COMPLETELY POSITIVE MAPS ON AMALGAMATED PRODUCT C*-ALGEBRAS

FLORIN BOCA

Let F_N be the free group on N generators $a_1, \ldots, a_N (N \in \mathbb{N} \cup \{\infty\}, N \ge 2)$; for $g = a_{i_1}^{k_1} \ldots a_{i_n}^{k_n}, i_1 + \ldots + i_n, k_i \in \mathbb{Z}, k_i + 0$, denote its length by $|g| = |k_1| + \ldots + |k_n|$. Haagerup [10] proved that for any $r \in [0, 1]$, the function $H_r(g) = r^{|g|}$ is positive definite on F_N .

In fact, the functions $\phi_z: \mathbb{Z} \to \mathbb{C}$, $\phi_z(k) = z^{[k]}$, $k \in \mathbb{Z}$, $z \in \mathbb{C}$, $|z| \leq 1$, where $z^{[k]} = \begin{cases} z^k & \text{for } k \in \mathbb{Z}_+; \\ \bar{z}^{-k}, & \text{for } k \in \mathbb{Z}_- \end{cases}$ are known to be positive definite [13] and $H_r = \phi_r * \phi_r$ on $\mathbb{F}_2 = \mathbb{Z} * \mathbb{Z}$, in the sense that $H_r(a_{i_1}^{k_1} \dots a_{i_n}^{k_n}) = \phi_r(a_{i_1}^{k_1}) \dots \phi_r(a_{i_n}^{k_n})$ for any reduced word $a_{i_1}^{k_1} \dots a_{i_n}^{k_n}$.

In this way, de Michele and Figà-Talamanca [9], Bożejko [5,6] and Picardello [12] extended Haagerup's result. In [6] Bożejko proved that the free product of the unital positive definite functions $u_i:G_i\to\mathcal{L}(\mathcal{H})$ is still positive definite on the free product group $_i^*G_i=G$ and a similar result for the free product of H-bivariant functions on the amalgamated product $_H^*G_i$. In [4] we defined an analogue of this construction for amalgamated free product C^* -algebras, showing a class of completely positive maps on these C^* -algebras.

Whenever G_i are discrete groups, the positive definite functions $u_i: G_i \to \mathbb{C}$ yield states ϕ_i on $C^*(G_i)$. In [2] and [17] the state which corresponds to $u = \underset{i}{*} u_i$ is constructed, the free product of GNS representations π_{ϕ_i} is defined and one gets $\underset{i}{*} \pi_{\phi_i} = \pi_{\phi}$. Consequently, there is a canonical way for constructing the Naimark dilation of the positive definite function $u: \underset{i}{*} G_i \to \mathbb{C}$.

The aim of this note is to construct the Stinespring dilatation for the completely positive maps ${}_i^* \Phi_i : {}_B^* A_i \to \mathcal{L}(\mathcal{H})$ considered in [4] (here ${}_B^* A_i$ denotes the full amalgamated product of the unital C^* -algebras A_i over a common C^* -subalgebra B with respect to a family of projections of norm one $E_i : A_i \to B$). On this way one can easily write the Naimark dilation for the operator valued map ${}_H^* u_i : {}_H^* G_i \to \mathcal{L}(\mathcal{H})$ from [6] and [12]. This is explicitly done for $G_i = \mathbb{Z}$, $H = \{0\}, T_i \in \mathcal{L}(\mathcal{H})$ contractions and $u_i(k) = T_i^{[k]}$, where

$$T^{[k]} = \begin{cases} T^k, & \text{for } k \in \mathbb{Z}_+; \\ T^{*-k}, & \text{for } k \in \mathbb{Z}_- \end{cases}.$$

- 1.1 Let A be a unital C^* -algebra, $\mathscr H$ be a Hilbert space and $\Phi: A \to \mathscr L(\mathscr H)$ a unital completely positive map. The Stinespring dilation $(\pi, \mathscr K)$ of Φ , consisting of a Hilbert space $\mathscr K$ which includes $\mathscr H$ and of a unital *-representation $\rho: A \to \mathscr L(\mathscr K)$ such that
 - (i) $\Phi(a) = P_{\mathscr{H}}^{\mathscr{H}} \rho(a)|_{\mathscr{H}}$ for $a \in A$
 - (ii) $\mathscr{K} = \overline{\operatorname{span}} \, \rho(A) \mathscr{H}$

is unique up to unitary equivalence.

Denote by $\mathcal{K}^0 = \mathcal{K} \ominus \mathcal{H}$ the orthogonal complement of \mathcal{H} into \mathcal{K} and remark that for $a \in A$, $h, h' \in \mathcal{H}$ one has

$$\langle \rho(a)h - \Phi(a)h, h' \rangle = \langle P_{\mathscr{H}}^{\mathscr{H}} \rho(a)h, h' \rangle - \langle \Phi(a)h, h' \rangle = 0.$$

On the other hand, let $k \in \mathcal{K}^0 \ominus \operatorname{span} \{ \rho(a)h - \Phi(a)h; \ a \in A, h \in \mathcal{H} \}$. Then $\langle k, \Phi(a)h \rangle = 0$, hence $\langle k, \rho(a)h \rangle = 0$ for $a \in A, h \in \mathcal{H}$. By (ii) it follows that k = 0 and consequently

$$\mathscr{K}^{0} = \overline{\operatorname{span}} \{ \rho(a)h - \Phi(a)h; a \in A, h \in \mathscr{H} \}.$$

1.2 Lemma Let A be a unital C*-algebra, B be a unital C*-subalgebra of A with a projection of norm one $E: A \to B, \chi: B \to \mathcal{L}(\mathcal{H})$ be a unital *-representation on the Hilbert space \mathcal{H} and $\Phi: A \to \mathcal{L}(\mathcal{H})$ be a B-linear (i.e. $\Phi(ab) = \Phi(a)\chi(b)$ for $a \in A, b \in B$) completely positive map. Let (ρ, \mathcal{K}) be the Stinespring representation associated with Φ . Then \mathcal{H} (and consequently \mathcal{K}^0) is $\rho(B)$ -invariant and $\rho(b)h = \chi(b)h$ for $b \in B$, $h \in \mathcal{H}$.

