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LIFTINGS OF MOBIUS GROUPS TO MATRIX GROUPS

MIKA SEPPALA and TUOMAS SORVALI

Abstract.

1t is well known that any discrete subgroup G of PSL(2, C) can be lifted to a subgroup of SL(2, C) if
and only if G does not have two-torsion ([1], [4]).

In this note we show the existence of liftings of certain discrete subgroups of the group M(U) of
orientation preserving and reversing Mobius transformations mapping the upper half-plane U onto
itself. The orientation preserving Mébius transformations mapping the upper half-plane onto itself
form the connected subgroup PSL (2, R) of M(U). Thelifting of subgroups of M(U)to SL(2, C) has two
complications: first of all, the group M(U) is not connected, and, secondly, there is no natural mapping
from PSL(2, C) to M(U). In this note we consider these problems and show that all subgroups G of
M(U) for which U/G is a compact Klein surface can be lifted to SL(2, C). This result is closely related
with the general considerations of M. Culler ([1]) and is based on the arguments presented in [8].

We also study the uniqueness of liftings of subgroups of PSL(2,C) to SL(2,C). Assume that
G < PSL(2,C) can be Ifted to a subgroup of SL(2, C). Consider

G=neG

where G goes through all liftings of G to subgroups of SL(2, C). Let G* = G be the projection of G.
The group G* is non-trivial because it contains, e.g., all squares of elements of G. We show that
~under rather general conditions ~ G* is actually generated by squares and commutators of elements
of G.

1. Preliminaries.

Recall that SL(2, C) is the group of complex 2 x 2-matrices with determinant 1.
The quotient PSL(2,C) = SL(2,C)/{+1} is the group of Mdbius transform-
ations of the extended comples plane C.

Consider the exact sequence

) 0-2Z,—-SL(2,C)5 PSL(2,C) - 0.

Here m: SL(2,C) - PSL(2, C) is the natural projection. Let G = PSL(2,C) be
a subgroup. A homomorphism ¢: G — SL(2,C) is a lifting of G if ~ ¢ is the
identity mapping of G. It follows that a lifting ¢ is an isomorphism of G onto ¢(G)
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(cf. Example 4). For a lifting ¢: G - SL(2,C), we also call the image
¢(G) = SL(2,C) of G, a lifting of G.

If G contains the Mobius transformation g(z) = — 1/z, then G has evidently no
liftings because the matrices §; = <(1) _01> and g, = ( 0 1 (1)> are of order
4 while g is of order two. This observation can be generalized as follows:

ProOPOSITION 1. Let G < PSL(2, C) be a group and let S be a generating set of G.
Suppose that ¢: S — SL(2, C) is a mapping satisfying n(¢(s)) = s for all s€ S. Then
@ can be extended to a lifting of G if and only if the following holds: If s, ...,s,€S
such that s;*...s5s¢' =id, ;= £ 1,j=1,...,n, then

@ D)™ . (s2)”(s1)" = L.

ExaMPLE 1. Letk > 1.For any positive integer n define g,(z) = k'/"z. Consider
the group F generated by all elements g,,n = 1,2,.... It is obvious that a lifting of

(kz" 0 )
.

On the other hand, every generator g, is a square of some other generator,
namely g,,, i.€., g,(2) = g2a(g24(z)). This implies that for any lifting of F to
SL(2, C), all matrices corresponding to generators of F have positive trace. We
conclude that the group F has only one lifting to a subgroup of SL(2, C).

This example indicates that the exact sequence (1) is not simple as it looks like.
Itis well known that a Fuchsian subgroup G of PSL(2, C), which does not contain
elliptic elements, can always be lifted to a subgroup of SL(2,C) (see [4] and
references given there). Furthermore, if G acts in the upper half-plane and U/G is
a genus g Riemann surface, any choice of matrices corresponding to standard
generators of G generates a lifting of G. This fact has been discovered and
rediscovered several times independently by many authors during this century.
In particular, G has 2% liftings to subgroups of SL(2, C).

The usual proofs of this fact rely on the geometry of the Riemann surface U/G.
Some proofs are based on the fact that the canonical bundle of U/G has a square
root, some others on the fact the Euler characteristic of an orientable surface is an
even number.

