delta^2/4 - \delta^4.$$ Since $\varphi^*e - \psi e = (1 - |c|)\varphi^*e - a$, we obtain $$|\varphi^*e - \psi e|^2 = (1 - |c|)^2 + |a|^2 \le (\delta^2/4 + \delta^4)^2 + \delta^4 \le 5\delta^4/4$$ where the last inequality follows from $\delta \le 1/2$ by direct computation. In the next lemma we prepare for 4.18 by deriving some estimates for the extensions obtained by interpolation. - 4.14. Lemma. Let $0 \le \delta \le 1/2$ and let $\Psi = (\psi_j)_{j \in J}$ be a finite family of orthogonal maps $\psi_j : E \to F$ satisfying $|\psi_j \psi_i| \le \delta$ for all $i, j \in J$. Let $J_1, J_2 \subset J$ with $J_1 \cap J_2 \ne \emptyset$, and set s = #J, $\Psi_1 = (\psi_j)_{j \in J_1}$, $\Psi_2 = (\psi_j)_{j \in J_2}$. Suppose that $\varphi_1, \varphi_2 : E_0 \to F$ are orthogonal maps such that $|\varphi_1 \varphi_2| \le \delta^2$ and such that the pairs (φ_i, Ψ_i) , i = 1, 2, satisfy (4.12). Let $\varphi_i^* : E \to F$ be obtained by interpolation from (φ_i, Ψ_i) . Then - (1) $|\varphi_1^* \varphi_2^*| \le (1 s^{-1})\delta + 3\delta^2$, - (2) $|\varphi_i^* \psi_j| \le (1 s^{-1})\delta + 3\delta^2/2$ for all $j \in J_i$, i = 1, 2. PROOF. Let $i \in \{1, 2\}$ and set $$\overline{\psi}_i = \frac{1}{s_i} \sum_{i \in J_i} \psi_j, \, s_i = \#J_i.$$ Then Lemma 4.13 gives $$(4.15) |\varphi_i^* e - \bar{\psi}_i e| \le \delta^2 \sqrt{5/2}.$$ Let u be a unit vector in E. We can write $u = \lambda v + \mu e$, where $v \in E_0$, |v| = 1, and $\lambda^2 + \mu^2 = 1$. By (4.12) and (4.15) we obtain $$|\varphi_i^* u - \overline{\psi}_i u| \leq |\lambda| |\varphi_i v - \overline{\psi}_i v| + |\mu| |\varphi_i^* e - \overline{\psi}_i e| \leq (|\lambda| + |\mu| \sqrt{5/2}) \delta^2.$$ By the Schwarz inequality this yields $$|\varphi_i^* - \bar{\psi}_i| \leq 3\delta^2/2.$$ This and 4.10(2) now imply (1): $$|\varphi_1^* - \varphi_2^*| \le |\varphi_1^* - \overline{\psi}_1| + |\overline{\psi}_1 - \overline{\psi}_2| + |\overline{\psi}_2 - \varphi_2^*| \le (1 - s^{-1})\delta + 3\delta^2.$$ To prove (2), let $i \in \{1, 2\}$ and $j \in J_i$. The last statement of Lemma 4.10 implies that $|\psi_i - \overline{\psi}_i| \le (1 - s^{-1})\delta$. Hence $$|\varphi_i^* - \psi_i| \le |\varphi_i^* - \bar{\psi}_i| + |\bar{\psi}_i - \psi_i| \le 3\delta^2/2 + (1 - s^{-1})\delta.$$ - 4.16. Interpolation and restriction. Consider the situation described in 4.11. Let $\varphi^* : E \to F$ be the map obtained by interpolation from (φ, Ψ) . Let $E' \subset E$ be a linear subspace with $E' \not = E_0$. Then the linear subspace $E'_0 = E' \cap E_0$ is a hyperplane in E'. We set $\psi'_j = \psi_j | E'$, $\Psi' = (\psi'_j)_{j \in J}$, and $\varphi' = \varphi | E'_0$. Clearly, the pair (φ', Ψ') also satisfies the interpolation conditions (4.12). Let $\varphi'^* : E' \to F$ be the extension of φ' obtained by interpolation from (φ', Ψ') . The maps φ'^* and $\varphi^* | E'$ are not always equal, but they do not differ too much: - 4.17. LEMMA. In the situation above we have $|\varphi'^* (\varphi^*|E')| \leq 3\delta^2$. **PROOF.** As in 4.11 we choose a unit vector $e' \in E' \cap (E'_0)^{\perp}$ and define $$\psi' = \frac{1}{s} \sum_{i \in I} \psi'_i = \psi | E'.$$ Let $q': F \to \varphi' E'_0$ be the orthogonal projection, and set $$a' = q'\psi'e', \ b' = \frac{\psi'e' - a'}{|\psi'e' - a'|}.$$ Then $\phi'^*e'=b'$. Write $e'=\lambda e+\mu v$ with $v\in E_0$, |v|=1, and $\lambda^2+\mu^2=1$. From 4.13 we get $$|\varphi'^*e' - \psi'e'| \le \delta^2 \sqrt{5/2}, |\psi e - \varphi^*e| \le \delta^2 \sqrt{5/2}.$$ Since $\psi' = \psi | E'$, these estimates, (4.12) and the Schwarz inequality give $$\begin{aligned} |\varphi'^*e' - \varphi^*e'| &\leq |\varphi'^*e' - \psi'e'| + |\psi'e' - \varphi^*e'| \\ &\leq \delta^2 \sqrt{5/2} + |\lambda| |\psi e - \varphi^*e| + |\mu| |\psi v - \varphi v| \\ &\leq \delta^2 \sqrt{5/2} + |\lambda| \delta^2 \sqrt{5/2} + |\mu| \delta^2 < 3\delta^2. \end{aligned}$$ Since $\varphi'^*|E'_0 = \varphi^*|E'_0$, this implies the lemma. After these preparations we are ready to extend the orthogonal parts φ_Q of the isometries h_Q , $Q \in \mathcal{A}$, chosen in 4.3. This is done in the following central lemma. To formulate it properly, we need the auxiliary parameter q mentioned in the beginning