PROOF. Since span $\{\rho(a)h - \Phi(a)h; a \in A, h \in \mathcal{H}\}\$ is dense in \mathcal{K}^0 , it is enough to remark that

$$\langle \rho(b)h, \rho(a)h' - \Phi(a)h' \rangle = \langle \rho(a*b)h, h' \rangle - \langle \rho(b)h, \Phi(a)h' \rangle$$

= $\langle \Phi(a*b)h, h' \rangle - \langle \Phi(b)h, \Phi(a)h' \rangle = 0,$

for all $a \in A$, $b \in B$, $h, h' \in \mathcal{H}$.

1.3 Let B be a unital C^* -algebra, $\mathscr H$ be a right Hilbert B-module, $\mathscr K$ be a Hilbert space and $\chi: B \to \mathscr L(\mathscr K)$ a *-representation. Denote by $\mathscr H \otimes_\chi \mathscr K$ the completion of the vector space $\mathscr H \odot \mathscr K$ (the algebraic tensor product as vector spaces) with respect to the scalar product

$$\langle h_1 \otimes k_1, h_2 \otimes k_2 \rangle = \langle \chi(\langle h_2, h_1 \rangle_B) k_1, k_2 \rangle_{\mathcal{K}}, \quad h_1, k_2 \in \mathcal{H}, k_1, k_2 \in \mathcal{K}.$$

In this way $\mathscr{H} \otimes_{\chi} \mathscr{H}$ becomes a Hilbert space and the map $\theta : \mathscr{L}(\mathscr{H}) \to \mathscr{L}(\mathscr{H} \otimes_{\chi} \mathscr{H})$ given by $\theta(T)(h \otimes k) = Th \otimes k$ for $T \in \mathscr{L}(\mathscr{H}), h \in \mathscr{H}, k \in \mathscr{K}$ is a *-representation.

Given any *-representation $\sigma: A \to \mathcal{L}(\mathcal{H})$, one considers the representation $\sigma \otimes I: A \to \mathcal{L}(\mathcal{H} \otimes_{\tau} \mathcal{H})$, $\sigma \otimes I = \theta \sigma$.

Remark that for $\mathscr{H} = B$ and $\chi: B \to \mathscr{L}(\mathscr{K})$ unital *-representation, there is a natural identification between the Hilbert spaces $B \otimes_{\chi} \mathscr{K}$ and \mathscr{K} given by the

unitary
$$W(\sum_{i} b_{i} \otimes k_{i}) = \sum_{i} \chi(b_{i})k_{i}$$
.

Consequently, under the assumptions of 1.2, the Hilbert space \mathcal{K}^0 becomes a left *B*-module. For $b \in B$, $k \in \mathcal{K}^0$ we shall denote simply bk instead of $\gamma(b)k$.

1.4 At this moment we are concerned with Voiculescu's construction of C^* -reduced amalgamated free products ([17]), that we recall briefly.

Given $(A_i)_{i\in I}$ unital C^* -algebras with a common unital C^* -subalgebra B and projections of norm one $E_i:A_i\to B$, one denotes by \mathscr{H}_i the separation and completion of A_i with respect to $\|a\|_{E_i}=\|E_i(a^*a)\|^{1/2}$. Denote also $\xi_i=1_B\in\mathscr{H}_i$ and $A_i^0=\operatorname{Ker} E_i$.

The *B*-valued inner product $\langle x,y\rangle_B = E_i(y^*x)$ on A_i yields an inner product on \mathscr{H}_i which becomes a Hilbert *B*-module. The *B*-bimodule direct sum $A_i = B \oplus A_i^0$ gives rise to the orthogonal direct sum of Hilbert *B*-modules $\mathscr{H}_i = B \oplus \mathscr{H}_i^0$.

The left multiplication on A_i yields a unital GNS type *-morphism $\pi_i: A_i \to \mathcal{L}(\mathcal{H}_i)$ with $E_i(a) = \langle \pi_i(a)\xi_i, \xi_i \rangle_B$ for $a \in A_i$. Clearly $\pi_i(A_i^0)\xi_i$ is dense in \mathcal{H}_i^0 .

One defines the free product of the pointed Hilbert B-modules $(\mathcal{H}_i, \xi_i)_{i \in I}$ by (\mathcal{H}_0, ξ) , where

$$\mathcal{H}_0 = B \oplus \bigoplus_{n \geq 1, i_1 \neq \dots \neq i_n} \mathcal{H}^0_{i_1} \bigotimes_B \dots \bigotimes_B \mathcal{H}^0_{i_n} = B \oplus \mathcal{H}^0; \, \xi = I_B \oplus 0 \in \mathcal{H}_0.$$

Consider also the Hilbert B-modules

$$\mathcal{H}_{l}(i) = B \oplus \bigoplus_{n \geq 1, i \neq i_{1} \neq \dots \neq i_{n}} \mathcal{H}_{i_{1}}^{0} \otimes \dots \otimes_{B} \mathcal{H}_{i_{n}}^{0} = B \oplus \mathcal{H}_{l}^{0}(i);$$

$$\mathcal{H}_{r}(i) = B \oplus \bigoplus_{n \geq 1, i_{1} \neq \dots \neq i_{n} \neq i} \mathcal{H}_{i_{1}}^{0} \otimes \dots \otimes_{B} \mathcal{H}_{i_{n}}^{0} = B \oplus \mathcal{H}_{r}^{0}(i)$$

and the unitaries $V_i: \mathcal{H}_0 \to \mathcal{H}_i \underset{R}{\otimes} \mathcal{H}_l(i)$ defined by

$$V_{i}(h) = \begin{cases} \xi_{i} \oplus \xi &, \text{ for } h = \xi; \\ h_{1} \otimes (h_{2} \otimes \ldots \otimes h_{n}) &, \text{ for } h = h_{1} \otimes \ldots \otimes h_{n}, i_{1} = i, n \geq 2; \\ h_{1} \otimes \xi &, \text{ for } h = h_{1}, i_{1} = i; \\ \xi_{i} \otimes (h_{1} \otimes \ldots \otimes h_{n}) &, \text{ for } h = h_{1}, i_{1} \neq i; \end{cases}$$

where $h_k \in \mathcal{H}_{i_k}^0$, $k = \overline{1, n}$, $i_1 \neq \ldots \neq i_n$.

