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COMPLETELY POSITIVE MAPS ON AMALGAMATED
PRODUCT C*-ALGEBRAS

FLORIN BOCA

Let Fy be the free group on N generators a;,...,an(NeN U {0}, N = 2); for
g=af'...d" i ... Fi,k€Z k; % 0, denote its length by |g| = |k,| + ... +
|k,|. Haagerup [10] proved that for any re[0,1], the function H,(g) = rl*' is
positive definite on Fy.

In fact, the functions ¢,:Z — C, ¢,(k) = 2z, keZ, zeC, |z] £ 1, where z¥ =

¢ forkeZ,;
{Z"‘, forkeZ_
F, = Z*Z, in the sense that H,(a}!...al") = ¢,(a?). .. ¢,(a}") for any reduced
word af! ... af

In this way, de Michele and Figa-Talamanca [9], Bozejko [5,6] and Picar-
dello [12] extended Haagerup’s result. In [6] BoZejko proved that the free
product of the unital positive definite functions u;: G; » £ () is still positive
definite on the free product group *G; = G and a similar result for the free
product of H-bivariant functions on the amalgamated product xG;. In [4] we
defined an analogue of this construction for amalgamated free product C*-alge-
bras, showing a class of completely positive maps on these C*-algebras.

Whenever G; are discrete groups, the positive definite functions u;:G; —» C
yield states ¢; on C*(G;). In [2] and [17] the state which corresponds to u = *u; is
constructed, the free product of GNS representations =, is defined and one gets
*my, = my. Consequently, there is a canonical way for constructing the Naimark
dilation of the positive definite function u: *G; - C.

The aim of this note is to construct the Stinespring dilatation for the complete-
ly positive maps *®;: ¥ 4, > £ (') considered in [4] (here % A; denotes the full
amalgamated product of the unital C*-algebras 4; over a common C*-subal-
gebra B with respect to a family of projections of norm one E;: A; — B). On this
way one can easily write the Naimark dilation for the operator valued map
xui %G, —> L () from [6] and [12]. This is explicitly done for G; =72,
H = {0}, T, e £ (o) contractions and u;(k) = T, where

are known to be positive definite [13] and H, = ¢, * ¢, on
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T T*, forkeZ,:
T** forkeZ_ "

1.1 Let A be a unital C*-algebra, # be a Hilbert space and &: 4 —» £(#)
a unital completely positive map. The Stinespring dilation (r, ") of &, consisting
of a Hilbert space # which includes # and of a unital *-representation
p:A— ZL(A) such that

(i) ®(a) = P%p(a)|y foracA

(i) A" = Span p(4)#
is unique up to unitary equivalence.

Denote by #° = 2" © # the orthogonal complement of # into X and
remark that for ae A, h, h' € # one has

<p(@h — P(@)h, Iy = {P%pla)h,h'> — (P(a)h, iy = 0.
On the other hand, let ke #° © span {p(a)h — ®(a)h; ae A,he #}. Then

<k, ®(a)h ) = 0, hence <k, p(a)h) = Ofor ae A, he #. By (ii) it follows that k = 0
and consequently

A° = span {p(a)h — ®(a)h; ac A, he #}.

1.2 LeMMA Let A be a unital C*-algebra, B be a unital C*-subalgebra of A with
a projection of norm one E: A — B, y: B — £(#) be a unital x-representation on
the Hilbert space # and ®: A — L(H#) be a B-linear (i.c. (ab) = ®(a)x(b) for
a€ A, be B) completely positive map. Let (p, ") be the Stinespring representation
associated with @. Then # (and consequently #°°) is p(B)-invariant and p(b)h =
y(b)h for be B, he #.

PROOF. Since span {p(a)h — ®(a)h;ae A,he #}isdensein #°, itisenough to
remark that

{p(b)h, p(@)l’ — P(@)k') = <p(a*b)h, ') — {p(b)h, Pla)h’)
= (P(a*b)h, 'y — (D(b)h, D(a)h') = 0,

forallaec 4, beB, h b e #.