of Section 4. - 4.18. LEMMA. Let $q_1 = 2^{1-p}/9$. There exists a stictly increasing function $q \mapsto L'(q) = L'(q, K')$ from $]0, q_1]$ into $]1, \infty[$ satisfying the following two conditions: - (1) $L'(q) \rightarrow 1$ as $q \rightarrow 0$. - (2) If $0 < q \le q_1$ and if $L \le L'(q)$, then the maps $\varphi_Q : \varkappa T_Q \to Y$ have orthogonal extensions $\varphi_O^* : \varkappa T_O^* \to Y$ with the following properties: - (a) If $Q \triangleleft R$, then $|\varphi_{QR}^* \varphi_{RQ}^*| \le q q^2$, where $\varphi_{QR}^* = \varphi_{Q}^* | \varkappa T_{QR}^*$, $T_{QR}^* = T_0^* \cap T_R^*$. - (b) If k(Q) = k(R) and $Q \cap R \neq \emptyset$, then $|\varphi_{QR}^* \varphi_{RQ}^*| \leq q$. PROOF. Let $0 < q \le q_1$ and consider the function $\bar{L}(t, K')$ chosen in 4.8. We define $$L'(q) = L'(q, K') = \bar{L}(q^2, K').$$ Then L'(q) is strictly increasing in q and satisfies (1). Suppose that $L \leq L'(q)$. It remains to construct the extensions φ_Q^* satisfying (a) and (b). By 4.7 we already have $$(4.19) |\varphi_{OR} - \varphi_{RO}| \le q^2$$ whenever $Q, R \in \mathcal{A}$ intersect. If $Q \in \mathcal{A}_0 \cup \mathcal{A}_1$, then $\varphi_Q = \mathrm{id}$, and we also define $\varphi_Q^* = \mathrm{id} : \varkappa T_Q^* \to Y$. Then (a) and (b) are trivially true for $Q, R \in \mathcal{A}_0 \cup \mathcal{A}_1$. Let $k \ge 1$, and assume inductively that φ_Q^* is defined for all $Q \in \mathscr{A}$ with $k(Q) \le k$ so that (a) and (b) are true. Let $Q \in \mathscr{A}_{k+1}$. If $T_Q = T_Q^*$, we of course set $\varphi_Q^* = \varphi_Q$. Suppose that $T_Q^* \neq T_Q$. Then $m_Q^* = m_Q + 1$ and $v_Q = \{j\}$ for some $j \in \{1, \dots, p\}$. For notation, see 2.4. Since $k+1 \geq 2$, Q does not meet any of the planes $x_i = 2$, $1 \leq i \leq p$. By Lemma 2.12 there is a unique Rubik (p,r)-box $\Gamma_Q \subset \mathcal{J}_{k+1}^j$ with $Q \in \Gamma_Q$, $\Gamma_Q' \subset \mathcal{P}_{k+1}^j$ and r minimal. In fact, 2.12 gives $\Gamma_Q' = \{R \in \mathcal{P}_{k+1}^j : R \cap Q \neq \emptyset\}$. The family $$\mathcal{D}(O) = \{ S \in \mathcal{J}_k^j : P_S^j \in \Gamma_O' \}$$ Figure 5. consists of all predecessors of the members of Γ'_Q . Clearly $S \cap Q \neq \emptyset$ for all $S \in \mathcal{D}(Q)$. Hence we have $\mathcal{D}(Q) \subset \mathcal{A}_k$ by 2.8(3), and thus the maps φ_S^* are defined for all $S \in \mathcal{D}(Q)$. Moreover, by Lemma 3.9(2) we also have $E_Q \subset E_S$ and hence $T_O^* \subset T_S^*$ for $S \in \mathcal{D}(Q)$. Thus we can define the family $\Psi_Q = (\psi_S)_{S \in \mathcal{D}(Q)}$ by $$\psi_S = \varphi_S^* \mid \varkappa T_Q^* = \varphi_{SQ}^*.$$ Moreover, if $R, S \in \mathcal{D}(Q)$, then $R \cap S \neq \emptyset$, and the inductive hypothesis implies that $$|\psi_R - \psi_S| \leq q.$$ By (4.19) we also have $$|\varphi_Q - (\psi_S | \varkappa T_Q)| = |\varphi_{QS} - \varphi_{SQ}| \le q^2.$$ Hence the interpolation conditions (4.12) hold for the pair (φ_Q, Ψ_Q) with $J = \mathcal{D}(Q)$, $\delta = q$, $E_0 = \kappa T_Q$, $E = \kappa T_Q^*$ and F = Y. We let $\varphi_Q^* : \kappa T_Q^* \to Y$ be the orthogonal extension of φ_Q obtained by interpolation from (φ_Q, Ψ_Q) . It remains to verify the conditions (a) and (b). To prove (a), let $Q \in \mathcal{A}_{k+1}$ and let $Q \triangleleft R$. If $T_O^* = T_Q$, then $T_O^* = T_Q \subset T_R = T_R^*$. By (4.19) we obtain $$|\varphi_{OR}^* - \varphi_{RO}^*| = |\varphi_{OR} - \varphi_{RO}| \le q^2 < q - q^2$$ Assume that $T_Q^* \neq T_Q$. Since $R \in \mathcal{D}(Q)$ and since $\# \mathcal{D}(Q) \leq 2^{p-1}$, Lemma 4.14(2) implies $$|\varphi_{OR}^* - \varphi_{RO}^*| = |\varphi_O^* - \psi_R| \le (1 - 2^{1-p})q + 3q^2/2 \le q - q^2,$$ because $q \leq q_1$. Hence (a) is true. To prove (b), let Q, $R \in \mathcal{A}_{k+1}$, $Q \cap R \neq \emptyset$. If p = 1, (b) is trivially true. Assume that $p \ge 2$. Writing $$\mathscr{E} = \{ Q \in \mathscr{A} : T_Q = T_Q^* \}$$ we can divide the proof of (b) into three cases. Case 1. $Q, R \in \mathcal{E}$. In this case we can apply (4.19): $$|\varphi_{QR}^* - \varphi_{RQ}^*| = |\varphi_{QR} - \varphi_{RQ}| \le q^2 \le q.