Define the *-morphisms σ_i : $A_i \to \mathcal{L}(\mathcal{H}_0)$ by $\sigma_i = \lambda_i \pi_i$, where λ_i : $\mathcal{L}(\mathcal{H}_i) \to \mathcal{L}(\mathcal{H}_0)$, $\lambda_i(T) = V_i^{-1}(T \otimes I)V_i$. Then the reduced free product with amalgamation of $(A_i, E_i)_{i \in I}$ is the C^* -algebra A generated by $\bigcup_{i \in I} \sigma_i(A_i)$ in $\mathcal{L}(\mathcal{H}_0)$, B identifiation of $(A_i, E_i)_{i \in I}$ is the C^* -algebra A generated by $\bigcup_{i \in I} \sigma_i(A_i)$ in $\mathcal{L}(\mathcal{H}_0)$, B identifiation of $(A_i, E_i)_{i \in I}$ is the $(A_i, E_i)_{i \in I}$ in $(A_i, E_i)_{i \in I}$ is the $(A_i, E_i)_{i \in$

es with a *-subalgebra of A and $E(a) = \langle a\xi, \xi \rangle_B$ is a conditional expectation of A onto B.

LEMMA. i) The direct B-submodule $\mathcal{H}_r(j)$ of \mathcal{H}_0 is σ_i -invariant for $i \neq j$.

ii) The direct B-submodule $\mathcal{H}_r^0(i)$ of \mathcal{H}_0 is σ_i -invariant.

PROOF. i) Since $\sigma_i(b)$ acts by left multiplication by b on B and on $\mathcal{H}^0_{i_1} \otimes \ldots \otimes \mathcal{H}^0_{i_n}$ and $\sigma_i(a)\xi = \pi_i(a)\xi_i$ for $a \in A^0_i$ it is enough to check that $\sigma_i(a)h \in \mathcal{H}_r^B(j)$

any $a \in A_i^0$, $h \in \mathcal{H}_r(j)$, this being obtained by the following relations:

$$\sigma_i(a)h_1 = \langle \pi_i(a)h_1, \xi_i \rangle_B \xi + h_1' \in B \oplus \mathscr{H}_i^0 \text{ for } i_1 = i;$$

$$\sigma_i(a)(h_1 \otimes \ldots \otimes h_n) = \langle \pi_i(a)h_1, \xi_i \rangle_B h_2 \otimes \ldots \otimes h_n + h'_1 \otimes h_2 \otimes \ldots \otimes h_n$$
 for $i_1 = i$, $n \ge 2$ (in both cases $h'_1 \in \mathcal{H}_i^0$);

$$\sigma_i(a)(h_1 \otimes \ldots \otimes h_n) = \pi_i(a)\xi_i \otimes h_1 \otimes \ldots \otimes h_n \text{ for } i_1 \neq i, n \geq 1.$$

ii) The above last two formulas show us that

$$\sigma_i(A_i^0)(\mathscr{H}_{i_i}^0 \underset{B}{\otimes} \dots \underset{B}{\otimes} \mathscr{H}_{i_n}^0) \subset \mathscr{H}_r^0(i) \text{ for } i_1 \neq i, n \geq 1.$$

1.5 Let A_i , B and E_i as in 1.4 and look at the algebraic free product $A = \bigoplus_{B} A_i$ with amalgamation over B, which is a B-ring. The B-bimodule decompositions $A_i = B \oplus A_i^0$ yield the following B-bimodule decomposition ([7]):

$$\underset{B}{\circledast} A_i = B \oplus \bigoplus_{i \neq \dots \neq i_n; n \geq 1} A^0_{i_1} \underset{B}{\otimes} \dots \underset{B}{\otimes} A^0_{i_n}.$$

There is a natural *-operation which turns A into a complex *-algebra. Moreover, since each A_i is spanned by the unitary group $\mathcal{U}(A_i)$, the unital *-algebra $A = \underset{B}{\circledast} A_i$ is spanned by $\mathcal{U}(A)$. It is a well-known remark that such a *-algebra satisfies the Combes axiom i.e. for each $x \in A$, there is an $\lambda(x) > 0$ such that $x^*x \le \lambda(x)$.

It is a routine exercise to check that the first statement in 1.1 is still true whenever one replaces A by a unital *-algebra satisfying the Combes axiom.

The full amalgamated product of $(A_i, E_i)_{i \in I}$, denoted $\underset{B}{*} A_i$ is the completion and separation of $\underset{B}{\circledast} A_i$ in the C^* -seminorm

$$||a|| = \sup \{||\pi(a)||; \pi^*\text{-representation of } \underset{B}{\circledast} A_i \}.$$

It is not difficult to prove that assuming each E_i faithful, $\| \|$ is in fact a C^* -norm and the A_i 's identify canonically to some unital *-subalgebras of A_i .

Let $\chi: B \to \mathcal{L}(\mathcal{H})$ be a unital *-representation and $\Phi_i: A_i \to \mathcal{L}(\mathcal{H})$ be *B*-linear completely positive maps. Let (ρ_i, \mathcal{K}_i) be the Stinespring dilation of Φ_i . By 1.1 one gets $\mathcal{K}_i^0 = \mathcal{K}_i \ominus \mathcal{H} = \overline{\text{span}} (\rho_i - \Phi_i)(A)\mathcal{H}$ and $\rho_i(B)\mathcal{K}_i^0 \subset \mathcal{K}_i^0$. Denote $\rho_i^0 = \rho_i|_{\mathcal{K}_i^0}: B \to \mathcal{L}(\mathcal{K}_i^0)$ and consider the following Hilbert space:

216 FLORIN BOCA

$$\begin{split} \mathcal{K} &= \mathcal{H} \oplus \bigoplus_{i} \mathcal{K}_{i}^{0} \oplus \bigoplus_{i} \mathcal{H}_{r}^{0}(i) \otimes_{\rho_{i}^{0}} \mathcal{K}_{i}^{0} = \\ &= \mathcal{K}_{i} \oplus \mathcal{H}_{r}^{0}(i) \otimes_{\rho_{i}^{0}} \mathcal{K}_{i}^{0} \oplus \oplus_{j \neq i} \mathcal{K}_{j}^{0} \oplus \oplus_{j \neq i} \mathcal{H}_{r}^{0}(j) \otimes_{\rho_{j}^{0}} \mathcal{K}_{j}^{0} = \\ &= \mathcal{K}_{i} \oplus \mathcal{H}_{r}^{0}(i) \otimes_{\rho_{i}^{0}} \mathcal{K}_{i}^{0} \oplus \oplus_{j \neq i} \mathcal{H}_{r}(j) \otimes_{\rho_{i}^{0}} \mathcal{K}_{j}^{0} \end{split}$$