1.3 Let B be a unital C*-algebra, # be a right Hilbert B-module, £~ be
a Hilbert space and y: B — #(X') a *-representation. Denote by # ® , " the
completion of the vector space # O ¢ (the algebraic tensor product as vector
spaces) with respect to the scalar product

Shi @ kyyhy ® kyd = (x(Khas hydp)kss kad s hy,kye H, ki, ke X

In this way s# ®, A becomes a Hilbert space and the map 0:2(#)—.»
L(H# ®,4) given by OTYh®k) = Th®k for Te Z(#), he #, ke X is
a *-representation.
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Given any *-representation o:A4 — £ (), one considers the representation
CRQI:A-> L (H R, ), @I = 0.

Remark that for »# = B and y:B — #(X’) unital *-representation, there is
a natural identification between the Hilbert spaces B® , %" and " given by the

unitary W(Q_b; ® k) = Y. x(b))k..

Consequently, under the assumptions of 1.2, the Hilbert space #° becomes
a left B-module. For be B, ke ° we shall denote simply bk instead of y(b)k.

1.4 At this moment we are concerned with Voiculescu’s construction of
C*-reduced amalgamated free products ([17]), that we recall briefly.

Given (4;);; unital C*-algebras with a common unital C*-subalgebra B and
projections of norm one E;: A; —» B, one denotes by #; the separation and
completion of A; with respect to ||a|g, = |[E(a*a)||'’%. Denote also &; = 1z€ #;
and A? = KerE,.

The B-valued inner product {x, y)p = E;(y*x) on A; yields an inner product
on J; which becomes a Hilbert B-module. The B-bimodule direct sum
A; = B@® A) gives rise to the orthogonal direct sum of Hilbert B-modules
H,=B@ H°.

The left multiplication on A; yields a unital GNS type *-morphism =;: 4; —
P () with Ei(a) = {m(a)&;, &g for ae A;. Clearly n,(A?)¢; is dense in H#7?.

One defines the free product of the pointed Hilbert B-modules (J;, &;);c; by
(%, &), where

Ho=B® ®nz1.i4..4i, H7 ®... @Jf?" =B@® #°%¢=1,@ 0e K,
Consider also the Hilbert B-modules
H () =B® Puziitit..4i, Ko (? an) H =B® H) i)
H () =B® ®px1.i,+..4i,4i H5, @Bf) ? HY =Bd H)
and the unitaries V;: 5, — #; (;) M, (i) defined by

Gi®¢ ,forh=1¢;
V(h)— /11®(h2®...®hn),forh=h1®...®hn,i1=i,ng2;
T IheE Jforh=hy,i, =i

@M ®...®h,) forh=hy, i %i

where hye #0, k= 1,n iy ... i,

Define the *-morphisms a;: A; = £ (#,) by o; = A4;m;, where 1;; L(H;) —
L(H), A(T) = V., (T ® ) V.. Then the reduced free product with amalgama-
tion of (4;, E,),; is the C*-algebra A generated by U, 0:(4;) in £(#,), B identifi-
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es with a *-subalgebra of 4 and E(a) = <(a, &), is a conditional expectation of
A onto B.

LEMMA. i) The direct B-submodule 3#,(j) of #, is o-invariant Sorij.

ii) The direct B-submodule #(i) of #, is oinvariant.