$$ Case 2. $Q, R \in \mathcal{A} \setminus \mathcal{E}$. We prove in Lemma 4.22 below that in this case we have $v_Q = \{j\} = v_R$ for some $j \in \{1, \dots, p\}$. By Lemma 2.13 there is a Rubik (p, p-1)-box $\Gamma \subset \mathcal{J}_{k+1}^j$ containing Q and R such that there is $\Gamma_0 \subset \mathcal{A}_k$ with $\Gamma' = \{P_S^i : S \in \Gamma_0\}$. See Figure 5. Since $\Gamma_Q' = \{P_S^i : S \in \mathcal{D}(Q)\} \subset \Gamma'$, we have $\mathcal{D}(Q) \subset \Gamma_0$. Similarly $\mathcal{D}(R) \subset \Gamma_0$. By 2.13 we then have $S_1 \cap S_2 \neq \emptyset$ for all $S_1, S_2 \in \mathcal{D}(Q) \cup \mathcal{D}(R)$. We next show that $\mathcal{D}(Q) \cap \mathcal{D}(R) \neq \emptyset$. Suppose that this is false. Then $\Gamma_Q' \cap \Gamma_R' = \emptyset$, and since $\Gamma_R' = \{S \in \mathcal{P}_{k+1}^j : S \cap R \neq \emptyset\}$, we obtain $S
\cap R = \emptyset$ for all $S \in \Gamma_Q'$. This implies that $d(Q, R) \geq \lambda_Q$, which is a contradiction, since $Q \cap R \neq \emptyset$. Thus $\mathcal{D}(Q) \cap \mathcal{D}(R) \neq \emptyset$. Set $E' = \kappa T_{OR}^*$ and $E'_{OR} = \kappa T_{OR}$. We show that $E_O' = E' \cap E_0$ or, equivalently, that $T_Q \cap T_R = T_Q \cap T_R^*$. Clearly $T_Q \cap T_R \subset T_Q \cap T_R^*$. Hence it suffices to show that $T_Q \cap T_R^* \subset T_R$. By the second part of Lemma 4.22 below, we have $T_Q \subset T_R$ or $T_R \subset T_Q$. The former case is trivial; assume that $T_R \subset T_Q$. Since T_R^* is spanned by $T_R \cup \{e_j\}$ and since $e_j \notin T_Q$, we obtain $T_Q \cap T_R^* = T_R$. We now have the situation of 4.16. We write $\psi_S' = \psi_S \mid E'$ for $S \in \mathcal{D}(Q) \cup \mathcal{D}(R)$, and $$\Psi_Q' = (\psi_S')_{S \in \mathcal{D}(Q)}, \ \Psi_R' = (\psi_S')_{S \in \mathcal{D}(R)}, \ \varphi_Q' = \varphi_Q \mid E_0', \ \varphi_R' = \varphi_R \mid E_0'.$$ By (4.19), we have $|\varphi_Q' - \varphi_R'| \le q^2$. We let $\varphi_Q'^*$ and $\varphi_R'^*$ be the extensions obtained by interpolation from (φ_Q', Ψ_Q') and (φ_R', Ψ_R') , respectively. From Lemma 4.17 we get $$(4.21) |(\varphi_O^*|E') - \varphi_O'^*| \le 3q^2, |(\varphi_R^*|E') - \varphi_R'^*| \le 3q^2.$$ If $S, U \in \mathcal{D}(Q) \cup \mathcal{D}(R)$, then $S \cap U \neq \emptyset$ and $|\psi_S' - \psi_U'| \leq q$. Hence we can apply Lemma 4.14(1) with the substitution $J \mapsto \mathcal{D}(Q) \cup \mathcal{D}(R)$, $J_1 \mapsto \mathcal{D}(Q)$, $J_2 \mapsto \mathcal{D}(R)$, $E \mapsto E'$, $E_0 \mapsto E'_0$, $F \mapsto Y$, $\varphi_1 \mapsto \varphi'_Q$, $\varphi_2 \mapsto \varphi'_R$, $\Psi_1 \mapsto \Psi'_Q$, $\Psi_2 \mapsto \Psi'_R$, $\delta \mapsto q$, $\varphi_1^* \mapsto \varphi'_2^*$, $\varphi_2^* \mapsto \varphi'_R^*$. We get $$|\varphi_O^{\prime *} - \varphi_R^{\prime *}| \le (1 - 2^{1-p})q + 3q^2.$$ This and (4.21) imply the desired estimate $$\begin{aligned} |\varphi_{QR}^* - \varphi_{RQ}^*| &= |(\varphi_{Q}^* | E') - (\varphi_{R}^* | E')| \\ &\leq |(\varphi_{Q}^* | E') - \varphi_{Q}'^*| + |\varphi_{Q}'^* - \varphi_{R}'^*| + |\varphi_{R}'^* - (\varphi_{R}^* | E')| \\ &\leq 9a^2 + (1 - 2^{1-p})a \leq q, \end{aligned}$$ because $q \leq q_1$. Case 3. $Q \in \mathcal{A} \setminus \mathcal{E}$, $R \in \mathcal{E}$. Let $Q \triangleleft S \in \mathcal{A}_k$. Then $S \cap R \neq \emptyset$ by 2.8(4), and hence $E_R \subset E_S$ by 3.9(2). Since $R \in \mathscr{E}$, this implies that $T_R^* = T_R \subset T_S = T_S^*$. If $x \in \varkappa T_{QR}^*$ is a unit vector, then $x \in \varkappa T_S^*$, and we obtain $$\begin{split} |\varphi_{QR}^*x - \varphi_{RQ}^*x| &= |\varphi_{Q}^*x - \varphi_{R}^*x| \le |\varphi_{Q}^*x - \varphi_{S}^*x| + |\varphi_{S}^*x - \varphi_{R}^*x| \\ &= |\varphi_{QS}^*x - \varphi_{SQ}^*x| + |\varphi_{SR}^*x - \varphi_{RS}^*x| \le |\varphi_{QS} - \varphi_{SQ}| + |\varphi_{SR}^* - \varphi_{RS}^*| \\ &= |\varphi_{QS}^* - \varphi_{SQ}^*| + |\varphi_{SR} - \varphi_{RS}| \le (q - q^2) + q^2 = q, \end{split}$$ where the last inequality follows from (a) and (4.19). In the proof of Lemma 4.18 we needed the following result: 4.22. LEMMA. Let $p \ge 2$ and let Q, $R \in \mathcal{A}_k \setminus \mathscr{E}$ with $Q \cap R \neq \emptyset$. Then we have $v_Q = \{j\} = v_R$ for some $j \in \{1, \dots, p\}$. Moreover, $T_Q \subset T_R$ or $T_R \subset T_Q$. **PROOF.