and the *-representations $\tilde{\rho}_i: A_i \to \mathcal{L}(\mathcal{K}), \ \tilde{\rho}_i(a) = \rho_i(a) \oplus \sigma_i(a)|_{\mathcal{H}^0_r(i)} \otimes 1_{\mathcal{K}^0_i} \oplus \bigoplus_{i \neq i} \sigma_{ii}(a), \text{ where}$

$$\sigma_{ij}(a) = (W_j \oplus I_j)(\sigma_i(a)|_{\mathscr{H}_r(j)} \otimes 1_{\mathscr{K}_r^0})(W_j^* \oplus I_j),$$

$$W_j: B \otimes_{\rho_j^0} \mathscr{K}_j^0 \to \mathscr{K}_j^0, \ W_j(\sum_r b_r \otimes k_r) = \sum_r \rho_j(b_r) k_r \text{ are unitaries and}$$

$$I_j = I_{\mathscr{K}_r^0(j) \otimes_{\rho^0} \mathscr{K}_j^0}.$$

Denoting by \hat{a} the image of $a \in A_i$ in \mathcal{H}_i one obtains:

$$\sigma_{ij}(a)k = (W_j \oplus I)(\sigma_i(a)\xi \otimes k) = (W_j \oplus I)(\hat{a} \otimes k) =$$

$$= (W_j \oplus I)(\hat{E}_B(a) \otimes k + (\hat{a} - \hat{E}_B(a)) \otimes k) =$$

$$= \rho_i(E_B(a))k + (\hat{a} - \hat{E}_B(a)) \otimes k, \text{ for } a \in A_i, k \in \mathcal{K}_i^0,$$

hence $\sigma_{ij}(b)k = \rho_j(b)k = bk$ for $b \in B$, $k \in \mathcal{K}_j^0$ and consequently

$$\tilde{\rho}_r(b)k = bk = \tilde{\rho}_s(b)k \text{ for } b \in B, k \in \mathcal{K}_i^0, r, s \in I.$$

In fact, remark that \mathcal{K} is a left B-module, the left multiplication by $b \in B$ being:

$$bh = \chi(b)h$$
 for $h \in \mathcal{H}$; $bk = \rho_i(b)k$ for $k \in \mathcal{K}_i^0$;

$$b(h_1 \otimes \ldots \otimes h_n \otimes k) = \chi(b)h_1 \otimes h_2 \otimes \ldots \otimes h_n \otimes k, \text{ for } h_s \in \mathcal{H}_{i_s}^0, s = \overline{1, n}, k \in \mathcal{K}_j^0,$$
$$i_1 \neq \ldots \neq i_n \neq j$$

and

$$\tilde{\rho}_i(b)\xi = b\xi$$
 for $b \in B$, $\xi \in \mathcal{K}$, $i \in I$.

Consequently the *-representations $\tilde{\rho}_i$ agree on B and one defines the *-representation $\rho = \frac{*}{i} \tilde{\rho}_i : \overset{\text{\tiny{def}}}{\underset{\text{\tiny{p}}}{\otimes}} A_i \to \mathscr{L}(\mathscr{K})$.

1.6 THEOREM. (ρ, \mathcal{K}) is the Stinespring dilation of the map $\Phi: \underset{B}{\circledast} A_i \to \mathcal{L}(\mathcal{H})$ defined by:

$$\Phi(b) = \chi(b), \text{ for } b \in B;$$

$$\Phi(a_1 \dots a_n) = \Phi_{i_1}(a_1) \dots \Phi_{i_n}(a_n), \text{ for } a_j \in A^0_{i_j}, j = \overline{1, n}, i_1 + \dots + i_n.$$

Consequently Φ is completely positive and extends to a B-linear completely positive map $*\Phi_i: *A_i \to \mathcal{L}(\mathcal{H})$.

PROOF. By 1.5 $\rho(b)h = \chi(b)h$ for $b \in B$, $h \in H$ hence $\langle \rho(b)h, h' \rangle = \Phi(b)$, $b \in B$, $h, h' \in \mathcal{H}$. Pick now $h, h' \in \mathcal{H}$, $a_j \in A^0_{i,j}$, $j = \overline{1,n}$, $i_1 \neq \ldots \neq i_n$ and check that $\langle \tilde{\rho}_{i,i}(a_1) \ldots \tilde{\rho}_{i,n}(a_n)h, 'h \rangle = \Phi_{i,1}(a_1) \ldots \Phi_{i,n}(a_n)$. Remark first that

$$\tilde{\rho}_{i_n}(a_n)h = \rho_{i_n}(a_n)h = \Phi_{i_n}(a_n)h + (\rho_{i_n}(a_n)h - \Phi_{i_n}(a_n)h) = \Phi_{i_n}(a_n)h + k_n, \text{ with } k_n \in \mathcal{K}^0_{i_n},$$

$$\begin{split} \tilde{\rho}_{i_{n-1}}(a_{n-1})\tilde{\rho}_{i_{n}}(a_{n})h &= \tilde{\rho}_{i_{n-1}}(a_{n-1})\Phi_{i_{n}}(a_{n})h + \tilde{\rho}_{i_{n-1}}(a_{n-1})k_{n} = \\ &= \Phi_{i_{n-1}}(a_{n-1})\Phi_{i_{n}}(a_{n})h + (\rho_{i_{n-1}}(a_{n-1}) - \Phi_{i_{n-1}}(a_{n-1}))\Phi_{i_{n}}(a_{n})h + \sigma_{i_{n-1}}(a_{n-1}) \otimes \\ &k_{n} \in \mathscr{H} \oplus \mathscr{H}_{i_{n-1}}^{0} \oplus \mathscr{H}_{i_{n-1}} \otimes \rho_{i_{n-1}}^{0} \mathscr{H}_{i_{n}}^{0} \end{split}$$

Assume that $\tilde{\rho}_{i_{k+1}}(a_{k+1})\dots\tilde{\rho}_{i_n}(a_n)h = \Phi_{i_{k+1}}(a_{i_{k+1}})\dots\Phi_{i_n}(a_n)h \oplus \eta_k$, with $\eta_k \in \mathscr{K}^0_{i_{k+1}} \oplus \bigoplus_{r=k+1}^{n-1} (\mathscr{K}^0_{i_{k+1}} \otimes \dots \otimes \mathscr{K}^0_{i_r}) \otimes_{\rho^0_{i_r}} \mathscr{K}^0_{i_r}$.