PROOF. i) Since oy(b) acts by left multiplication by » on B and on
H®... ®9fgl and 6(a)¢ = n(a)¢; for aeA? it is enough to check that
sia)he #,0) for

any a€ A}, he #,(j), this being obtained by the following relations:
a,—(a)hl = <7Ei(a)h1,é,'>gé + h; €B @ f,o for il =i

G'i(a)(hl ® P ® h") = <7Ii(a)h1,éi>gh2 ® e ® h" + h’l ® h2 ® .. ® h"
for iy =i,n 2 2 (in both cases h, e #?);

g@h; ®...0h,) =)@ ®...Qh,fori, +i,n= 1.
i) The above last two formulas show us that
Tl AQ)(A? ®..® H) < #O%) foriy £in 2 1.
1.5 Let 4;, Band E; asin 1.4 and look at the algebraic free product 4 = %) A;

with amalgamation over B, which is a B-ring. The B-bimodule decompositions
A; = B® A yield the following B-bimodule decomposition ([7]):

®A;=BDDis. 4im21 4] ®... @A),
B B B

There is a natural *-operation which turns A4 into a complex *-algebra. More-
over, since each 4; is spanned by the unitary group #(A4,), the unital *-algebra
A= C;) A; is spanned by #(A). It is a well-known remark that such a *-algebra

satisfies the Combes axiom i.e. for each xe A, there is an A(x) > 0 such that
X*x < Ax).
It is a routine exercise to check that the first statement in 1.1 is still true
whenever one replaces A by a unital *-algebra satisfying the Combes axiom.
The full amalgamated product of (4;, E;);c;, denoted * A; is the completion and
separation of (;B A; in the C*-seminorm

lall = sup {||n(a)||; n*-representation of (z) A}

It is not difficult to prove that assuming each E; faithful, || || is in fact
a C*-norm and the A4;’s identify canonically to some unital *-subalgebras of % 4;.

Let y: B — () be a unital *-representation and ®;: A; —» £ () be B-linear
completely positive maps. Let (p;, ;) be the Stinespring dilation of @;. By 1.1 one
gets X0 = o, © # = spani(p; — D)(A)H and p(B)AH? = 7). Denote p} =
Pilxo: B— £ (A °?) and consider the following Hilbert space:
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H=HODA®OH) @A) =
=H @A) A ] DDj4ih ;D @i ()® 0 A ] =
=A@ A () @A) @ @5, H,()) ®po X ]
and the *-representations g;:A4; » Z(X'), pi(a) = pfa) D o,(a)| #%0) Lo @

@j +i O'ij(a), where

0ij(@) = (W; @ 1))(0:(a) L, ) ® 1x)(W}* @ 1)),

W;:B ®,,g9f}) - A9, W3 b, ®k,) =Y pj(b,)k, are unitaries and
Ijr= Lecir®, x:j?-
Denoting by a the image of a€ A4; in J#; one obtains:
oij(@k = (W;® Dioa)l ® k) = (W@ )(a® k) =
= (W, @ (Ex(@) @k + (@ — Ep(@) ® k) =
= p/(Eg@)k + (@ — Eg(a) ®k, forae A, kex?,
hence o,j(b)k = p;(b)k = bk for be B, ke ') and consequently
prb)k = bk = py(b)k for be B, ke #{,r, sel.
In fact, remark that " is a left B-module, the left multiplication by b € B being:
bh = y(b)h for he #; bk = p(b)k for ke A?;

bhy®...®h, @k = y(b)h ® ,® ... ® h, @ k,for hye #70,s =T,n, ke A},
... FhF]j

and
pi(b)é =btforbeB, (eA,iel.

Consequently the *-representations j; agree on B and one defines the *-represen-
tation p = *p;: @ Ai—» LX)

1.6 THEOREM. (p, X') is the Stinespring dilation of the map &: ® A; - L(K)
defined by: £

@(b) = x(b), for be B;
D(a,...a,) = ®;(a))... D; (a,), for a;e A}, j=T,m iy + ... % i,
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Consequently @ is completely positive and extends to a B-linear completely
positive map *®@;: ¥ A; — L(H).