** Obviously we have $l_Q = 1 = l_R$. This means that $v_Q = \{i\}$ and $v_R = \{j\}$ for some $i, j \in \{1, ..., p\}$. We must prove that i = j. By the definitions of \mathscr{A} , v_Q , v_R , T_Q and T_R we have $\emptyset \neq Q(5) \cap \varrho \subset Q(7) \cap \varrho \subset \varkappa^{-1}\sigma_i$, $\emptyset \neq R(5) \cap \varrho \subset R(7) \cap \varrho \subset \varkappa^{-1}\sigma_j$. This implies that $Q(7) \cap \varkappa^{-1}\mathring{\sigma}_i \neq \emptyset$ and $R(7) \cap \varkappa^{-1}\mathring{\sigma}_j \neq \emptyset$, where $\mathring{\sigma}_i$ and $\mathring{\sigma}_j$ are the interiors of σ_i and σ_j in $\varkappa T_i$ and $\varkappa T_j$, respectively. By Lemma 2.3(2) we have $Q(5) \subset R(7)$, which now implies that $Q(5) \cap \varrho \subset \varkappa^{-1}\sigma_i$. We get $$Q(7) \cap \varkappa^{-1} \mathring{\sigma}_i \neq \emptyset$$ and hence we have $T_i \cup T_j \subset T_Q$. Since $T_Q \neq T_Q^*$, this is possible only if i = j. From now on, we always assume that $0 < q \le q_1$ and that $L \le L'(q)$ where L'(q) is given by Lemma 4.18. We also let φ_0^* , $Q \in \mathcal{A}$, be the maps of 4.18(2). 4.23. LEMMA. If $Q, R \in \mathcal{A}$ with $Q \cap R \neq \emptyset$, then $$|\varphi_{QR}^* - \varphi_{RQ}^*| < 2q.$$ **PROOF.** If k(Q) = k(R), this is a direct consequence of 4.18(b). Suppose that k(Q) = k(R) + 1, and let $Q \triangleleft S \in \mathscr{A}$. Then $S \cap R \neq \emptyset$. Hence we can apply 4.18(2), which gives $$|\varphi_{SO}^* - \varphi_{OS}^*| \le q - q^2, |\varphi_{RS}^* - \varphi_{SR}^*| \le q.$$ Since $T_Q^* \subset T_{RS}^*$ by 3.9(2), we obtain $$\begin{aligned} |\varphi_{QR}^{*} - \varphi_{RQ}^{*}| &= |(\varphi_{R}^{*}| \times T_{Q}^{*}) - \varphi_{Q}^{*}| \\ &\leq |(\varphi_{R}^{*}| \times T_{Q}^{*}) - (\varphi_{S}^{*}| \times T_{Q}^{*})| + |(\varphi_{S}^{*}| \times T_{Q}^{*}) - \varphi_{Q}^{*}| \\ &\leq |\varphi_{RS}^{*} - \varphi_{SR}^{*}| + |\varphi_{SQ}^{*} - \varphi_{QS}^{*}| \leq q + (q - q^{2}) < 2q. \end{aligned}$$ 4.24. THE ISOMETRIES h_Q^* . We close Section 4 by defining the isometries h_Q^* : $\kappa T_Q^* \to Y$ promised in 4.3. To do this, we choose $v \in \kappa T_Q$ and set $$h_Q^* x = h_Q v + \varphi_Q^* (x - v)$$ for $x \in \mathcal{X} T_Q^*$. Clearly h_Q^* is independent of the choice of v. If $Q \in \mathcal{A}_0 \cup \mathcal{A}_1$, we have $\varphi_Q^* = h_Q^* = \text{id}$. ### 5. The extension. - 5.1. THE BASIC PLAN. We continue the discussion directly from Section 4. Thus we have the numbers $0 < q \le q_1$, $1 < L \le L'(q)$ and the isometries $h_Q^* : \varkappa T_Q^* \to Y$ of 4.24 extending the isometries $h_Q : \varkappa T_Q \to Y$ defined in 4.3. We want to find $q_0 = q_0(K') \in]0, q_1]$ and for every $q \in]0, q_0]$ two numbers $1 < L(q, K') \le L_1(q, K') = L_1$ such that $L_1 \to 1$ as $q \to 0$ and such that if $L \le L(q, K')$, then the L-BL map $f: |K| \to Y$ has an L_1 -BL extension $g: |K'| \to Y$. The exact bounds for $q_0(K')$, L(q, K') and $L_1(q, K')$ will remain somewhat implicit. In the course of the proof we introduce new restrictions of the right type for them whenever needed. - 5.2. THE TRIANGULATION \mathcal{F} . We construct a triangulation \mathcal{F} of the set $A = \cup \mathcal{A}$ such that the triangulation \mathcal{KF} satisfies a regularity condition needed in the proof of Lemma 5.16 below. Figure 6. The triangulation \mathcal{F} . Consider the decomposition of A into the closed p-cubes $Q \in \mathscr{A}$ with disjoint interiors. Clearly, there is a 1-dimensional infinite simplicial complex \mathscr{T}_1 such that the 1-simplexes of \mathscr{T}_1 are the edges of the cubes of \mathscr{A} not containing any other such edge. If C is a 2-face of some $Q \in \mathcal{A}$, we triangulate C by the cone construction from its center. We get a triangulation \mathcal{F}_2 of the union of all 2-faces C of the cubes $Q \in \mathcal{A}$ such that \mathcal{F}_1 is a subcomplex of \mathcal{F}_2 . Proceeding similarly to faces of higher dimensions, we obtain a finite sequence of simplicial complexes $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots \subset \mathcal{F}_p = \mathcal{F}$ such that each \mathcal{F}_i is a triangulation of the union of all *i*-faces of the cubes of \mathcal{A} . Thus \mathcal{F} is a triangulation of A. See Figure 6. 