2. Free groups.

Let G = PSL(2,C) be a group, and suppose that S is a generating set of G. By
definition, G is a free group and G is generated freely by S if any mapping from
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Sinto an arbitrary group X can be extended to a homomorphism from G into X.
Since the projection 7: SL(2, C) — PSL(2, C) is a homomorphism, the following
is obvious:

PROPOSITION 2. Suppose that G is generated freely by S. Then every mapping
¢: S = SL(2, C) satisfying n(¢(s)) = s for all s€ S can be extended to a lifting of G.

COROLLARY 1. If G is generated freely by n elements, then G has 2" different
liftings.

3. Mobius transformations fixing the upper half-plane.
The group PSL(2, R) consist of all M6bius transformations

az+b
g(Z) =m, ad — be = 1,
which map upper half-plane U onto itself. Hence PSL(2, R) contains besides the
identity hyperbolic, parabolic and elliptic transformations only.

Every hyperbolic g is conjugate to a unique standard form my: z+—kz, k > 1.
Denote k = k(g).

Let g and h be hyperbolic elements of PSL(2, R) sharing no fixed points. The
cross-ratio t = (r(g), r(h), a(h), a(g)) of the repelling and attracting fixed points of
g and h, as well as the multipliers k, = k(g) and k, = k(h) are invariant under
conjugation by elements of PSL(2, C).

The matrix product & = hj~ %~ 'g does not depend on the choice of the liftings
g and h. Hence the commutator

c=[ghl=hg"'h7yg
has a well-defined trace trc¢ = tré.
PROPOSITION 3. tre =2 — t(1 — t)(\/E; - 1/\/5)2(\/’72 - 1/\/6)2-

For given values k, and k, of k(g) and k(h), respectively, consider the function

o) = 2 — i1 — 0(/ky — U/k)* (k= 1Ko

Then F(0) = F(1) = 2, F(t) = —2 if and only if

4
11— = 3
= (ki = 1k *(ka = 1/ k2)?

and F(t) = 0 if and only if
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ExaMPLE 2. Consider hyperbolic transformations g, h e PSL(2, R) with inter-
secting axes. The pair (g, h) can be chosen such that (3) is satisfied. In this case c is
an elliptic transformation of order two and the group <g, h) has no liftings (cf.
Proposition 1).

The axes of g and h intersect if and only if 0 < ¢t < 1. If; in this case, a(g, h)
denotes the acute angle between the axes of g and A, then

sina(g, h) = 2./t(1 — ¢).

We have proved the following result recently obtained also by Gilman ([2,
Theorem 1 and Corollary]):

PROPOSITION 4. The following conditions are equivalent:
(i) The axes of g and h intersect and the commutator ¢ = [g, h] is hyperbolic.
(ii) The axes of g and h intersect and

4
in o(g, ) > .
T U - 1k - 11k
(iii) tre < —2.

The next proposition is almost a restatement of Theorem 8 in [S]. The proof,
however, is based on different arguments which emphasize the Schottky group
structure of {g, h).

PROPOSITION 5. Suppose that the hyperbolic transformations g and h have
intersecting axes. If the commutator ¢ = [g, h] is hyperbolic, then {g, h) is a dis-
crete Schottky group generated freely by g and h.

PrOOF. Symmetry in the action of the commutator will be highlighted if we
normalize such that g and h fix the unit disk and choose the origin as the
intersection point of the axes of g and h. Denote

¢y =geg~' =ghg”'h™,
Cy = h—lclh = h_-lghg_.l,
c3=g 'cag =g 'h'gh

Then hesh ™! = c. The cyclic order of the axes of g, h, ¢, ¢y, ¢, and c; is given by
Figure 1 (cf. [9, Figure 1.7]). Let K and K, be orthogonal circles of the unit circle
such that K, is orthogonal to the axes of c and c¢; and K, is orthogonal to the axes
of ¢, and c;. Then K; = g(K,) is orthogonal to the axes of ¢, and ¢, and
K4 = h(K,)is orthogonal to the axes of c and c,. Since the circles K ;, K ,, K 3 and
K, are external to one another, it follows that {g, h) is a Schottky group and
hence it is generated freely by g and h.
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Figure 1.

