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PENROSE’S TENSORS ON SUPERGRASSMANNIANS

E. POLETAEVA

Introduction.

The main object of the study of Riemannian geometry is the properties of the
Riemann tensor, which in turn splits into the Weyl tensor, the traceless Ricci
tensor, and the scalar curvature. All these tensors are obstructions to the
possibility of “flattening” the manifold on which they are considered. The word
“splits” above means that at every point of the Riemannian manifold M" for
n % 4 the space of values of the Riemann tensor constitutes an O(n)-module
which splits into the sum of three irreducible components (for n = 4 there are four
of them, because the Weyl tensor splits additionally in this case) [ALV, Ko].
More generally, let G be any group, not necessarily O(n). If the principle GL(n)-
bundle on an n-dimensional manifold M can be reduced to a principle G-bundle
we say that M is endowed with a G-structure. Later we give the definition of
structure functions, shortly referred to as SFs, which constitute the complete set of
obstructions to “flattening” a manifold with a G-structure. If G = O(n), then the
Riemann tensor is an example of SFs. Among the most known other examples of
SFs are the following ones:
® a conformal structure, G = O(n) x R™, SFs are called the Weyl tensor;
e Penrose’s twistor theory, G = S(GL(2, C) x GL(2, C)), SFs-Penrose’s tensors-
split into two components called the “a-forms” and the “B-forms”;
® an almost complex structure, G = GL(n; C) € GL(2n; R), SFs are called the
Nijenhuis tensor.

In several versions of a very lucid paper [G1, G2] A. Goncharov calculated all
structure functions for the conformal structures of type X, where X is a “classical
space”, i.e., an irreducible compact Hermitian symmetric space (CHSS); in his
examples G is the reductive part of the stabilizer of a point of the space. The usual
conformal structure is the one that corresponds to X = Q,, a quadric in the
projective space. The complex grassmannian X = Grj corresponds to Penrose’s
twistors,

—_—

Received March 28, 1990; in revised form April 26, 1991.



162 E. POLETAEVA

Here I generalize Goncharov’s result to all general and queer supergrassman-
nians, i.e., I calculate possible values for the super analogues of Penrose’s
“a-forms” and “p-forms”. I will also restate the main geometric theorem from
[G2].

SFs for the corresponding reduced structures, Riemannian structures of type
Gr and QGr, will be considered in a following paper.

As in the classical case (Lie theory), computation of structure functions reduces
to certain problems of representation theory. However, in the super case com-
putations become much more complicated, because of the absence of complete
reducibility. I could not directly apply the usual tools for computing (co)homol-
ogy (spectral sequences and the Borel-Weil-Bott theorem) to superalgebras and
had to retreat a step and apply these tools to the even parts of the considered Lie
superalgebras. Then, using certain necessary conditions, I verified whether two
modules over a Lie superalgebra that could be glued into an indecomposable
module actually were glued or not (there are no sufficient conditions at all [Pe]).

Since our results seem to be of interest in relation to problems from various
branches of mathematics and physics (non-holonomic mechanics and supergrav-
ity), I will explain the major points and the key cases in detail to enable the reader
to reproduce the results or get similar ones for other G.

Novel features here are as follows:

— there are two types of supergrassmannians, since GL(n) has two superana-
logues: the general, GL(m|n), and the “queer”, GQ(n). SFs for the queer super-
grassmannians constitute a module looking exactly the same as that for grass-
mannians of generic dimensions, whereas SFs for the general supergrassman-
nians behave quite differently:

— since the underlying manifold of a supergrassmannian is generally the
product of two grassmannians (unless one or both of them degenerate into
a projective space or a point), our a priori estimate of the number of irreducible
components of the superspace of SFs should vary. It certainly does vary, but
differently than might be expected; besides the superspace of SFs can be not
completely reducible.

Our calculations may contribute to a yet non-existent generalized superana-
logue of the BWB theorem for superalgebras. By the BWB theorem we usually
mean the case of the complete flags or cohomology of the maximal nilpotent
subsuperalgebra, cf. the review [Pe].

As to the case of a non-maximal nilpotent subalgebras, our result is so far the
only completely computed case of this yet non-existing BWB theorem in the
particular case of the second cohomology of the Lie superalgebra complement-
ary to a minimal parabolic subsuperalgebra with coefficients in the whole
superalgebra of types sl or psq. Our answer shows that, while for the general
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queer supergroup GQ(n) there still is a hope to get an analogue of the BWB
theorem, for GL(m|n) even the formulation of such an analogue, if any, will be
extremely complicated.

Since our supergrassmannians are complex supermanifolds, we consider
everything over C. In particular we represent the supergrassmannians not as
coset supermanifolds of unitary supergroups modulo unitary subsupergroups,
but as cosets of SL or SQ over C modulo a parabolic subsupergroup.

In this paper we deal with linear algebra: at a point, for global geometry see
[MV] and [M1], where some of our tensors are used.

REMARKS. 1) SFs for the majority of other classical superspaces (which are all
supergrassmannians with an additional structure), i.e., the superanalogues of
other cases considered by Goncharov, are listed in [P1, P2, P3, P4], see the
review [LP1] for other ramifications and new problems. (For new problems see
also [LSV].)

2) This paper may be considered as introductory to [LPS1, LPS2], where
some problems of interest in modern and classical theoretical physics, raised in
[L1,LP1,V, VF, VG, LSV], are solved.

3) In[LPS1] we discuss analogues of the Einstein equation for manifolds with
G-structures other than G = O(n), and their “superizations”.

4) Warning. From the literature [Sch, RSh, M1] one might get the wrong
impression that the SFs I compute here, and which are discussed in [RSh],
pertain to supergravity or supertwistors. This is not the case: “superization” of
gravity and twistors leads to contact-type structures.