5.3. THE EXTENSION g. For each vertex v of \mathscr{T} , we choose a cube $Q(v) \in \mathscr{A}$ containing v. We set $h_v = h_{Q(v)}^* : \varkappa T_{Q(v)}^* \to Y$ and let $g_0 : \varkappa A \to Y$ denote the map which is affine in each simplex of $\varkappa \mathscr{T}$ and satisfies $g_0(\varkappa v) = h_v(\varkappa v)$ for each vertex v of \mathscr{T} . Since $\Delta \setminus |K| \subset \varkappa A$ by 2.8(1), we can define an extension $g : |K'| \to Y$ of f by letting g agree with f in |K| and with g_0 in $\Delta \setminus |K|$. It remains to prove that g is L_1 -BL with $L_1 = L_1(q,K') \to 1$ as $q \to 0$, provided that $q \le q_0(K')$ and $L \le L(q,K')$. Figure 7. The sets Z_Q . 5.4. The sets Z_Q . For each $Q \in \mathscr{A}$ we let $\mathscr{B}(Q)$ denote the family of all $R \in \mathscr{A}$ such that there is a finite sequence $R = R_0 \triangleleft R_1 \triangleleft \ldots \triangleleft R_s$ in \mathscr{A} with $s \ge 0$, $k(R_s) = k(Q)$ and $R_s \cap Q \neq \emptyset$. In other words, $\mathscr{B}(Q)$ consists of the cubes $S \in \mathscr{A}_{k(Q)}$ meeting Q, their followers in \mathscr{A} , the followers of these in \mathscr{A} , etc. The subsets $$Z_Q = \cup \mathcal{B}(Q)$$ of A, illustrated in Figure 7, have the following properties: - 5.5 Lemma. Suppose that $Q \in \mathcal{A}$. Then - (1) $Z_0 \subset Q(5)$, - $(2) \ \bar{Z}_{Q} \cap \varrho \subset E_{Q}^{0},$ - (3) $Q \triangleleft R$ implies $d(Z_Q, A \setminus Z_R) \ge \lambda_Q$. PROOF. To prove (1) let $x \in Z_Q$, and choose $R \in \mathcal{B}(Q)$ with $x \in R$. Let $R = R_0 \triangleleft \ldots \triangleleft R_s$ be the sequence of \mathcal{A} given by the definition of $\mathcal{B}(Q)$ in 5.4. By 2.3(3) and 2.3(2) we have $R \subset R_s(3) \subset Q(5)$. Hence $x \in Q(5)$. Since $E_Q^0 = \Delta_Q \cap \varrho$ and $Q(7) \subset \Delta_Q$, (2) follows from (1). If $Q \triangleleft R$, it is easy to see that $\mathcal{B}(R)$ contains all cubes in \mathcal{A} meeting Q. This implies (3). 5.6. THE APPROXIMATION OF g_0 BY
h_Q^* ON $\varkappa Z_Q$. We want to obtain a suitable upper bound for $|g_0 - h_Q^*|_{\varkappa Z_Q}$. To this end, we first choose $L(q) = L(q, K') \in]1, L'(q)]$ in such a way that the function $\varepsilon(L, K')$ given by (4.5) satisfies the restriction $$\varepsilon(L(q,K'),K') \leq q.$$ Observe that $L(q, K') \to 1$ as $q \to 0$. We may assume that L(q, K') is increasing in $q \in]0, q_1]$. From now on we also assume that $L \subseteq L(q, K')$. 5.8. Lemma. If $Q, R \in \mathcal{A}$ and $Q \cap R \neq \emptyset$, then $$|h_Q^* - h_R^*|_{\times Z_Q} \le M_2 q \lambda_Q, |g_0 - h_Q^*|_{\times Z_Q} \le 2M_2 q \lambda_Q,$$ where $M_2 = M_2(K')$ is a positive constant. PROOF. By Lemma 3.9(1) we may choose a point $a \in E_Q^0 \cap E_R^0$. Let $y \in \varkappa Z_Q$, and set $x = \varkappa^{-1} y$, $b = \varkappa a$. By 5.5 we have $x \in Q(5)$, and hence a and x are in Δ_Q . By 3.8.2 this implies that $|x - a| \le 7p\lambda_Q\sqrt{2}$. Since \varkappa is H-BL, the vector $y - b \in \varkappa T_{QR}^*$ satisfies $|y - b| \le 7Hp\lambda_Q\sqrt{2}$. By 4.24 we have $$h_O^* y = h_O b + \varphi_O^* (y - b), h_R^* y = h_R b + \varphi_R^* (y - b).$$ Applying these facts together with (4.6), 4.23 and (5.7) we get $$|h_Q^* y - h_R^* y| \le |h_Q b - h_R b| + |\varphi_{QR}^* - \varphi_{RQ}^*| |y - b|$$ $$\le 3\varepsilon(L, K')\lambda_Q + 14qHp\lambda_Q\sqrt{2} \le M_2 q\lambda_Q$$ with $M_2 = M_2(K') = 3 + 14Hn\sqrt{2}$. This implies the first inequality of the lemma. To prove the second inequality, let $b \in \varkappa[\mathscr{T}^0 \cap Z_Q]$. Since g_0 and h_Q^* are affine in the simplexes of $\varkappa\mathscr{T}$, it suffices to prove that $|g_0b - h_Q^*b| \le 2M_2q\lambda_Q$. For this, we choose a sequence $R_0 \lhd \ldots \lhd R_s$ in \mathscr{A} such that $b \in \varkappa R_0$, $k(R_s) = k(Q)$, and $R_s \cap Q \neq \emptyset$. Setting $R_{-1} = Q(b)$ and $R_{s+1} = Q$ we have $b \in \varkappa Z_{R_j}$ and $R_j \cap R_{j+1} \neq \emptyset$ for $-1 \le j \le s$. Applying the first inequality of the lemma we obtain $$|g_0b - h_Q^*b| \le |h_{R_{-1}}^*b - h_{R_0}^*b| + \sum_{j=0}^s |h_{R_j}^*b - h_{R_{j+1}}^*b|$$ $$\le M_2q\left(\lambda_{R_0} + \sum_{j=0}^s \lambda_{R_j}\right) = 2M_2q\lambda_Q$$ as desired. - 5.9. LAST PREPARATIONS. In 5.10-5.16 we complete our machinery before proving in 5.17 that g is L_1 -BL. We first derive a simple inequality for two intersecting simplexes: - 5.10. Lemma. Let A and B be two simplexes in \mathbb{R}^n with $A \cap B \neq \emptyset$. Then there is a constant $C = C(A, B) \ge 1$ such that $d(a, A \cap B) \le Cd(a, B)$ for all $a \in A$. **PROOF.