Combining Propositions 2 and 5 we obtain the following result:

THEOREM 2. Let g, he PSL(2, R) be hyperbolic transformations with intersecting
axes. If the commutator c¢=[g,h] is hyperbolic, then every mapping
¢:{g,h} - SL(2, R), n((g)) = g, n(¢(h)) = h, has a continuation to a lifting of the
group {g,h>.

The following example shows that the existence of liftings of Fuchsian groups
representing compact Riemann surfaces is by no means obvious.

ExaMpLE 3. Consider two pairs (g, k) and (g2, h,) of hyperbolic transform-
ations fixing U. Choosing k; = k(g;) and k, = k(h,) such that

(ki = 1/k)(kz = 11/k2) > 4

Then, by Propositions 3 and 4, it is possible to choose t; = (r(gy), r(hy), a(hy),
a(g,)) such that ¢, = [g,,h,] is hyperbolic and trc, < —2. Finally, conjugate
such that a(c,) = o0, r(c;) = 0 and r(g,) = 1 (Figure 2).

On the other hand, it is possible to choose k(g,), k(h,) and

ty = (r(g2), r(h2), alhz), alg2)) > 1

such that trc, = —trc, for ¢, = [g2,h,]. Conjugate such that a(c,) =0,
Hcz2) = o0 and a(g,) = — 1 (Figure 3). Then ¢, = it ’
Consider the group G = <g;, hy, g2, h, . The generators satisfy relation

(g2, hy 1091, 0] = id.
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a

0 1 @ hy
Figure 2.
C2
g2 -1 0 hg
Figure 3.

However, we have

[52: EZ][gla ”71] =-1

for all choices of the liftings §; = ¢(g;) and ¢(h;),j = 1, 2. Hence the group G has
no liftings (cf. Proposition 1).

4. Elements with unique liftings.

Let G = PSL(2, C) be a group with a nonempty set # of liftings ¢: G — SL(2,C).
The group

G* = n( N «p(G))
peF
consists of all elements g of G which have a unique lifting, i.e., ¢(g) does not
depend on the lifting pe %#.
A choice of a lifting of G associates a unique matrix to any element of G. Itis, on
the other hand, clear that, for any choice of a lifting of G, the matrices associated
to the commutators and squares of elements of G are independent of the lifting.
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PROPOSITION 6. G* is a normal subgroup of G containing the squares g% and the
commutators [g, h] of all elements of G.

The group G can be unlimitedly lifted if there exists a generating set S of G such
that every mapping ¢: S — SL(2, C) satisfying n(¢(s)) = s for all seS can be
extended to a lifting of G. All free subgroups of PSL(2, C) can be unlimitedly lifted
by Proposition 2. On the other hand, if G acts discontinuously and
fixed-point-freely in U and U/G is compact, then G can be unlimitedly lifted.

THEOREM 3. If G can be unlimitedly lifted, then G* is generated by the squares
and commutators of the elements of G.

PROOF. Let S be a generating set of G with the unlimited lifting property.
Any element g € G has a representation

t )
g =xoy...0¢,

where y is in the commutator subgroup of G, 64,...,5,, are distinct elements of
Sandty,...,t, are integers.

By Proposition 6, the lifting ¥ of y does not depend on the choice of the liftings
§ of the generators se€ S. Denote

g =qétm...a%

Suppose that t; € {t,,...,t,} is odd. Then we can change j to —g by changing &,
to — &, but keeping the liftings of all other generators unchanged. Hence g¢ G*.

If G = PSL(2, R) acts discontinuously and does not have fixed-points in U,
then U/G is a Riemann surface. Since G is either a free group or U/G is compact,
the group G can be unlimitedly lifted. Then G* # G which implies that G con-
tains elements which are not products of commutators and squares of elements of
G. In particular, the fundamental group of a compact Riemann surface contains
such elements. On the other hand, the group G considered in Example 1 satisfies
G* = G. Since this group is generated by the squares of its elements, the converse
of Theorem 3 does not hold.

5. Liftings of orientation reversing Mobius transformations.

Let M(C) denote the group of all orientation preserving or orientation reversing
. [fa b
Mbbius transformations g: € — €. For every matrix (c d)e—SL(2, C) there

exists two transformations in M(C) with the same coefficients a, b, ¢ and d, namely
the orientation preserving transformation

4 _aztb o e
@ 9) cz+d"”’ “ ¢
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and the orientation reversing transformation

az+b
cz+d’

(%) g(z) = ad — be = 1.