PrOOF. By 1.5 p(b)h = y(b)h for be B, he H hence {p(b)h,h'y = ®(b), be B,
hh'e #. Pick now hh'e#, aje A, j=Tn, iy +... +i, and check that
(P (@r)- .. Pifan)h, ')y = @y (ay).. . P, (a,). Remark first that

pi(a)h = pi(a)h = &, (a)h + (pi(a)h — &; (a)h) = P, (a,)h + k,, with
kye A7,

ﬁin_l(an—l)ﬁi"(an)h = ﬁi,,_,(an-l)(pi,,(an)h + ﬁin_,(an—l)kn =

=& l(an~1)¢i"(an)h+(pi,,q(an—l) - (pin_.(an—l))‘pi"(an)h + Ui,,,,(an~1) ®
k,,leG—)Jt’? @A, ®,,?n_ .)i”?n

in-1 L

Assume that ﬁik+ ](ak+ 1) SN ﬁi"(a,,)h = ¢ik+ l(aik+ 1) e (Di"(a,,)h @ Nies with
XD, ® B L, DA O Y
Since
ﬁik(aik)(¢iki }(ak+ 1) e ¢i,,(an)h) = ¢ik(ak) cee (pi,.(an)h ® (pik(ak) -
D, (@) Dy, (1) - Pr (@) heH @ H;

P @) A0, ) = H) Dy, A2

le+ 1

Prl@) (2, ®.. QAN A, ) HLO...QH] By XY,
B B r+1 B B r+1

it follows that g; (ay). .. fi (a)h = @i (ay). .. @, (a,)h + 1o, with
?]()Efp @%g ®P?2%?z®@(fg@§)”&‘l)®ﬂ?"fg

31

and consequently  {p(a;...a)h k) = (P (a)... D (a)h Wy + {ne, b =
(P(ay...a)h h>.
Finally, 1.1 and the definitions yield:

p(B)# = y(B)H = H;

span (p — ®)(A;)# = span(p; — P)NA)H = A foriel;

span p(4A2 ® ... ® A2) A :(%g%...@fg‘)(@pgmfg.u
B B

foriy & ... F iy Fin+1
hence o¢" = span n(4) #.

COROLLARY 1. If (G;)y are discrete groups, H = n;G;acommon subgroup and
¢::G; - L(H) are H-bivariant positive functions, then the function ¢:%G;—
L(H) defined by
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o(hgy...gs) = ¢i1(gl)~--¢in(gn)f0r ngGi,, i +...Fi,
is positive definite.

Proor. Since G; are discrete, C*(H) is a C*-subalgebra of C*(G;) and there
exist conditional expectations E;: C*(G;) — C*(H). It is not difficult to see that
C*(Gy % G2) = C*(Gy)*c*w)C*(G2) and each ¢, corresponds to its unital exten-
sion @;: C*(G;) » ZL(), which is C*(H)-linear.

COROLLARY 2. Let A; be unital C*-algebras, S; = A; be unital subspaces and
L;:S;:— £ () be unital completely contractive maps. Then the L; extend to
a completely contractive map on the free product C*-algebra & A;.

Proor. By Arveson’s extension theorem [1], each L; extends to a unital
completely map @;: A; » £ (H#) and taking B = C and each E; a state on A4;, the
map * &, is unital and completely positive on EAi.

Blecher and Paulsen defined in [3] the free product with amalgamation over Cin
the category consisting of unital operator algebras as objects and completely
contractive morphisms as morphisms and pointed out the following corollary:

COROLLARY 3. If Ay, A, and B are unital operator algebras and ®;: A; — B are
unital completely contractive maps, then there is a common completely extension
¢: Al EAZ hnd B

The following is a noncommutative version of Prop. 4.23 in [16] (see also
Th.10.8. in [11]).

COROLLARY 4. Given (A;, E;);.; and (B;, F;);e; with E;: A; — B, F;: B; — B faith-
ful projections of norm one onto the unital C*-subalgebra B and the B-linear
completely positive maps ¢;: A; — B;, there is a common extension ®: % A; >  B;
which is B-linear and completely positive.