** Using an auxiliary piecewise linear map we may assume that $A \cap B = e_0 \dots e_k$ and that the vertices of A and B are in $\{e_j : 0 \le j \le n\}$, where as in Section $2, e_0 = 0$ and (e_1, \dots, e_n) is the standard basis of \mathbb{R}^n . It is easy to see that in this case we can choose C = 1. If $|K| \setminus \Delta \neq \emptyset$, we set $$(5.11) d_0 = d(\Delta, \cup \{\sigma \in K : \sigma \cap \Delta = \emptyset\}).$$ Then $d_0 = d_0(K') > 0$. The following two lemmas give estimates based on the fact that K' is a simplicial complex. We let M_3 and M_4 denote new positive constants depending only on K'. 5.12. LEMMA. If $Q \in \mathcal{A}$, then $$d(\varkappa Q \cap \Delta, |K|) \ge \lambda_O/M_3$$. PROOF. Suppose that $z \in \mathcal{U}Q \cap \Delta$ and $\tau \in K$. It suffices to show that $d(z,\tau) \ge \lambda_Q/M'$ with some $M' = M'(\tau, \Delta) > 0$. If $\tau \cap \Delta = \emptyset$, then $d(z,\tau) \ge d_0 \ge \lambda_Q d_0$, where d_0 is given in (5.11). Hence we can choose $M' = d_0^{-1}$. Suppose that $\tau \cap \Delta = \tau' \neq \emptyset$. Since $\varkappa^{-1}z \in Q \in \mathscr{A}$ and since \varkappa is *H*-BL, we have $d(z,\tau') \ge \lambda_O/H$. By 5.10 we get $$d(z,\tau) \ge d(z,\tau')/C \ge \lambda_Q/M'$$ with M' = CH, $C = C(\Delta, \tau)$. 5.13. LEMMA. If $Q \in \mathcal{A}$, then $$d(\varkappa Z_Q \cap \Delta, |K| \setminus \varkappa E_Q) \ge \lambda_Q/M_4.$$ PROOF. We may assume that x = id. We shall prove the stronger inequality $$d(Q(5) \cap \Delta, |K| \setminus E_Q) \ge \lambda_Q/M_4$$. Indeed, since $Z_Q \subset Q(5)$ by 5.5, this implies the lemma. Suppose that $z \in Q(5) \cap \Delta$ and $y \in |K| \setminus E_Q$. It suffices to find an estimate $$(5.14) |y-z| \ge \lambda_Q/M_4.$$ Let $v \in \tau \in K$, and set $\tau' = \tau \cap \Delta$. If $\tau' = \emptyset$, we have $$|y-z| \ge d_0 \ge \lambda_Q d_0 = \lambda_Q / M_4$$ with $M_4 = 1/d_0$. Hence we may assume that $\tau' \neq \emptyset$. Recalling 3.5 and (3.6) we set $F = \Delta_O \cap \tau' = E_O^0 \cap \tau$. We consider two cases: Case 1. $F = \emptyset$. By (3.6) this is equivalent to $\tau \notin K_Q$. Since $Q(7) \subset \Delta_Q$, we have $Q(7) \cap \tau' = \emptyset$. Since $z \in Q(5)$, this implies $d(z, \tau') \ge \lambda_Q$. Thus 5.10 gives $$|y - z| \ge d(z, \tau) \ge d(z, \tau')/C \ge \lambda_Q/C$$ with $C = C(\Delta, \tau)$. Since K is finite, we obtain (5.14). Case 2. $F \neq \emptyset$ or, equivalently, $\tau \in K_Q$. Since $y \in |K| \setminus E_Q$, the definition (3.7) of E_Q implies the estimate $d(y, F) > \lambda_Q$. Subcase 2a. $d(y, \tau') \ge \lambda_Q/2$. Then 5.10 gives $$|y - z| \ge d(y, \Delta) \ge d(y, \tau')/C \ge \lambda_Q/(2C)$$ with $C = C(\tau, \Delta)$. Again this yields (5.14). Subcase 2b. $d(y, \tau') < \lambda_Q/2$. Choose $x \in \tau'$ with $|x - y| < \lambda_Q/2$. Since $d(y, F) > \lambda_Q$, we have $x \in \tau' \setminus F$ and hence $x \notin Q(7)$. Since $z \in Q(5)$, this implies that $|z - x| \ge \lambda_Q$. Consequently, $$|y - z| \ge |z - x| - |x - y| > \lambda_Q/2$$ which proves (5.14). We still need one technical lemma before the final conclusions. For $Q \in \mathcal{A}$ set $$(5.15) Y_Q = \bigcup \{R \in \mathscr{A} : R \cap Q \neq \emptyset\}, \ W_Q = \{\sigma \in \mathscr{T} : \sigma \subset Y_Q\}.$$ Then W_Q is a finite simplicial complex with $|W_Q| = Y_Q$. 5.16. LEMMA. There exists a number $q_2 = q_2(K') > 0$ such that if $q \le q_2$ and $Q \in \mathscr{A}$, then $g_0 \mid \varkappa Y_Q$ is Λ_1 -BL with $\Lambda_1 = \Lambda_1(q, K') \to 1$ as $q \to 0$. **PROOF.