The machinery to study such structures and the corresponding calculations
are given in [LPS2], where we show how to calculate SFs for the N-extended
Minkowski superspaces (understood broadly, as in [GIOS], as arbitrary quo-
tients of SL (4|N) modulo a parabolic subsupergroup) for an arbitrary N as well,
and in [LP2], where the case of manifolds is treated.

Note that so far the only cases supposed to be understood by physicists
(according to physicists themselves [OS1, OS2, GIOS] are: N = 1 (completely
understood), and N = 2, 3 (partly understood).

Definition of a classical superspace see in [L1], where the problem I solve here
was raised and the way to treat mathematically physical models of supersym-
metry and supergravity via contact-type G-structures (rather than as in [Sch,
RSh, M1]) was indicated, or in [S]. Some particular cases of our Main Theorem
were announced in [P1, P2, P3]. Here we give the proof for the most difficult
generic case, the details for the other cases will be published in further issues.

ACKNOWLEDGEMENTS. Iam thankful to D. Leites, A. Onishchik, V. Serganova
(they also verified the calculations) and A. Goncharov for their help; to 1AS,
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Princeton, for hospitally during 1989, to an NSF grant through Pennsylvania
State University, and SFB-170, Goéttingen, for financial support at the final
stages of the calculations.

0. Preliminaries.

Terminological conventions. 1) The g-module V with the highest weight £ and an
even highest vector will be denoted by V: or R(¢). In what follows R(} ;a;m;)
denotes the irreducible go-module with highest weight Y ;a;n;, where m; is the i-th
fundamental weight, cf. [OV], Reference Chapter. We will sometimes denote the
highest weight by its numerical labels R(a;; a), where after the semicolon we write
the component of the highest weight with respect to the center of go. The weights
with respect to gl(n), however, are most convenient to denote differently: with
respect to the standard basis of the dual space to the maximal torus of gl(n).

Let cg denote the trivial extension of a Lie (super)algebra g. Recall that
a Z-graded Lie (super)algebra of the form @ _,<;g; is said to be of depth d.

0.1. G-structures and their structure functions. We recall the necessary defini-
tions [St].

Let M be a manifold of dimension n over a field K. Let F(M) be the frame
bundle over M, i.e., the principal GL (n, K)-bundle. Let G = GL(n; K) be a Lie
group. A G-structure on M is a reduction of the principal GL(n; K)-bundle to the
principal G-bundle.

The simplest G-structure is the flat G-structure defined as follows. Let V' be K"
with a fixed frame. The flat structure is the bundle over V whose fiber over ve V
consists of all frames obtained from the fixed one under the G-action, V being
identified with T, V.

The obstructions to identification of the kth infinitesimal neighbourhood of
a point me M on a manifold M with G-structure and that of a point of the flat
manifold V with the above G-structure are what we call structure functions of
order k [St,Gu].

Such an identification is only possible provided all structure functions of lesser
orders vanish (see [ G2] for details).

ProposITION ([St]). SF's constitute the space of the (k, 2)th Spencer cohomology.

The Spencer cochain complex whose cohomology is mentioned in the Prop-
osition above is defined as follows. Let S’V denote the operator of the ith
symmetric power of a vector space V. Set

g-, = T,M, go = g = Lie(G) and for i > 0 put:
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g; = {XeHom(g_y,8;-1): X(v)(W,...) = X(W)(v,...) for any v,weg_,}
= (8o ®S(g-1)*) N (@-1 ®S (g ).
Now set (§-1,80)x = @i> -10:. Suppose that
1) the go-module g_ is faithful.

Then (§-1, 9o)y < vect(n) = der K[[x;,...,x,]], where n = dimg_,. It can be
verified that the Lie algebra structure on vect(n) induces such a structure on
(9-1,90)% The Lie algebra (g_ 1, go)y, usually abbreviated g,,, will be called the
Cartan prolongation of the pair (g-,, go).

Let E'V be the ith exterior power of a vector space V. Set C’g‘;f = g,-, ® E%(g* ).
Define the differentials 0% : Ct* — C%~'** ! asfollows: forany gy,...,gs+1 €8-1,
fecs

2 (B'Q;ff)(gl,- corfs+1) = Z(— 1)(S+1_i)[f(91,- e stt—ise s Fs+ 1) Is+1-i)

13

As expected, 0%0% 1+ 1 = 0. The cohomology of bidegree (k, s) of this complex
is called the (k, s)th Spencer cohomology group HE?.

0.2. Goncharov’s results: recapitulation. In the main text we will literally
“superize” some of Goncharov’s ideas and results [G2]. This is possible thanks to
the lucid algebraicity of his approach to Riemannian geometry and Penrose’s
theory of twistors which now attracts ever greater interest of mathematicians and
physicists, cf. [Pe, M1], and performed with the use of the point functor, see the
Appendix in [LS] (also referred to in some works as the Grassmann envelope, cf.
(B]).

Recall that Penrose’s idea is to embed the Minkowski space M* into the
complex Grassmann manifold Gr,(C*) of planes in C* (or straight lines in CP?)
and to express the conformal structure on M* in terms of the incidence relation of
the straight lines in CP3,

The conformal structure on M* is given by a field of quadratic cones in the
tangent spaces to the points of M*. In Penrose’s case these cones possess two
families of two-dimensional flat generators, the so-called “a-planes” and
“B-planes.” The geometry of these families is vital for Penrose’s considerations.
In particular, the Weyl tensor has a lucid description in terms of these families.

It is interesting to include 4-dimensional Penrose theory into a more general
theory of geometric structures. Goncharov has shown that there is an analogous
field of quadratic cones for any irreducible compact Hermitian symmetric space
X of rank greater then one. Here we will generalize his result to the case of
supermanifolds. As an aside note of the importance of quadratic conditions in
this approach.
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PrOBLEM. What is the relation of these quadratic conditions with Manin’s
non-commutative projective geometry constructed for quadratic algebras [M2]?

0.2.1. F-structures and their structure functions. Recall that the notion of an
F-structure is a generalization of the notion of distribution, i.e., a subbundle in
the TM and the SF's of an F-structure generalize the notion of the Frobenius form
[G2].