Since

$$\tilde{\rho}_{i_{k}}(a_{i_{k}})(\Phi_{i_{k+1}}(a_{k+1})\dots\Phi_{i_{n}}(a_{n})h) = \Phi_{i_{k}}(a_{k})\dots\Phi_{i_{n}}(a_{n})h \oplus (\rho_{i_{k}}(a_{k}) - \Phi_{i_{k}}(a_{k}))\Phi_{i_{k}}(a_{k+1})\dots\Phi_{i_{n}}(a_{n})h \in \mathcal{H} \oplus \mathcal{K}_{i_{k}}^{0};$$

$$\tilde{\rho}_{i_{k}}(a_{k})(\mathcal{K}_{i_{k+1}}^{0}) \subset \mathcal{K}_{i_{k}}^{0} \oplus \rho_{i_{k}}^{0} \dots \mathcal{K}_{i_{k+1}}^{0};$$

$$\tilde{\rho}_{i_k}(a_k)((\mathcal{H}^0_{i_{k+1}} \underset{\mathbf{p}}{\otimes} \ldots \underset{\mathbf{p}}{\otimes} \mathcal{H}^0_{i_r}) \otimes_{\rho^0_{i_{r+1}}} \mathcal{H}^0_{i_{r+1}}) \subset \mathcal{H}^0_{i_k} \underset{\mathbf{R}}{\otimes} \ldots \underset{\mathbf{R}}{\otimes} \mathcal{H}^0_{i_r} \otimes_{\rho^0_{i_{r+1}}} \mathcal{H}^0_{i_{r+1}},$$

it follows that $\tilde{\rho}_{i_1}(a_1)\ldots\tilde{\rho}_{i_n}(a_n)h=\Phi_{i_1}(a_1)\ldots\Phi_{i_n}(a_n)h+\eta_0$, with

$$\eta_0 \in \mathcal{K}^0_{i_1} \oplus \mathcal{K}^0_{i_1} \otimes_{\rho^0_{i_2}} \mathcal{K}^0_{i_2} \oplus \ldots \oplus (\mathcal{K}^0_{i_1} \underset{R}{\otimes} \ldots \underset{R}{\otimes} \mathcal{K}^0_{i_{n-1}}) \otimes_{\rho^0_{i_n}} \mathcal{K}^0_{i_n}$$

and consequently $\langle \rho(a_1 \dots a_n)h, h' \rangle = \langle \Phi_{i_1}(a_1) \dots \Phi_{i_n}(a_n)h, h' \rangle + \langle \eta_0, h' \rangle = \langle \Phi(a_1 \dots a_n)h, h' \rangle.$

Finally, 1.1 and the definitions yield:

$$\rho(B)\mathscr{H} = \chi(B)\mathscr{H} = \mathscr{H};$$

$$\overline{\operatorname{span}}(\rho - \Phi)(A_i)\mathscr{H} = \overline{\operatorname{span}}(\rho_i - \Phi_i)(A_i)\mathscr{H} = \mathscr{K}_i^0 \text{ for } i \in I;$$

$$\overline{\operatorname{span}} \rho(A_{i_1}^0 \underset{B}{\otimes} \dots \underset{B}{\otimes} A_{i_n}^0)\mathscr{K}_{i_{n+1}}^0 = (\mathscr{H}_{i_1}^0 \underset{B}{\otimes} \dots \underset{B}{\otimes} \mathscr{H}_{i_n}^0) \otimes_{\rho_{i_{n+1}}^0} \mathscr{K}_{i_{n+1}}^0$$

$$\text{for } i_1 \neq \dots \neq i_n \neq i_{n+1}$$

hence $\mathscr{K} = \overline{\operatorname{span}} \, \pi(A) \mathscr{H}$.

COROLLARY 1. If $(G_i)_{i\in I}$ are discrete groups, $H \subset \cap_i G_i$ a common subgroup and $\phi_i \colon G_i \to \mathcal{L}(\mathcal{H})$ are H-bivariant positive functions, then the function $\phi \colon {}_H^* G_i \to \mathcal{L}(\mathcal{H})$ defined by

$$\phi(hg_1 \dots g_n) = \phi_{i_1}(g_1) \dots \phi_{i_n}(g_n) \text{ for } g_i \in G_{i_n}, i_1 \neq \dots \neq i_n$$

is positive definite.

PROOF. Since G_i are discrete, $C^*(H)$ is a C^* -subalgebra of $C^*(G_i)$ and there exist conditional expectations $E_i: C^*(G_i) \to C^*(H)$. It is not difficult to see that $C^*(G_1 \underset{H}{*} G_2) \cong C^*(G_1) *_{C^*(H)} C^*(G_2)$ and each ϕ_i corresponds to its unital extension $\Phi_i: C^*(G_i) \to \mathcal{L}(\mathcal{H})$, which is $C^*(H)$ -linear.

COROLLARY 2. Let A_i be unital C^* -algebras, $S_i \subset A_i$ be unital subspaces and $L_i: S_i: \to \mathcal{L}(\mathcal{H})$ be unital completely contractive maps. Then the L_i extend to a completely contractive map on the free product C^* -algebra A_i .

PROOF. By Arveson's extension theorem [1], each L_i extends to a unital completely map $\Phi_i: A_i \to \mathcal{L}(\mathcal{H})$ and taking $B = \mathbb{C}$ and each E_i a state on A_i , the map Φ_i is unital and completely positive on A_i .

Blecher and Paulsen defined in [3] the free product with amalgamation over C in the category consisting of unital operator algebras as objects and completely contractive morphisms as morphisms and pointed out the following corollary:

COROLLARY 3. If A_1 , A_2 and B are unital operator algebras and Φ_i : $A_i \to B$ are unital completely contractive maps, then there is a common completely extension $\Phi: A_1 \not = A_2 \to B$.

The following is a noncommutative version of Prop. 4.23 in [16] (see also Th.10.8. in [11]).

COROLLARY 4. Given $(A_i, E_i)_{i \in I}$ and $(B_i, F_i)_{i \in I}$ with $E_i \colon A_i \to B$, $F_i \colon B_i \to B$ faithful projections of norm one onto the unital C^* -subalgebra B and the B-linear completely positive maps $\phi_i \colon A_i \to B_i$, there is a common extension $\Phi \colon A_i \to B_i$ which is B-linear and completely positive.