Let M be a finite von Neumann algebra with a faithful trace . Then M satisfies
Haagerup’s approximation property whenever there exists a net of unital com-
pletely positive maps ¥;: M — M,iel such that:

i) H(Pix*x)) < t(x*x) for all xe M;

ii) lim |¥;(x) — x|, = 0, for all xe M;

iel

iij) Each ¥; induces a compact bounded operator Ty, : I}(M,1) > Z(M, 7).

Note that conditions i) shows that || ¥;(x)||3 = 1(¥i(x)* ¥i(x)) £ ©(¥i(x*x) *
[x||% i.e. that Ty, is a contraction. Consequently Ker (I — Ty ) = Ker (I — T3
and since T\pii =1 it follows that C1 is a reducible subspace for Ty,. Denote
Ty, = Ty )ci and let ¥, ,(x) = (1 + &)~ (¥i(x) + et(x)) for & 2 0.

It is easily seen that ¥;, are unital, ©(¥;.(x*x) < t(x*x) and
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lim ||¥;.(x) —x[l, =0 for all xeM, where I, =1 x R, with the order
ie)elx
{iliel) < (iz,82) if iy S0y and &y 2 &,. Moreover, Ty, = (1 + &)~ ' T, hence
[T, Il < 1. This remark shows that in fact we can always assume that || Tg, | < 1.
Let M be a finite von Neumann algebra with a faithful trace 7, acting standard-
ly by left multiplication on #, = I2(M,1). For any xe M denote by x, its
appropriate vector in ;. The vector 1, is a cyclic and separating trace vector
from M. Denote by w,,, &, nes#, the vector form induced by ¢ and n and
w; = W Let My = M be a unital weakly dense *-subalgebra of M and let
@y:My— M, be a unital linear map such that o, ®,=w,, and
Do(x)* Po(x) < Po(x*x), x€M,. Then &, induces a contraction Ty € L(H),
To(x.) = ®(x),, x€ M and for a, x e M, we get

wa,(¢0(x)) = <¢O(x) a., at> = (a*(%(x)a- lt’ 1t> = <aa* d)()(X)‘ lt’ 11'> =
= (Do(x) 15, (aa*),) = (Tp,(x.),(aa*).> = {x,, T3, (aa*).)) =
= <X' 117 T:o((aa*)t)> = Wq,,T1* (X),

Dyllaa*)p)

hence w,, ®, coincides with a vector form on M,. Since @, Po(x* x) Z 0, x € My, it
follows that w, @, extends to a state on the norm closure of M, and on this
C*-algebra we have [, Poll = @, Po(l) = lal3.., hence

“‘po(x)a"% = <‘p0(x)*¢0(x)'at’ a1> é <(p0(x*x)‘au at> =
= w,, Po(x*x) £ |all3 . Ix[I*, a, x € Mo.

Therefore &, extends to a contractive map @: Myl - M,!!!l with the same
properties as @, and then to a strongly continuous map ®: M — M due to the
inequalities t(®(x)* P(x)) < t(x*x), | B(x)]| < ||x[l, x € Mo, the Kaplansky density
theorem and the faithfulness of 7.

Haagerup proved [10] that the I1;-factor associated to the free group on two
generator satisfies this property. Actually one obtains the following corollary:

COROLLARY 3. Let (M;,,) and (M3, t,) be finite von Neumann algebras (t, and
T, are faithful traces) with Haagerup property. Then any von Neumann subalgebra
of (M, ) = (My,7,) ¥(M,,7;) has the Haagerup approximation property.

ProoF. Let (9)); and (¥))s be as in the definition, relatively to
(7, (M,)',@,_)and (r,,(M,)", @;, ). We can assume that | Tg, | < 1, | T, || < Lfor
alliel,jeJ and using the produét net that I = J. By the previous remark, each
@, * P, extends to a normal t-preserving completely positive map on the finite
von Neumann algebra M in its standard representation on I2(M, 1), where
7 denotes the free trace t, * 7,. Since C1, is reducible subspace for both Ty, and
Ty, it is easy to check that (To,1.)*(Ty, 1s,) = (Touw,s 1,) (see [17]). Since
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I Ta(," I <1 and IIT.,9¢|| < 1, it follows that T .y, is compact. Finally, its easy to
check that [|[(®; * ¥;)(x) — x||,,. — O for all xe M.