Let dim V = dim T,,M, F < Gr,(V) be a manifold with a transitive action of
a subgroup of GL(V), and &(M) be a subbundle of Gr,(TM), where the fiber of
Gr(TM)is Gr(T,,M). The bundle (M) — M is called an F-structure on M if for
any point m of M there is a linear isomorphism I,:V — T,,M, which induces
a diffeomorphism 1,,(F) = &(m). A submanifold Z = M of dimension k such that
T.Z < §(z) for any ze Z is called an integral submanifold. An F-structure is
completely integrable if for any me M and for any subspace V(m) = §(m) there is
an integral manifold Z with T,,Z = V(m).

1) Under what conditions is an F-structure completely integrable?

2) Given a completely integrable F-structure, how many integral submani-
folds tangent to it are there?

Goncharov answered both questions. To do so he introduced SFs of an
F-structure as follows. For f € §(m)let V; < T,,M be the subspace corresponding
to f. Set
(Ty)-y = T.M/V,,(T)o = T;§Fm) < Hom(V}, T,,M/V;). Define
(T = (T)e=1 ® V) N (T))s-2 ® V) for s > 0, and
Ck'S(Vf) = (Tyh-.® EV}

Define the differentials as in (2). Then the cohomology groups H**(V;) are
naturally defined. The elements of H*%(V;) are called SFs of order k.

THEOREM ([G2]. 1) The elements of H**(V;) are obstructions to integrability of
the F-structure up to the kth infinitesimal neighbourhood, provided the SFs of lesser
order vanish.

2) For the completely integrable F-structure (all SFs vanish) the family of
integrable manifolds tangent to V is of dimension Y, diim H**(V}).

The super version of this theorem is absolutely similar and the proof is the same.

0.2.2. Relation between F-structures and G-structures. Let Gr = GL (V) be the
group of all transformations preserving F and gr = Lie(G¢). Then there exists
a projection Hg:? — H“*(V;). Explicit formulas may be found in [G2]:

The other way around the F-structure corresponding to the G-structure is also
of interest. It is studied in detail for so-called generalized conformal structures.

0.2.3. The cone C(X) associated with a CHSS X. Definition of generalized
conformal structures ([G2]). Let S be a simple Lie group, P its parabolic subgroup
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with the Levi decomposition P = GN,i.e., Gis reductive and N is the radical of P.
As one knows (see [He]), N is Abelian if and only if X = S/P is a CHSS, and in
thiscase G = G, x C* where G is semisimple. Let N _ be the subgroup opposite
to N. Denote by s, p, g, go, 1, n_ the corresponding Lie algebras.

Let P, = G,N, be the Levi decomposition of the stabilizer of x e X in S. Denote
by C, the cone of highest weight vectors in the G.-module T, X, i.e., each element
in C, is highest with respect to a Borel subgroup in G,. Since se S transforms C,
to C,y, then with X there is associated the cone C(X) < n_ linearly equivalent to
all the C,. It will be convenient to identify n_ with T;X and C(X) with C;, where
¢ is the image of the unit ee G in X.

Let rk(X) > 1, i.e., X + CP". Then on a manifold Y a generalized conformal
structure (GSC) of type X is given if Y is endowed with a family of cones C, and
C-linear isomorphisms A,:n_ — T,Y such that 4,(C(X)) = C,. The generalized
conformal structures of the same type on manifolds Y and Z are equivalent if there
is a diffeomorphism f: Y — Z such that df(C,) = C .

EXAMPLE (The conformal structure). Let X be a non-degenerate quadric in
CP"*1, Then C, is the non-degenerate quadratic cone consisting of straight lines
in CP"*! passing through x and belonging to X. The family of cones C, defines
a conformal structure on X. C, is what is called the light, or zero, or null cone.

Among all manifolds with a GSC of type X the CHSS X is distinguished as the
one which has the flat C,-structure. In other words, a local diffeomorphism,
which preserves the family of cones C,’s on any subdomain on X can be extended
to a holomorphic automorphism of X. This gives us an infinitesimal characteriz-
ation of CHSSs of rank greater than 1. In fact, we can recover a CHSS of rank > 1
from any simply connected domain with a flat family of cones [G2].

This property might be useful in the theory of analytic functions on bounded
complex symmetric domains of rank > 1, and for us gives a hope to understand
how to “superize” Berezin’s mysterious quantization, cf. [Pee] and references
therein.

Part 2) of Theorem 0.2.1 and the BWB theorem give an estimate from above
for the dimension of a family of integrable manifolds. The functor of points
translates the definition and results of this section to supermanifolds.

0.2.4. Generalized conformal and Riemannian structures as G-structures
([G2]). Goncharov has shown that a manifold Y with generalized conformal
structure of type X = §/P, where P = GN, is a manifold with a G-structure. We
will continue his studies and explicitly calculate all the SFs of this G-structure.
For a generalized conformal structure of type X the group G is reductive and its
center is one-dimensional. To reduce the structure group G to its semisimple part
G is an action similar to distinguishing a metric from a conformal class on
a conformal manifold.
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The structure functions of the G-structures form an analogue of the Riemann
tensor for the metric. They include the structure functions of the G-structure and
several other irreducible components, some of which are analogues of the
traceless Ricci tensor or of the scalar curvature.

More precisely, the structure functions of the G-structure are defined as the
part of the structure functions of the G-structure obtained by a reduction of the
G-structure that does not depend on the choice of reduction. In other words, this
is a generalized conformally invariant part of the structure of the G-structure.

There is a striking similarity between generalized conformal structures and the
classical geometry of conformal manifolds.

The algebraic reason for this similarity is the fact that generalized conformal
structures are G-structures of order 2. In the flat case this means that an
automorphism of a CHSS X is not defined by its differential at a point: in an
appropriate coordinate system the infinitesimal automorphisms of X are vector
fields whose coefficients are polynomials of degree < 2 [G2].