Let M be a finite von Neumann algebra with a faithful trace τ . Then M satisfies Haagerup's approximation property whenever there exists a net of unital completely positive maps $\Psi_i: M \to M, i \in I$ such that:

- i) $\tau(\Psi_i(x^*x)) \le \tau(x^*x)$ for all $x \in M$;
- ii) $\lim_{i \in I} \|\Psi_i(x) x\|_2 = 0$, for all $x \in M$;
- iii) Each Ψ_i induces a compact bounded operator $T_{\Psi_i}: L^2(M, \tau) \to L^2(M, \tau)$.

Note that conditions i) shows that $\|\Psi_i(x)\|_2^2 = \tau(\Psi_i(x)^*\Psi_i(x)) \le \tau(\Psi_i(x^*x) + \|x\|_2^2)$ i.e. that T_{Ψ_i} is a contraction. Consequently $\operatorname{Ker}(I - T_{\Psi_i}) = \operatorname{Ker}(I - T_{\Psi_i}^*)$ and since $T_{\Psi_i} \hat{1} = \hat{1}$ it follows that $\hat{C} \hat{1}$ is a reducible subspace for T_{Ψ_i} . Denote $T_{\Psi_i}^0 = T_{\Psi_i}|_{\hat{C} \hat{1}}$ and let $\Psi_{i,\varepsilon}(x) = (1 + \varepsilon)^{-1}(\Psi_i(x) + \varepsilon \tau(x))$ for $\varepsilon \ge 0$.

It is easily seen that $\Psi_{i,\varepsilon}$ are unital, $\tau(\Psi_{i,\varepsilon}(x^*x)) \leq \tau(x^*x)$ and

 $\lim_{\substack{(i,\epsilon)\in I_*\\ (i_1,\varepsilon_1)}} \|\Psi_{i,\epsilon}(x)-x\|_2 = 0 \text{ for all } x\in M, \text{ where } I_*=I\times \mathsf{R}_+ \text{ with the order } (i_1,\varepsilon_1)\leq (i_2,\varepsilon_2) \text{ if } i_1\leq i_2 \text{ and } \varepsilon_1\geq \varepsilon_2. \text{ Moreover, } T^0_{\Psi_{i,\epsilon}}=(1+\varepsilon)^{-1}T^0_{\Psi_i}, \text{ hence } \|T^0_{\Psi_{i,\epsilon}}\|<1. \text{ This remark shows that in fact we can always assume that } \|T^0_{\Psi_i}\|<1.$

Let M be a finite von Neumann algebra with a faithful trace τ , acting standardly by left multiplication on $\mathscr{H}_{\tau} = L^2(M, \tau)$. For any $x \in M$ denote by x_{τ} its appropriate vector in \mathscr{H}_{τ} . The vector 1_{τ} is a cyclic and separating trace vector from M. Denote by $\omega_{\xi,n}$, ξ , $\eta \in \mathscr{H}_{\tau}$ the vector form induced by ξ and η and $\omega_{\xi} = \omega_{\xi,\xi}$. Let $M_0 \subset M$ be a unital weakly dense *-subalgebra of M and let $\Phi_0: M_0 \to M_0$ be a unital linear map such that $\omega_{1\tau} \Phi_0 = \omega_{1\tau}$ and $\Phi_0(x)^* \Phi_0(x) \leq \Phi_0(x^*x)$, $x \in M_0$. Then Φ_0 induces a contraction $T_{\Phi_0} \in \mathscr{L}(\mathscr{H}_{\tau})$, $T_{\Phi_0}(x_{\tau}) = \Phi(x)_{\tau}$, $x \in M$ and for $a, x \in M_0$ we get

$$\begin{split} \omega_{a_{\mathsf{t}}}(\varPhi_0(x)) &= \langle \varPhi_0(x) \cdot a_{\mathsf{t}}, a_{\mathsf{t}} \rangle = \langle a^{\textstyle *} \varPhi_0(x) a \cdot 1_{\mathsf{t}}, 1_{\mathsf{t}} \rangle = \langle aa^{\textstyle *} \varPhi_0(x) \cdot 1_{\mathsf{t}}, 1_{\mathsf{t}} \rangle = \\ &= \langle \varPhi_0(x) \cdot 1_{\mathsf{t}}, (aa^{\textstyle *})_{\mathsf{t}} \rangle = \langle T_{\varPhi_0}(x_{\mathsf{t}}), (aa^{\textstyle *})_{\mathsf{t}} \rangle = \langle x_{\mathsf{t}}, T_{\varPhi_0}^{\textstyle *}((aa^{\textstyle *})_{\mathsf{t}}) \rangle = \\ &= \langle x \cdot 1_{\mathsf{t}}, T_{\varPhi_0}^{\textstyle *}((aa^{\textstyle *})_{\mathsf{t}}) \rangle = \omega_{1_{\mathsf{t}}, T_{\varPhi_0((aa^{\textstyle *})_{\mathsf{t}})}^{\textstyle *}}(x), \end{split}$$

hence $\omega_{a_{\tau}}\Phi_0$ coincides with a vector form on M_0 . Since $\omega_{a_{\tau}}\Phi_0(x^*x) \geq 0, x \in M_0$, it follows that $\omega_{a_{\tau}}\Phi_0$ extends to a state on the norm closure of M_0 and on this C^* -algebra we have $\|\omega_{a_{\tau}}\Phi_0\| = \omega_{a_{\tau}}\Phi_0(1) = \|a\|_{2,\tau}^2$, hence

$$\begin{split} \|\Phi_{0}(x)a\|_{2}^{2} &= \langle \Phi_{0}(x)^{*}\Phi_{0}(x) \cdot a_{\tau}, a_{\tau} \rangle \leq \langle \Phi_{0}(x^{*}x) \cdot a_{\tau}, a_{\tau} \rangle = \\ &= \omega_{a_{\tau}}\Phi_{0}(x^{*}x) \leq \|a\|_{2,\tau}^{2} \|x\|^{2}, a, x \in M_{0}. \end{split}$$

Therefore Φ_0 extends to a contractive map $\Phi: \overline{M_0}^{||\cdot||} \to \overline{M_0}^{||\cdot||}$ with the same properties as Φ_0 and then to a strongly continuous map $\Phi: M \to M$ due to the inequalities $\tau(\Phi(x)^*\Phi(x)) \le \tau(x^*x)$, $\|\Phi(x)\| \le \|x\|$, $x \in M_0$, the Kaplansky density theorem and the faithfulness of τ .