** Let $Q \in \mathcal{A}$. Then $Y_Q \subset Z_R$ where R = Q if k(Q) = 0 and $Q \triangleleft R$ if $k(Q) \ge 1$. This and 5.8 give $$|g_0 - h_Q^*|_{xY_Q} \le |g_0 - h_R^*|_{xZ_R} + |h_R^* - h_Q^*|_{xZ_R} \le 6M_2q\lambda_Q.$$ We can now apply [V, 2.14] with the substitution $K \mapsto \varkappa W_Q$, $f \mapsto g_0 \mid \varkappa Y_Q$, $h \mapsto h_Q^* \mid \varkappa W_Q^0$. This gives a number $\alpha_Q > 0$ such that if $\alpha = 6M_2q\lambda_Q \le \alpha_Q$, then $g_0 \mid \varkappa Y_Q$ is Λ -BL with $\Lambda = \Lambda(\alpha, Q) \to 1$ as $\alpha \to 0$. Moreover, the last statement of [V, 2.14] allows us to choose $\alpha_Q = \alpha_0 \lambda_Q$ and $\Lambda = \Lambda_1(q, K')$ where $\alpha_0 = 0$ $\alpha_0(K') > 0$ and $\Lambda_1(q, K') \to 1$ as $q \to 0$. To justify this, observe that by the construction of \mathcal{T} in 5.2, the family \mathscr{A} can be divided into a finite number of classes such that if Q and R belong to the same class, then W_Q is mapped onto W_R by the similarity map $\gamma: x \to \lambda_R/\lambda_Q(x - x_Q) + z_R$. Then $\kappa W_R = u\kappa W_Q$, where u is the similarity map $uy = \kappa\gamma\kappa^{-1}y = \lambda_R/\lambda_Q(y - \kappa z_Q) + \kappa z_R$ with Lipschitz constant $L_u = \lambda_R/\lambda_Q$. Hence the lemma is true with $q_2 = \alpha_0/6M_2$. From now on, we assume that $q \leq q_2$. 5.17. THE BILIPSCHITZ PROOF. We are finally ready to prove that the function $g:|K'| \to Y$ constructed in 5.3 is L_1 -BL. For this, consider two points $x, y \in |K'|$, $x \neq y$. We must find an estimate $$(5.18) |x - y|/L_1 \le |gx - gy| \le L_1|x - y|,$$ where $L_1 = L_1(q, K') \rightarrow 1$ as $q \rightarrow 0$. Since g||K| = f is L-BL and $L \le L(q, K')$ by 5.6, (5.18) holds with $L_1 = L(q, K')$ if $x, y \in |K|$. Hence we may assume that $x \in A \setminus |K|$. Choose $Q \in \mathscr{A}$ with $x \in \varkappa Q$. We consider four cases. Case 1. $y \in \Delta \setminus |K|$. Choose $R \in \mathscr{A}$ with $y \in \varkappa R$. We may assume that $k(Q) \ge k(R)$. If $x \in \varkappa Y_R$, then 5.16 gives (5.18) with $L_1 = \Lambda_1(q, K')$. Thus we may assume that $x \notin \varkappa Y_R$. Set k = k(R) and consider the sequence $R = R_0 \lhd \ldots \lhd R_k = [1, 2]^p$. Then $R_j \in \mathscr{A}$ by 2.8(3). Since $\Delta \setminus \rho \subset \varkappa Z_{R_k}$ by 2.8(1), we can choose the least index j with $x \in \varkappa Z_R$. We show that $$(5.19) |x-y| \ge \lambda_{R_i}/4H.$$ Since $d(R, \varkappa^{-1} \Delta \setminus Y_R) \ge \lambda_R/2$ and since \varkappa is H-BL, this is clear if $j \le 1$. If $j \ge 2$, then $y \in \varkappa Z_{R_{j-2}}$, $x \notin \varkappa Z_{R_{j-1}}$, and 5.5(3) gives $|x - y| \ge \lambda_{R_{j-2}}/H \ge \lambda_{R_j}/4H$ and proves (5.19). Applying (5.19) and 5.8 with $Q \mapsto R_i$ we obtain $$|gx - gy| \le |h_{R_j}^* x - h_{R_j}^* y| + |h_{R_j}^* x - gx| + |h_{R_j}^* y - gy|$$ $$\le |x - y| + 4M_2 q \lambda_{R_i} \le (1 + 16H M_2 q)|x - y|.$$ In a similar manner we see that $$|gx - gy| \ge (1 - 16H M_2 q)|x - y|.$$ By restricting q we may assume that $q < 1/(16H M_2)$. Then we get (5.18) with $L_1 = (1 - 16H M_2 q)^{-1}$. Case 2. $y \in \kappa E_Q$. Now Lemma 5.12 implies $|x - y| \ge \lambda_Q/M_3$. By (4.6) and (5.7) we have $|gy - h_Q^*y| = |fy - h_Qy| \le q\lambda_Q$. Moreover, Lemma 5.8 gives $|gx - h_Q^*x| \le 2M_2 q\lambda_Q$. These facts imply $$|gx - gy| \le |h_Q^*x - h_Q^*y| + |gx - h_Q^*x| + |gy - h_Q^*y|$$ $$\le |x - y|(1 + (1 + 2M_2)M_3q),$$ $$|gx - gy| \ge |x - y|(1 - (1 + 2M_2)M_3q).$$ Again, by restricting q, we get (5.18) with $L_1 = (1 - (1 +
2M_2)M_3q)^{-1}$. Case 3. $y \in \varkappa[E_S \setminus E_Q]$, where $S = [1,2]^p$. Now there is a sequence $Q = Q_1 \triangleleft \ldots \triangleleft Q_j$ such that $j \geq 2$ and $y \in \varkappa[E_{Q_j} \setminus E_{Q_{j-1}}]$. Since $x \in \varkappa Q \subset \varkappa Z_{Q_{j-1}}$, Lemma 5.13 implies that $|x-y| \geq \lambda_{Q_{j-1}}/2M_4 = \lambda_{Q_j}/2M_4$. By Lemma 5.8 we have $|gx-h_{Q_j}^*x| \leq 2M_2q\lambda_{Q_j}$. From (4.6) and (5.7) we get $|gy-h_{Q_j}^*y| = |fy-h_{Q_j}y| \leq q\lambda_{Q_j}$. As in Case 2 we now get the estimates $$(1 - M_5 q)|x - y| \le |gx - gy| \le (1 + M_5 q)|x - y|$$ where $M_5 = 2M_4(1 + 2M_2)$. After restricting q we obtain (5.18) with $L_1 = (1 - M_5 q)^{-1}$. Case 4. $y \in |K| \setminus \varkappa E_S$, $S = [1, 2]^p$. Choose $\tau \in K$ with $y \in \tau$. If $\tau' = \tau \cap \Delta = \emptyset$, then (5.11) gives $|x - y| \ge d_0$. If $\tau' \ne \emptyset$, then (3.7) gives $d(y, \tau') \ge H^{-1}$, because \varkappa is H-BL. By Lemma 5.10 this implies $$|x - y| \ge d(y, \Delta) \ge 1/(HC)$$ where $C = C(\tau, \Delta)$. In both cases we may write $|x - y| \ge 1/M_6$ with $M_6 = M_6(K')$. By (4.2), (4.5) and (5.7) we get $|gy - y| = |fy - y| \le q$. Since $h_s^* = \text{id}$ and $x \in \varkappa Z_s$, Lemma 5.8 gives $|gx - x| = |gx - h_s^*x| \le 2M_2q$. Hence we get the estimates $$(1 - M_7 q)|x - y| \le |gx - gy| \le (1 + M_7 q)|x - y|$$ where $M_7 = (1 + 2M_2)M_6$. After restricting q, this gives (5.18) with $L_1 = (1 - M_7 q)^{-1}$. 5.20. THE CASE p=1, $\{0\}$ ISOLATED. The proof of Theorem 1.2 is now complete except for the special case where p=1 and $\{0\}$ is an isolated simplex of K, which was postponed until this point. In this case we first normalize a given L-BL map $f:|K| \to Y$ by f(0)=0 and $|f-\mathrm{id}|_{|K|} \le \delta(L,n)d(|K|)$ as in 4.1. We extend f to $g:|K'| \to Y$ by $g \mid \Delta = \mathrm{id}$. A straightforward computation shows that if $\delta(L,n)d(|K|) < d(\Delta,|K| \setminus \Delta)$, then g is L_1 -BL with $$L_1 = \max \{L, (1 - \delta(L, n)d(|K|)/d(\Delta, |K| \setminus \Delta))^{-1}\}.$$ Theorem 1.2 is now completely proved. Theorem 1.1 was reduced to Theorem 1.2 in Section 1. Hence Theorem 1.1 is also proved. 5.21. REMARK. Let $X \subset \mathbb{R}^n$ and Y be as in Theorem 1.1. Then the BLEP of X in (\mathbb{R}^n, Y) gives the numbers $L_0(X, \mathbb{R}^n, Y)$ and $L_1(L, X, \mathbb{R}^n, Y)$ mentioned in the definition of the BLEP in the introduction. However, the proof shows that they can be chosen to be independent of Y. ## 6. Raylike polyhedra. We shall apply Theorem 1.1 to prove the BLEP for some noncompact polyhedra. We say that a set $A \subset \mathbb{R}^n$ is *raylike* with vertex $v \in A$ if $v + t(x - v) \in A$ whenever $x \in A$ and $t \ge 0$. 6.1. THEOREM. Suppose that X is a raylike closed polyhedron in \mathbb{R}^n . Then X has the BLEP in $(\mathbb{R}^n, \mathbb{R}^n)$. PROOF. We may assume that the vertex of X is the origin. For positive integers k, we let Q_k denote the n-cube $[-k,k]^n$. Then $X_k = X \cap Q_k$ is a compact polyhedron. By Theorem 1.1, X_k has the BLEP in (R^n, R^n) Moreover, the sets X_k are mutually similar. From this it easily follows that the numbers $L_0 = L_0(X_k, R^n)$ and $L_1 = L_1(L, X_k, R^n)$ of the definition of the BLEP do not depend on k. We show that these can be chosen to be the corresponding numbers for X. Let $1 \le L \le L_0$, and let $f: X \to \mathbb{R}^n$ be L-BL. Then each $f|X_k$ extends to an L_1 -BL map $g_k: \mathbb{R}^n \to \mathbb{R}^n$. The family of all g_k is equicontinuous. Moreover, for $x \in \mathbb{R}^n$ we have $|g_k x| \le |f(0)| + L_1|x|$ for all k. From the Ascoli theorem it follows that a subsequence of (g_k) converges to a map $g: \mathbb{R}^n \to \mathbb{R}^n$, which is the desired L_1 -BL extension of f. - 6.2. COROLLARY. Let E and F be affine subspaces of R^n with $E \cap F \neq \emptyset$. Then $E \cup F$ has the BLEP in (R^n, R^n) . - 6.3. REMARK. Corollary 6.2 is not true without the condition $E \cap F \neq \emptyset$. For example, the union of two parallel lines does not have the BLEP in (\mathbb{R}^3 , \mathbb{R}^3). This is seen by screwing one of the lines slowly around the other; cf. [Gh, 3.3]. #### REFERENCES - [Gh] M. Ghamsari, Extension domains, Thesis, University of Michigan, 1990. - [GI] L. C. Glaser, Geometrical combinatorial topology I, Van Nostrand Reinhold, 1970. - [P] J. Partanen, Invariance theorems for the bilipschitz and quasisymmetric extension properties, Ann. Acad. Sci. Fenn. Ser. A I Math. Diss. 80 (1991), 1-40. - [TV] P. Tukia and J. Väisälä, Extension of embeddings close to isometries or similarities, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 153–175. - [V] J. Väisälä, Bilipschitz and quasisymmetric extension properties, Ann. Acad. Sci. Fenn. Ser. A I Math. 11 (1986), 239-274. MATEMATIIKAN LAITOS HELSINGIN YLIOPISTO HALLITUSKATU 15 SF-00100 HELSINKI FINLAND