Geometrically speaking, the G-structure is determined by the cones C,.

For example, there are often many “isotropic” linear subspaces in the tangent
space to a point of a manifold with a GSC of type X, i.e., subspaces that belong to
C, u 0. Therefore, on a generalized conformal manifold an F-structure can be
introduced. This F-structure is completely integrable if and only if the Weyl
tensor (or its corresponding part, of it splits) vanishes. For X = Gr? this result is
due to R. Pensore. This is a non-standard geometric interpretation of the SFs of
generalized conformal manifolds due to Goncharov.

His results on the relations of the structure functions of the Gg-structure with
obstructions to ‘the integrability of the F-structure generalize a theorem by
Penrose, which states that the self-dual part of the Weyl tensor on a 4-dimen-
sional manifold with a conformal structure vanishes if and only if a-surfaces exist.

The space of SFs for a (generalized) Riemannian structure contains that for
aconformal one and has, as is shown in [G2] (the proofin [LP2] is more general),
an additional summand, S?(g_)*. The case of superalgebras is similar, so we
only have to calculate SF's for the conformal structures. This is precisely what we
do here. Some of the geometric interpretations of this calculations are given in
[LPS1] and below.

0.2.5. Laplace operators for generalized conformal structures ([G2]). Since the
cone C, is singled out in T, X by a system of quadratic equations, the Gy-structure
may be considered as a “metric” with values in the bundle E*, where the fiber of
E over x is the linear space of quadratic equations that singles out C, = T X.

The G,-structure on X defines a second order differential operator 4 acting on
the space of functions into the space I'(E) of sections of E. If go = o(n), and E is the
trivial bundle of rank 1, the operator 4 is the classical Laplace operator.
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The characteristic manifold of the Laplace operator 4 is u,.xC*, where
C* < T*X is the cone linearly equivalent to C, and in a sense dual to C,.
Similarly, on a generalized Riemannian manifold an analogue of the Laplace
operator is defined.

0.2.6. Real forms of GSC ([G2]). Until now the ground field was C. Let us
consider real forms of CHSSs, i.e., what are called R-symmetric Nagano spaces.
For example, the real forms of Gr3j are RGR%! and HGr?, and the real forms of
the quadric @, ; in CP" are quadrics in RP”. For us it is only important that each
R-symmetric Nagano space is representable in the form Si/Ps, where the Lie
algebras of S; and Py are of the form s =s_, @ so @ s, and p = 5, D 3,
respectively. '

To each of these R-symmetric spaces we will assign a geometric structure
which s a real form of the corresponding conformal structure. A way of obtaining
a(pseudo)Riemannian metric on a real manifold M of dimension n is to consider
a G-structure of type X on M, where X is a quadric in RP"*!,

All the results obtained for generalized conformal structures can be easily
extended to their real forms. Moreover, several real forms have some very
interesting properties. A typical example is HP" and the corresponding theory of
quaternionic manifolds. Indeed, the complexification of HP" is Gr3"*2. There-
fore, if X is a quaternionic manifold, then in T, X ®;C a cone C, linearly
equivalent to the cone C(Gr3"*?) is canonically constructed.

Let n: P — X be the bundle whose fiber over x is the set of all “a-subspaces” in
C., i.e., the set of isotropic subspaces of C-dimension 2n in C,.

After Goncharov, we say that a unitary connection in a bundle on X is self-dual
if its curvature form vanishes on a-subspaces. Assigning to a bundle on X with
a self-dual connection a certain holomorphic bundle on P we establish an
equivalence of the category of such bundles on X with a certain category of
holomorphic bundles on P.

By Theorem 4.9 from [G2] each a-subspace has a unique lift to the corre-
sponding point of P. Since ™ !(x) = CP*, we obtain an almost complex structure
on P. This structure is integrable if and only if the anti-self-dual part of the SFs
vanishes. To a bundle with a self-dual connection on such X there corresponds
aholomorphic bundle on P. This fact is a multi-dimensional generalization of the
Atiyah-Ward-Belavin-Zakharov construction, cf. references in [G2].

0.3. Classical results: the case of a simple Lie algebra g,, over C.
0.3.1. The following remarkable fact, though known to experts, is seldom
formulated explicitly, cf. [L3, #32]:

PROPOSITION. Let K = C, and let g, = (3-1,80)s be simple. Then only the
Jollowing cases are possible:
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1) g, # O, then g, is either vect(n) or its special subalgebra svect(n) of divergence-
free vector fields, or its subalgebra Y (2n) of Hamiltonian vector fields.

2) g,=0, g, 0, then g, is the Lie algebra of the complex Lie group of
automorphisms of a CHSS ('see above).

The Proposition explains the reason for imposing the restriction (1). Other-
wise, we can not interpret the Cartan prolongation as a Lie subalgebra of
vect(dim g_ ). The fact that the Cartan prolongation is nevertheless a Lie algebra
can then be proved directly, as in [St].

When g, is a simple finite dimensional Lie algebra over C computation of SFs
becomes an easy corollary of the Borel-Weil-Bott (BWB) theorem in a form due
to W. Shmid, cf. [G2]. Indeed, by definition,

@ HE? = HX(g-1,84)

The BWB theorem implies that, as a go-module, H*(3_,,8,) has as many
components as H?(g_,) which, thanks to commutativity of g_,, is E>g* ;. The
BWB theorem also gives the formula for the highest weights of these com-
ponents. However, Goncharov did not write these weights explicitly and there-
fore failed to observe a possibility to write Einstein-type equations as is done in
[LPS1].

0.3.2. The following theorem is given for comparison with our results as
a point of reference. Besides, I never saw (except in [LP1]) the explicit calcula-
tions of SFs implicitly described by Serre for certain grassmannians (projective
spaces); I believe that the experts know the result (Rh. Nelson is among them).
The equations for various degrees of non-flatness of an almost symplectic
structure, however, seem to be new, cf. [P4] and references therein.