The statement follows using the remark that if N is a von Neumann algebra of
M and M has the Haagerup approximation property given by the net of
completely positive maps @;: M — M with respect to the trace © on M, then
¢:N->N,P, = Ed,|y approximate in a convenient way the identity of N (E
denotes the t-preserving conditional expectation from M onto N).

By [8, Th. 3] (there is also a simple argument in [13, Th. 4.3.1]) one gets:

COROLLARY 6. Let M be a factor of type 11, with property T of Connes. Then
M is not a subfactor of the Neumann algebra (M,1) = (M, ty) (M3, T5), with
(My, 1) and (M5, 1,) of Haagerup type.

1.7 Finally, we shall look at the particular example when A; = C(T) = C*(2),
B = Cand E; = 7, the canonical trace on the full group C*-algebra A4;. Let (T;); be
a family of contractions on the Hilbert space #. Denote by 1, the function

k

1(z) = 2" zeT,neZand TH = {;;_,‘, ig: 'iif Let ®,: C(T) - Z(#) be the
completely positive map determined by @,(1,) = T, neZ. Denote also by
ai,...,ay(N eNu {o0}) the generators of the free group on N generators Fy.

In this case we are interested to find the Naimark dilation of the positive
definite function ¢ : Fy — Z(#),

@i (af)... g (afr) , forg =afi.. . .dfn iy + ... i, k;eZ\ {0}
Iy ,forg=e

$(g) =

where ¢;:Z - L(K#), ¢p,(k) = T are positive defined functions ([15]).

By the classical theorem of Szokefalvi-Nagy [15] it is known that in fact the
Naimark dilation (r;, ;) of ¢; is given by A; = # @ A#° with #? = 2(Z_)®
D1 ® (Z+) ® Pr, and U; = n(1) e %(A;) are defined by:

Th®&lo®Drh , forv=hes,
Up = Ck+1 ®@ Dy h , forv=¢§ ®Dr,hk 2 0,he H;
“T )G @Dk , forv =& ®Dpth k< —1, he #;

D3th@® &o ® (=D, T*h) , forv=¢, ® Drh, he

where (&, )i> 0 (respectively (&) <o) denotes the canonical orthonormal basis in
(Z,) (respectively in P(Z.), Dy =(I—T*T)"? Dy =(I— LT,
@T’i’ = DT;‘#’ @T: = DT‘:X.

Actually Theorem 1.6 yields a Hilbert space /" = s and the unitaries
U;e £(X') such that
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TR T = PR UK. Oy foriy & . iy n 2 1, k;eZ, k; & 0;
A =span(# O{UL ... UnHsiv+ ... +inn2 1, keZ k; +0)).

Itis easily seen that this dilation is unique up to unitary equivalence and in fact
it can be spatially described as follows. Denote

HP=H0H =PZ)®Dr®I*Z.)® 1,

Fy:={w=df!...af" wreduced word in Fy,n 2 1, i,  i};

IP(Fy,;) = {fel*(Fy); supp f = Fr.ils

(éw)wer, the orthonormal basis of I*(Fy) given by &,(w') = 8., w, w' € Fy.

Then ¥ = H# @ @AY ® @ I*(Fy,;) ® #? and the unitaries U;e L(X) are
defined by ' '

U,h= ﬂh@éo@DTih, forv=h€,}f;

Uin; , forv=nex?;
Uiv = &t ® Db , forv=_¢§,®Dy hj*i k20 het;
éai,a§®DT;h ’ forv:§k®DT;hnj:*:i’k%Oahe'}r;
" ,forv=¢,- @nmnexy.
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