Haagerup proved [10] that the II_1 -factor associated to the free group on two generator satisfies this property. Actually one obtains the following corollary:

COROLLARY 5. Let (M_1, τ_1) and (M_2, τ_2) be finite von Neumann algebras $(\tau_1$ and τ_2 are faithful traces) with Haagerup property. Then any von Neumann subalgebra of $(M, \tau) = (M_1, \tau_1) * (M_2, \tau_2)$ has the Haagerup approximation property.

PROOF. Let $(\Phi_i)_{i\in I}$ and $(\Psi_j)_{j\in J}$ be as in the definition, relatively to $(\pi_{\tau_1}(M_1)'', \omega_{1_{\tau_2}})$ and $(\pi_{\tau_2}(M_2)'', \omega_{1_{\tau_2}})$. We can assume that $\|T_{\Phi_i}^0\| < 1$, $\|T_{\Psi_j}^0\| < 1$ for all $i\in I, j\in J$ and using the product net that I=J. By the previous remark, each $\Phi_i * \Psi_i$ extends to a normal τ -preserving completely positive map on the finite von Neumann algebra M in its standard representation on $L^2(M,\tau)$, where τ denotes the free trace $\tau_1 * \tau_2$. Since $C1_{\tau}$ is reducible subspace for both T_{Φ_i} and T_{Ψ_i} , it is easy to check that $(T_{\Phi_i}, 1_{\tau_i}) * (T_{\Psi_i}, 1_{\tau_2}) = (T_{\Phi_i * \Psi_i}, 1_{\tau})$ (see [17]). Since

 $||T_{\Phi_i}^0|| < 1$ and $||T_{\Psi_i}^0|| < 1$, it follows that $T_{\Phi_i * \Psi_i}$ is compact. Finally, its easy to check that $||(\Phi_i * \Psi_i)(x) - x||_{2,\tau} \to 0$ for all $x \in M$.

The statement follows using the remark that if N is a von Neumann algebra of M and M has the Haagerup approximation property given by the net of completely positive maps $\Phi_i: M \to M$ with respect to the trace τ on M, then $\tilde{\Phi}_i: N \to N$, $\tilde{\Phi}_i = E\Phi_i|_N$ approximate in a convenient way the identity of N (E denotes the τ -preserving conditional expectation from M onto N).

By [8, Th. 3] (there is also a simple argument in [13, Th. 4.3.1]) one gets:

COROLLARY 6. Let M be a factor of type Π_1 with property T of Connes. Then M is not a subfactor of the Neumann algebra $(M, \tau) = (M_1, \tau_1) *_{\mathcal{C}} (M_2, \tau_2)$, with (M_1, τ_1) and (M_2, τ_2) of Haagerup type.

1.7 Finally, we shall look at the particular example when $A_i = C(T) = C^*(Z)$, B = C and $E_i = \tau$, the canonical trace on the full group C^* -algebra A_i . Let $(T_i)_i$ be a family of contractions on the Hilbert space \mathscr{H} . Denote by ι_n the function $\iota_n(z) = z^n, z \in T, n \in Z$ and $T^{[k]} = \begin{cases} T^k, & \text{for } k \in Z_+ \\ T^{*-k}, & \text{for } k \in Z_- \end{cases}$. Let $\Phi_i : C(T) \to \mathscr{L}(\mathscr{H})$ be the

 $l_n(z) = z^n, z \in T, n \in Z \text{ and } T^{(k)} = \{ T^{*-k}, \text{ for } k \in Z_- : \text{ Let } \Phi_i : C(T) \to \mathcal{L}(\mathcal{H}) \text{ be the completely positive map determined by } \Phi_i(l_n) = T_i^{[n]}, n \in Z. \text{ Denote also by } a_1, \ldots, a_N(N \in \mathbb{N} \cup \{\infty\}) \text{ the generators of the free group on } N \text{ generators } F_N.$

In this case we are interested to find the Naimark dilation of the positive definite function $\phi: F_N \to \mathcal{L}(\mathcal{H})$,

$$\phi(g) = \begin{cases} \phi_{i_1}(a_{i_1}^{k_1}) \dots \phi_{i_n}(a_{i_n}^{k_n}) &, \text{ for } g = a_{i_1}^{k_1} \dots a_{i_n}^{k_n}, i_1 \neq \dots \neq i_n, k_j \in \mathbb{Z} \setminus \{0\}; \\ I_{\mathscr{H}} &, \text{ for } g = e \end{cases}$$

where $\phi_i: \mathbb{Z} \to \mathcal{L}(\mathcal{H}), \ \phi_i(k) = T_i^{[k]}$ are positive defined functions ([15]).

By the classical theorem of Szökefalvi-Nagy [15] it is known that in fact the Naimark dilation (π_i, \mathcal{K}_i) of ϕ_i is given by $\mathcal{K}_i = \mathcal{H} \oplus \mathcal{K}_i^0$ with $\mathcal{K}_i^0 = l^2(\mathsf{Z}_-) \otimes \mathcal{D}_{T_i^*} \oplus l^2(\mathsf{Z}_+) \otimes \mathcal{D}_{T_i}$ and $U_i = \pi_i(1) \in \mathcal{U}(\mathcal{K}_i)$ are defined by:

$$U_iv = \begin{cases} T_i \, h \oplus \xi_0 \otimes D_{T_i} h &, \text{ for } v = h \in \mathcal{H}; \\ \xi_{k+1} \otimes D_{T_i} h &, \text{ for } v = \xi_k \otimes D_{T_i} h, k \geq 0, h \in \mathcal{H}; \\ \xi_{k+1} \otimes D_{T_i^*} h &, \text{ for } v = \xi_k \otimes D_{T_i^*} h, k \leq -1, h \in \mathcal{H}; \\ D_{T_i^*}^2 h \oplus \xi_0 \otimes (-D_{T_i} T_i^* h) &, \text{ for } v = \xi_0 \otimes D_{T_i^*} h, h \in \mathcal{H} \end{cases}$$

where $(\xi_k)_{k\geq 0}$ (respectively $(\xi_k)_{k\leq 0}$) denotes the canonical orthonormal basis in $l^2(Z_+)$ (respectively in $l^2(Z_-)$), $D_{T_i} = (I - T_i^* T_i)^{1/2}$, $D_{T_i^*} = (I - T_i T_i^*)^{1/2}$, $\mathcal{D}_{T_i^*} = \overline{D_{T_i}} \mathcal{H}$, $\mathcal{D}_{T_i^*} = \overline{D_{T_i^*}} \mathcal{H}$.