Recall that all Z-gradings of depth 1 of sl(m) are of the form g_; @ go ® g;,
where g; = g* ,, with go = ¢(sl(p) @ sl(m — p)).

THEOREM. 1) (Serre [St]). In case 1) of the Proposition, i.e., when
(p — 1)(m — p — 1) = 0, structure functions can only be of order 1. More precisely:
for g, = vect(n) and svect(n) SFs vanish;
for g, = b(2n) nonzero SFs are R(n,) for n = 2, and R(n,) ® R(n;) for n > 2.

2) (Goncharov [G2]). SFs for the grassmannian Gr™* " (when neither m nor nis
equal to 1, i.e., the grassmannian is not a projective space) are the direct sum of two
components whose weights and orders are as follows:

Let A = R(2,0,...,0, —1) ® R(1,0,...,0,—1,—1), B=R(1,1,0,,...,0, - 1) ®
R(1,0,...,0, —2),
A" = R(3,0,...,0, - 1) ® R(,...,0,—1,—1), B = R(1,1,0,,...,0,0) ®
R(1,0,...,0, —3). Then
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m,n order 1 order 2

m#+2n+2 A and B -

m=2n+2 A B
n=2m=%$2 B A
n=m=2 - A’ and B’

0.4. SFs on supermanifolds.

0.4.1. Recapitulation. The necessary background on Lie superalgebras and
supermanifolds is gathered in [L2]. Recall that gl(m|n) is the Lie superalgebra
(with respect to the supercommutator) of block matrices of size (m, n). Its “queer”
analogue, which preserves the odd complex structure over the ground field K is
q(n) = {X egl(n|n)|[X, J,,] = 0} for an odd nondegenerate form J,,, such that
J2, = —1,,. The usual choice for J,, is J,, = antidiag(1,, —1,). Then we have:
q(n) = {X egl(n|n)| X = diag(4, A) + antidiag(B, B), where A, Begl(n)}. It is
known [L1] that the supertrace and the queertrace defined on gl(n|n) and q(n),
respectively, by the formulas:

str(diag(4, D) + antidiag (B, C)) = tr A — tr D and
qtr(diag(A4, A) + antidiag(B, B)) = tr B

are analogues of the trace for gl and g, respectively. Let s distinguish traceless
subalgebra and p stand for projectivization, e.g., sq(n), psl(n|n) = sl(n|n)/ {134,
psq(n), etc.

All Z-gradings, in particular of depth 1, of Lie superalgebras of series sl, psl,
and psq are calculated in [K].

0.4.2. How to “superize”. The above definitions of SFs are generalized to Lie
superalgebras via the sign rule. However, in the super case new phenomena
appear, which have no analogues in the classical case:

e Cartan prolongations of (g, 8o) and of (ITg - ,, 8o), where IT is the functor
of the change of parity, are essentially different;

e faithfulness of the go-action on g_; is violated in natural examples of
supergrassmannians of subsuperspaces in an (n, n)-dimensional superspace when
the center z of g, acts trivially. If we retain the same definition of the Cartan
prolongation, then it has the form of the semidirect sum (g - 1,80/2)y < S*(g* )
(the ideal is S*(g* ,)) with the natural Z-grading and Lie superalgebra structure,
but this Lie superalgebra is not a subsuperalgebra of vect(dim g_ ) anymore.
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o the formulation of Proposition (0.3.1) and of Serre’s theorem (0.3.2) fails to
be literally true for Lie superalgebras.

1. Spencer cohomology of g, = psq(n).

The Spencer cohomology of the Lie superalgebras of this series resemble those of
sl(n) much more than those of sl(m|nr).

ProrosiTION. [K]. All Z-gradings of depth 1 of g = psq(n) are of the form
9-1D 8o D gy withg, = g*, and 3o = ps(a(p) ® q(n — p)), where p + 0, whereas
g - 1 is either one of the two irreducible go-modules inid} ® id, _ ,, where id, denotes
the standard (identity) representation of the “summand” of go isomorphic to g(k).

Explicitly:

g-1 =<L(x £ Nx) ®(y £ I1(y))), where xeid}, yeid, .

Lete,,...,¢,and ,,...,d,-, be the standard bases of the dual spaces to the
spaces of diagonal matrices in g(p) and g(n — p), respectively.

MAIN THEOREM (case Q). A) (3-1,80)sx = 6,
B) all SFs are of order 1 and split into the direct sum of two irreducible
go-submodules: Vs, ¢ +5,-25, , ® Ve, -s5,_ -

2. Spencer cohomology of g = sl(m|n) and psl(n|n).

2.1. Z-gradings of depth 1 of ¢ = sl(m|n) and psl(n|n). All these gradings are of the
formg_, @ go® g, and g; = g* | = id ® id*.

PROPOSITION. A) There are the following possible values of g, for the Z-grad-
ings of g of depth 1:
a) ¢(slim — plq) @ sl(pln — q)) if pq + 0;
b) c(slim|q) @ sl(n — q)) if p=0,q(n —q) ¥ 0;
¢) «(slim — p) @ sl(p|n)) if ¢ =0, p(m — p) % 0;
d) cslm)@sln)if p=gq=00orm—p=n—q=0.
B) For sl(n|n) there are the following possible values of g, for the Z-gradings of
depth 1:
a) c(sl(n — plq) @ sl(p|n — q)) if pq + 0;
b) c(slnlg) @ sl(n — q)) if p=10,9(n— q) £ 0;
c) ¢(sl(n — p) @ sl(p|n)) if g =0, p(n — p) + 0;
d) cslin)@sln)if p=q=00rn—p=n—q=0.
C) The Z-gradings of psl(n|n) are similar to those of sl(n|n) only g, is centerless.