Although we have no natural projection SL(2,C)— M(C), the matrices

+ (Z Z) are called liftings of the transformations (4) and (5).
Let g be defined by (5) and let h be any transformation with the liftings

+ (: §> Since the composed transformation gh has
" a b\/a
“\c¢ d)\5 §
as liftings, the matrix product
a b\(a p
c d/\y ¢

is a lifting of gh if and only if either (x, B, y, )€ R* or (ia, iB, iy, i0) € R*.

Let G = M(C)be a group. A homomorphism ¢: G — SL(2, C)is a lifting of G if
@ is injective and ¢(g) is a lifting of g for every g € G. Since we have no homomor-
phic projection SL(2, C) - M(C), Proposition 2 does not hold for all free groups
G < M(C).

ExaMPLE 4. Let g(z) = Z. Then the matrices I and -1 are liftings of g. Define
@(g) = —1 and @(id) = I. Then ¢: {g)> - SL(2,C) is a lifting of <{g), and the
group {g> has no other liftings. On the other hand, we can define a homomor-
phism ¥: {g> = SL(2, C) by setting y(g) = Y (id) = I. Hence the injectiveness of
a lifting ¢: G — SL(2,C) does not any more follow from the facts that @ is
homomorphic and ¢(g) is a lifting of g for all ge G (cf. § 1). It is interesting to note
that {g) is a discrete group containing a two-torsion (cf. [1]).

1 2i
Let s(z) = z + i and h = sgs . Then the matrices + ( 0 1l> are liftings of h.

. 1 2i\\? 1 4i 2 . oo
Since | + 0 1 =lo 1 but h* = id, the group <h) has no liftings al-

though the groups {g) and (k) are conjugate subgroups of M(C).

The transformations (4) and (5) with the same coefficients a, b, c and d agree on
the extended real axis R = R U {o0}. They map R onto itself if and only if either
(a, b, ¢, d)e R* or (ia, ib, ic, id) e R*.

THEOREM 4. Suppose that g € M(C) is orientation reversing. If the group {g) has
liftings, then g(R) = R.
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PROOF. Suppose that ¢: <g> = SL(2,C) is a lifting, and let ¢(g) = <a Z)
C

Since ¢(g)> = ¢(g?), we have

a b\fa b a b\/a

(@ o)l s)==(0)E 2
a b\

Hence c dl” +

COROLLARY 5. Suppose that G = M(C)is a group containing orientation revers-
ing elements. If G has a lifting ¢: G — SL(2,C), then all elements of G map the
extended real axis R onto itself.

1S}

<«

g) and the assertion follows.

(Y]

The converse of Theorem 4 does not hold. For instance, the group {g)
generated by g(Z) = 1/ has no liftings although g(R) = R.

6. Liftings of NEC groups representing Klein surfaces.

An important application of the lifting theorem concerning Fuchsian subgroups
of PSL(2,R) is the representation of Teichmiiller spaces of smooth complex
projective curves as a component of an affine real algebraic variety ([3]). This
result can be generalized to smooth projective real algebraic curves by consider-
ing the complexifications of real algebraic curves ([7]). These complexifications
are simply complex algebraic curves with orientation reversing symmetries.

Real algebraic curves can be viewed as non-classical Klein surfaces. Excluding
certain elementary cases such Klein surfaces can always be expressed in the form
U/G where G is a discrete subgroup of the group M(U) (see abstract).

Observe that the topological group M(U) has two components: one containing
all orientation preserving Mobius transformations and one containing all orien-

tation reversing ones.
Let

M(U) = {(‘C’ z)eSL(Z, C)la, b, ¢, deR or ia, ib, ic, ide R}.

Then M(U) is a subgroup of SL(2,C) having two components. Define the
projection

. M(U) - M(U)
by setting
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b
z»—»———————~az + if a, b, ¢, d are real,
a b cz+d
T =
c d N az+b ifa b ia v i i
I — a, b, c re purely imaginary.
Z+d p y g Yy

With this definition of the projection 7, the exact sequence (1) generalizes to the
exact sequence

(6) 02, MU)5 MU) - 0.