Actually Theorem 1.6 yields a Hilbert space $\mathcal{K}\supset\mathcal{H}$ and the unitaries $\tilde{U}_i\in\mathcal{L}(\mathcal{K})$ such that

$$\begin{split} T_{i_1}^{[k_1]} \dots T_{i_n}^{[k_n]} &= P_{\mathscr{H}}^{\mathscr{K}} \widetilde{U}_{i_1}^{[k_1]} \dots \widetilde{U}_{i_n}^{[k_n]}|_{\mathscr{H}}, \text{ for } i_1 \neq \dots \neq i_n, n \geq 1, k_j \in \mathsf{Z}, k_j \neq 0; \\ \mathscr{K} &= \overline{\operatorname{span}} \left(\mathscr{H} \cup \left\{ U_{i_1}^{k_1} \dots U_{i_n}^{k_n} \mathscr{H}; i_1 \neq \dots \neq i_n, n \geq 1, k_j \in \mathsf{Z}, k_j \neq 0 \right\} \right). \end{split}$$

It is easily seen that this dilation is unique up to unitary equivalence and in fact it can be spatially described as follows. Denote

$$\begin{split} \mathscr{K}_{i}^{0} &= \mathscr{K}_{i} \ominus \mathscr{H} = l^{2}(\mathsf{Z}_{-}) \otimes \mathscr{D}_{T_{i}^{*}} \oplus l^{2}(\mathsf{Z}_{+}) \otimes \mathscr{D}_{T_{i}}; \\ \mathsf{F}_{N,i} &= \{ w = a_{i_{1}}^{k_{1}} \ldots a_{i_{n}}^{k_{n}}; \text{ w reduced word in } \mathsf{F}_{N}, n \geq 1, i_{n} \neq i \}; \\ l^{2}(\mathsf{F}_{N,i}) &= \{ f \in l^{2}(\mathsf{F}_{N}); \text{ supp } f \subset \mathsf{F}_{N,i} \}; \\ (\xi_{w})_{w \in \mathsf{F}_{N}} \text{ the orthonormal basis of } l^{2}(\mathsf{F}_{N}) \text{ given by } \xi_{w}(w') = \delta_{ww'}, w, w' \in \mathsf{F}_{N}. \end{split}$$

Then $\mathscr{K}=\mathscr{H}\oplus\bigoplus_{i}\mathscr{K}_{i}^{0}\oplus\bigoplus_{i}l^{2}(\mathsf{F}_{N,i})\otimes\mathscr{K}_{i}^{0}$ and the unitaries $\tilde{U}_{i}\in\mathscr{L}(\mathscr{K})$ are defined by

$$\tilde{U_i}v = \begin{cases} U_i h = T_i h \oplus \xi_0 \otimes D_{Ti} h \text{, for } v = h \in \mathcal{H}; \\ U_i \eta_i & \text{, for } v = \eta_i \in \mathcal{K}_i^0; \\ \xi_{a_i,a_j^k} \otimes D_{T_j} h & \text{, for } v = \xi_k \otimes D_{T_j} h, j \neq i, k \geq 0, h \in \mathcal{H}; \\ \xi_{a_i,a_j^k} \otimes D_{T_j^*} h & \text{, for } v = \xi_k \otimes D_{T_j^*} h, j \neq i, k \geq 0, h \in \mathcal{H}; \\ \eta & \text{, for } v = \xi_{a_i^{-1}} \otimes \eta, \eta \in \mathcal{K}_j^0. \end{cases}$$

REFERENCES

- 1. W. Arveson, Subalgebras of C*-algebras, Acta Math. 123 (1969), 141-224.
- 2. D. Avitzour, Free products of C*-algebras, Trans. Amer. Math. Soc. 271 (1982), 423-436.
- D. Blecher and V. Paulsen, Explicit construction of universal operator algebras and applications to polynomial factorization, Proc. Amer. Math. Soc. 112 (1991), 839–850.
- F. Boca, Free products of completely positive maps and spectral sets, J. Funct. Anal. 97 (1991), 251–263.
- M. Bożejko, Positive definite functions on the free group and the noncommutative Riesz product, Boll. Un. Mat. Ital. A5 (1986), 13-21.
- M. Bożejko, Positive definite kernels, length functions on groups and noncommutative von Neumann inequality, Studia Math. 95 (1989), 107-118.
- 7. P. M. Cohn, Free ideal rings, J. Algebra 1 (1964), 47-69.
- A. Connes and V. Jones, Property T for von Neumann algebras. Bull. London Math. Soc. 17 (1985), 57-62.
- L. de Michele and A. Figà-Talamanca, Positive definite functions on free groups, Amer. J. Math. 102 (1980), 503-509.
- U. Haagerup, An example of a non nuclear C*-algebra, which has the metric approximation property, Invent. Math. 50(1979), 279-293.
- V. Paulsen, Completely Bounded Maps and Dilations, Pitman Research Notes in Mathematics, Vol. 146, New York, 1986.
- M. A. Picardello, Positive definite functions and L^p convolution operators on amalgams, Pacific J. Math. 123(1986), 209–222.
- 13. S. Popa, Correspondences, Preprint INCREST, 1986.
- 14. W. F. Stinespring, Positive functions on C*-algebras, Proc. Amer. Math. Soc. 6(1955), 211-216.

222 FLORIN BOCA

- B. Szökefalvi-Nagy and C. Foiaş, Harmonic Analysis of Operator on Hilbert Spaces, Akadémiai Kiadó, Budapest, 1970.
- 16. M. Takesaki, Theory of operator algebras I, Springer-Verlag, New York, 1979.
- D. Voiculescu, Symmetries of some reduced free product C*-algebras, in Operator Algebras and their Connections with Topology and Ergodic Theory, Lecture Notes in Mathematics, Vol. 1132, pp. 230-263, Springer-Verlag, Berlin/New York. 1983.

DEPARTMENT OF MATHEMATICS UCLA 405 HILGARD AVENUE LOS ANGELES, CA 90024 U.S.A.