Let us denote the reductive part of go by §o.
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2.2. Cartan prolongation of (§-1,80)-

THEOREM. For the cases of Proposition 2.1 we have (§_ 1, go), = g except for the
cases:
A) g = sl(m|n), m £ n. Then if for the above cases
a) n=q,p=1,then (g_1,80), = vect(m — 1|n),
m=p,q=1,then(g-1,80), = vect(n — 1|m);
b)n—g=1lorm=0,q=1,then(g-,,g0)x = vect(n — 1|m),
cgm—p=10rn=0,p=1,then(g_,,00), = vect(m — 1|n);
d) n=1orm= 1, then (g_,go)y = vect(0|m) or vect(0|n), respectively.
B) g =sl(n|n). Then (g-1,80)s = psl(n|n) < $*(g*,) except for the following
cases:
aAn=q,p=lorn=p,gq=1,bn—qg=1,c)n—p=1,then(g-1,80)4 =
vect(n — 1|n);
d)n =2, then (g-1,80)x = H(0]4) < S*(g* ),
where h(0|n) = {D e vect(0|n): Dw = 0 for the Hamiltonian formw =Y _; J(d&)?}.
C) g = psl(n|n). Then (g-1,80)sx = psl(n|n) except for the following cases:
ayn=q,p=lorn=p,g=1,byn—qg=1,c)n—p=1, then (9-1,80)s =
svect(n — 1|n), where svect(n — 1|n) is the Lie superalgebra of divergence-free
vector fields.
d) n =2, then(g-,80)x = h(0[4).

2.3. MAIN THEOREM (case SL). Let us consider cases of Proposition 2.1. First
consider the cases easiest to formulate.

2.3.1. THEOREM. 1) For g, = vect(m|n), svect(m|n) SFs vanish except for
svect(0|n), when SFs are of order n and constitute the go-module I1"({1)).

2) For g, of series h(0|n) nonzero SFs are of order 1: for g, = h(0[n),n > 3, SFs
are II(R(3n,) ® R(my)).

3) Forg, = sh(0|n), n > 3, nonzero SFs are the same as for h(0|n) and addition-
ally IT"~ *(R(n,)) of order n — 1.

Clearly, case c) of Proposition 2.1. is obtained from b) with obvious replace-
ments. In what follows we will consider the values of parameters for which g, is
not vect, svect, or b.

2.3.2. THEOREM, case 2.1.d). The nonzero SFs are of orders 1 and 2. The
o-modules H.:> and HZ? are completely reducible. The highest weights (with
respecttos,,. .., ¢, andd, ..., the basis of the dual space to the maximal torus of
80) of their irreducible components are given in Table 1.
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TABLE 1
m | on HE Hy
2 2 28y — €3+ 0, — 20, -
&, — 0,

2 3 26, — &y + 0y — 20, -
2 =>4 26y — &3+ 0y — 20, &+ &3+ 0; —Oy—y — Op—y — Op
3 2 26y — g3+ 0, — 20, -
=>4 2 26; — &y + 0y — 20, g1+ ey +E3—En—0; — 0,

28; — &y + 0y — 20,
23 =3 €1+ & —Ey+ 0 — Op—y — Op -

€y — 0, (ifm=n)

2.3.3. THEOREM, CASE 2.1.b). The nonzero SFs are of orders 1 and 2. The
go-module HZ? splits into the direct sum of irreducible components whose
highest weights are given in Table 2. Table 2 also contains the highest weights
»€m+q and 6;...0,_, of the dual spaces to the
maximal tori of gl(m|q) and sl(n — q), respectively) of irreducible components of
H):? for the cases when H):* does split into the direct sum of irreducible

(with respect to the bases ¢, ...

go-modules.
TABLE 2
m 4 | n-q Hy;? Hg?
22 21 23 m+q+1
26y — Em+g + 01 — 20,4 _
€1+ &2 — Emig+ 01 — On—g—1 — On—g
& — Op—g (if m=n)
=3 21 2 m$q-—1
28y — Emsq + 0, — 26, & + &+ &3—
& — 0, (fm=n) '—8m+q—‘51 -9,
2 22 2 q%3 € + &+ &3 —
26 —€g42 + 0y — 20, —Eg42 — 0y — 0
2 1 2 281“83+61—252 €1+E3—61—52
! 21 | 23 q%2
26 —ggay + 0y — 20,4 -
€+ & — &1+ 0y — Oyt — On—yg
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m q n—gq Hé{,z Hﬁzl._z
1 >1 2 q%2 &+ 26 — 50y —
26y — gg41 + 0y — 20, =0, =¥ 1)

2, — 0y — d3(g=1)

0 2 2 _ 3¢y —€3— 06y — 0,
ey +&y+ 0y — 39,

0 2 =3 2 — &+ 0; — -3 — -3 g, +6&;+0, —30,-»

0 >3 2 € +& — &+ 0 — 20, 36y —8,— 9, — 0,

0 =3 >3 26 — &+ 0 — Opog-1 — Ou_yg

&+ 68— 8+ 0, —20,-, -

Exceptional cases are as follows:
fm=q—1,m>1,n—qz3,then

(N H§;2= Vet es—tmeq+01—bnq1-0n- g D X,
where

X is given by the non-split exact sequence of go-modules

() 0- V25|—£m+q+51—26n—-q - X H(I/a"F&l-ZJ,,_q) -0
fm=qg—1,m>1,n—q=2,then

(3) H? =X,

where X is given by (2);

ifm=1,g=2,n—q = 3, then

@ Hy =NV, toyey40,-80-g-1-00-) @ X

where X is given by the non-split exact sequence of go-modules
5 0- Vae, eyt~ 20, DIV ¢, +5y+e,+8, —25,.,,,) - X =11V, 44, -25,,,q) 3
fm=1,g=2n—gq=2,then

(6) Hy? = X,

where X is given by (5);

ifm=gq+ 1I,n—gq = 3, then

(7) H;(')Z = VZs,—smw*’r’]“Zf’-:-q@X’

where X is given by the non-split exact sequence of go-modules
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0- V;,nz—z,,,wwl—a,,_q_,—a,,_,, —’X“’H(V;,H,—a"ﬁq_l—an_q)—’o (q=2),

3] 0— Ve,—52+53+5,—a,,‘245,,_, @ V;,+az—eg+al—5",2—a"-, - X
”"H(Va,w]—an,z—a"_,)"o (g=1).