Then n: M(U) — M(U)is a surjective homomorphism whose kernelis {I, —1 ).
It follows that Propositions 1, 2 and 6 can be applied to all groups G = M(U).

PROPOSITION 7. Suppose that g€ M(U) is orientation reversing. If e M(U) is
a lifting of g, thentr > < —2.

a b

Proor. If § = <c d)’ ad — bc = 1, then a, b, c and d are purely imaginary.

Hence
trg?=a>4+d*+2bc=(@+d?—-2< -2.

Assume that 2 is a non-orientable compact C®-surface whose Euler-charac-
teristic is negative. If X' is equipped with a metric d of constant curvature — 1, then
X =(2,d) is a Klein surface. Such surfaces can always be represented as
X = U/G where G is a non-Euclidean crystallographic group (a NEC group),i.c.,
a properly discontinuous subgroup of M(U). Since X = U/G is compact, the
orientation preserving elements of G are hyperbolic transformations whereas
orientation reversing ones are glide reflections. Every glide reflection se M(U)
admits a representation s = gog where ge M(U) is hyperbolic and ¢ is the
reflection in the axis of g. Hence s? = g? is hyperbolic (in this case).

Let G . be the subgroup of G containing the orientation preserving elements of
G. Then G, is a Fuchsian group of the first kind, X° = U/G, is a compact
Riemann surface and the projection X° — X is an unramified double covering
map.

If the genus p of X is even, then G has a standard set S of p + 1 generators
9151y s Gps2s Bpj2, s Which generate G with one defining relation

Sz[gp/z, hp/2] 9] =id

Here s is a glide reflection and g; and h; are hyperbolic transformations with
intersecting axes, j = 1,...,p/2, but there are no other intersections between the
axes of the elements of S. The geodesics on X° corresponding to the transform-
ations ¢y = [gy, ], = [Gp25Mpj2]s Cpras1 = $%€2C1,€3C2C1, o, Cppz - --
¢3C,c, are simple and pairwise disjoint.



LIFTINGS OF MOBIUS GROUPS TO MATRIX GROUPS 233

If the genus p of X° is odd, the standard set S consist of p — 1 hyperbolic
generators gy, i, ..., G- 1y2> Hp-1y2 and two glide reflections s, and s,. The
defining relation is now

S%Sf[g(p_ 1)/2> h(p— 1)/2] < [g91, ] =1id,

and the axes of the generators and the geodesics on X° corresponding to the

: —_ —_ \ — o2
transformatzlons c1=[9uMl sy = 96125 Bp- 121, Cp+1y2 =51,
Cp+3)y2 = 825 C2C1, €3C2C1, Ciprqy2---C3C2¢1 have similar properties as in the
previous case (cf. [6, §4]).

THEOREM 6. Suppose that G = M(U) is a NEC group representing a compact
Klein surface X = U/G. Let S be a standard set of generators of G. Then every
mapping @: S — SL(2, C) satisfying n(a(s)) = s for all se€S has an extension to
a lifting of G.

PROOF. Suppose that the genus p of X is even. If pis odd, the assertion can be
shown similarly.

Choose liftings §; = ¢(g;), h; = @(h;), §= (s), and denote ¢ = [g,,h;],
Jj=1,...,p/2,&,, .+, = §. Since s* is hyperbolic, tr é,, , , < —2 by Proposition
7. Similarly, tré; < —2, j = 1,...,p/2, by Proposition 4. The assertion follows
now similarly as in the proof of Theorem 4.1 in [6] by considering the group G ,
and the Riemann surface X° = U/G ..

This is a generalization of the classical result and allows one to represent the
Teichmiiller space of the non-classical Klein surface U/G as a component of an
affine real algebraic variety (cf. [3] and [7]).

Suppose that G = M(U) is a NEC group representing a compact Klein surface
X = U/G. Then, by the proof of Theorem 6, G can be unlimitedly lifted. The
Kleinian group.

G=G,u{z—g(?)]geG\G.}

has the same liftings and the same limit set R as G. Since G acts on U, the group
G has no invariant components. Hence there exist non-elementary finitely
generated Kleinian groups which are not function groups but which can be
unlimitedly lifted. A similar example has been constructed by M. Culler 1.
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