2.3.4. In this generic case the weights are given with respect to the bases
€10e v sEm-p+q and 8y,...,0,4,-4 Of the dual spaces to the maximal tori of
gl(m — plq) and sl(p|n — q), respectively.

THEOREM, CASE 2.1.a). The nonzero SFs are of orders 1 and 2. The go-module
H};? splits into the direct sum of irreducible components whose highest weights
are given in Table 3. Table 3 also contains the highest of irreducible components
of H);? for the cases when H);? does split into the direct sum of irreducible
go-modules.

TABLE 3
m—p| gq p |n—gq H)? H%?
0 2 2 0 2e; — & + 0y — 20, ~
& — 0,
0 2 3 0 26, — & + 0y — 203 -
0 3 2 0 231—83+5|—252 -
0 2 | =24 O 26y — &3 + 0, — 29, e +6+ 0, —
—0p—2—0p—y — 0p
0 24| 2 0 26 — &g + 0y — 20, e+ &3+ &3 —
—g — 0, — 0,
0 23|23 0 26, — & + 0y — 20,
g1+ 86—+ 0, —0p-y — 0, -
& — 0,(m=n)
0 2 |zt 21 n¥p+qg+l
26y — &3+ 0y = Oprn-3— Opan-2 & + &+
&1 — Opsn—2(m=n) +0; — 30p4n-2
21|21 2 0 m+p+q+1
&1+ 62 = Em—psg + 0y — 20, 38) — Em—pig—
& — 0, (m=n) —0; — 0,
0 |z3|=21] 21 ntp+qtl
1+ 86—+ 0 —20,.,-4 B
281 — & + 61 - 5p+n—q—l - 5p+n—q
& — Opun—glm=n)
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m=p| a | p |n—gq Hy? He?
21 ]z1]23] 0 m+p+q+tl
28y — &m- ,,+,,+¢5,—6,,,—(3
81+Fz Em-p+q + 01 — 20, -
— 0p(m =n)

v
v
v
'z

mn+p+qtl
26 — bm—psqg + (51 — 20p4n-g

£+ & —&p- Pta + 61 p*n q-1 op+n—q
&1 — Opsn—gm=n23)

Exceptional cases are m=p + g+ 1 and n =p + q £ 1. More precisely: if

m=p+q+1,n¥p+q+1,gq, then
0 Hy? =V, - @Y,

where Y is given by the non-split exact sequence of gg-modules

—&m-ptqgtO1=20,40-g

0- V:Ex"'ez_f»s"’ax'6p+n~2_5p+n—| @ VE1’82+93+51“‘7p+n—2_‘7p+n—| ->Y

g Vg,+o|—o,,+,,_2-op+,,_, -0 (fg=1),
2) 0=V, bt peatdi=dpin-a-i~bpsna ¥
-V +a,—a‘,+,,_q_1~a‘,+,,_q—’0 (if g = 2);
ifm=p+q+1,n=p+q—1,then
3) H?=X@Y,

where X is given by the non-split exact sequence of go-modules
0- VZC,
X - V2£|

+0, 233 ® V281’8m—2+q‘5|“‘52+53 -
-5,—~0 (fp=2),
- X

“E&m-2+gq

“Em-2+gq

“
0 Vs,

~Em-pt+qt01=20p4n-g

s -0 (fp=23),

hd VZe, p+n-g

and Y is given by the non-split exact sequence of go-modules
@ Ve —ertes+d—0pin-2-0prn-1
-0 (fg=1),
Y

0- V g tey—e3+d; -9

Y-V

p+n~2" p+n 1

1+01=0p4n-2"0p+n-1

&)

0- I/El+£2—£m—p+q+61_6p+n4q—l-"p+n-q

SV, -0 (fg=2)

1181 =8p+n-g-1"0ptn-gq
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ifm=p+q+1,n=g,then
HL = Vagy oo outtn=8, -5, ® Y (if p Z 3),
or Hy? =Y (ifp=2),

(6)

where Y is given by the non-split exact sequence of go-modules

) 0- Ve,+sz~e,+a,—26,, @ Vs.—ez+¢3+61—26p Y- V;l+o,—2.s,, -0 (fg=1),

0- Vg,+g2—gm_,,+q+a,—zap Y- Ve,+¢s,~zap -0 (fq=22)
ifn=p+q+1,m$p+q=1,p,then
@®) Hét'.z = Vet prgtdi-26p0n., @Y,
where

0- l/-a,+52~em_”q+6,—62—63 ® V;1+82—8m-1+q—‘71+52—53 -

(9) Y—) V;l+ez-sm_“q—63 _"0 (lfp = 1)’
0- V;l+22—8m—p+q+61_6p+n—q—I—dp'#n—q—‘) Y
—)l/f:1+£2'8m_p+q—6‘,+,‘_q_)0 (lfng),

fn=p+q+1,m=p+q—1,then

(10) H?=X®Y,
where

0 Voo, —e346,-26,0 0 @ Vo by 4ey48,-20,,,, > X
(11 - a,+o.—2ap,,._z“’0 (ifg = 2),

0- Vae,—tm-prator=26psn-g > X 2 Vey4s,-26,,,_, -0 (fq23),

and Y is given by the non-split exact sequence of go-modules

0— V£1+£z—€m—|+q+61“52‘53 ® V*?x+82‘€m—1+q“¢’x+52‘63

(12) e Va,+zz—sm_|+q—~53_)0 (lfp = l)a
0- V;il‘*‘ﬁz‘ﬂm—p»,qﬂ’l"’p+n~q—1“5p+n—q_' Y
D Veiter—tmepig=dpan-, 0 (fp22)

ifn=p+q+1,m=p,then
(13) H;éz =V ter—eg+6,-25

where

@Y (fg=23)orHy>’=Y (ifqg=2),

ptn-g
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(14)
-0 (fp=2)

0- V2£| —gq+dy—8

ptn-g-1-%psn-q Y- Vzh“eq—f’

ifm=p+q—1Lnfp+q=1,q, then
(15) H}?=X®V,

1182 Em-psqtdi=Opun_g-1"0pen-g
where X is given by the non-split exact sequence of go-modules
0— Vz;,—e,+al—za,,+,,_z @V, +Eate3+0; =28, 402
(16) XV, 48,-25,,,,~0 (fg=2),
0 Voo, prattr-26psng > X = Vei+s,-26,,,_,—0 (fg23)
ifm=p+q—1,n=gq,then
17 Hél;z =X® V¢,+az—a,,,_p+¢+o,—zap (rz3),
where X is given by the non-split exact sequence of go-modules
0> Voo, —eyvs,-6, -8, D Ve, ve,+2,+8,-8,_,-8,
(18) X Vosss, 15,0 (ifg=2)
0> Voo, - pugttr=t,_1-8, 2> X > Veovs,-5,_,-5,20 (ifg = 3)
fn=p+qg—1,m+p+q+1,p,then
(19) H;{,z =X@® Vo tes-tmpratbi-bprn-g-1-8psn-g’

where X is given by the non-split exact sequence of go-modules

0— ‘/zel—em—2+q+61—'263 @ Vzel‘em—z+q“"1""z+f‘3 -

20) X = Vatymtpg-s =0 (ip=2)
0— Vz;:,—g,,,,,”qu‘—za,,,,,,_q X Vot pra—dpin-a -0 (fp=3)

ifn=p+q—1,m=p,then

@1) HY? = X ® Vagsmey 6,0y 1meaes—tpon-a @23

where X is given by the non-split exact sequence of go-modules

0- Vﬁl"‘fz"qurJ,—st ® Vel+ez~eq—6|—62+63 —»X- Ve,+ez—eq—a, -0 (fp=

22 0- Vzl+z2—e,+a,—2ap+,,-q X ng,nz—e,,—d,“,_., -0 (@fp=23)

fm=n=p+gq+1,then
(23) H;‘;z = X @ I/Zzl——sm_‘”q-l-él—lép“.-q @ Kx“’,ﬂ»n—q’
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0 Voo, —eo+8,-8,-3, D Vae, —eg-8,46,-3, > Y > V- -5, > 0 (if p= 1),

2),
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where X is given by the non-split exact sequence of go-modules

(24) 0-»Y-X->V -0,

1 0ptn-g
and Y is given by the non-split exact sequence of g,-modules

(25) 0V,

81ty Em-prqt 01~ Oprn-g-1"0psn-g
V.

-0 (@(fp=24922),

I Gl 7 O R SO <
1te2=em-ptg=dptn-g
0oV tesmemorigttr—0:-8, D Ve tesmem_yvg-t1+0,-5, 2 Y 2 Veyver—em_ 11 p-8, @
Vei+o,-6,-0, D Ve —5,+8,-5, 20 (fp=1,4922),

0- !/;1+82‘83+51“5p+n—2—5p+n—1 ® st_82+83+51*3p+n~2“7p+n—1 =Y

® V€1+61_5p+n—z"5p+n—1 @ I/;l_52+53_3p+n—1 -0

- Vs,uz—s;—apm_l
(fpz2,q9=1),
0=V vey—eator—0,-0, D Ve —oyves40,-5,-6, @ Veywey—6y-8,+8,-5, D
Veimertes—0,403-8 Y 2 Veivo,me,-0, @ Vey—y ve3-0, @ Vi 45,-0,-5, D
Vii-6,40,-2,20 (fp=14g=1)
ifm=n=p+q—1,then
(26) Hl =X®V, e, s t0,-8 P @Ve-6p0n

p+n-q-1 % +n-q

where X is given by the non-split exact sequence of go-modules

27 0-Y-o XV, -0,

1 =dpin-g
and Y is given by the non-split exact sequence of go-modules

0- VZE,—am_p+q+a,—25,,M_q -»Y- Vzal—zm_,,,,q—aw,,_q @ Vgl+6,azap+,,_q -0
(ifp=3.923),

0 Vg, —epnagt9:-20, D Vao, =030 y=01-8,,0, 2 ¥
- VZe,—am,;Hq—&_—, @ Ve,+6,_263 DV, —5,-5,+5, -0 (fp=24923),

(28) 0- V28,—£3+6, ~20p4n-2 @ V—sl+ez+s3+6,—26‘,+"_2 -Y

T Ve 46,20, 4n-2 ® V2€|—53”5p+n—2 ® V“81+€2+83—5p+n—2 -0 (lfp 23, q= 2)’

0= Voo —oyts,-26, D Vg teytey46,-20, @ Vag —ey—5, -6, +5, D
V_ﬂl +eyte3 =8y 8y +83 Y- V2€1“53“53 @ V‘Ex teytez—d; ®

Vii46,-26, @ Vs —6,-5,40, =0 (fp=2,9=2).
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REMARK. The irreducible go-modules in the above listed non-split exact se-
quences are given regardless of their parity, which can be easily recovered from
the corresponding highest weights.

3. Proofs.

Proof of Main Theorem will be given for all the key subcases of the SL case; the
Q case is similar.

LEMMA ([St]). Consider the first and the second differentials around the (k, 2)nd

term of the Spencer complex:
Ak+ 1,1

k.2
O-1 ® g%, LI Gk-2® E2(9t1) e, G-3® E3(9t1)-
Then ker 0K+ 1! = g

Case 2.3.2. Order 1. We have to find the second cohomology of the complex
521 oL
(1) 3o ® g%, o g, ® SX(g*,) 0.

Notice that since g, is odd, the operator E turns to S. By Lemma ker &' = g,.
So all we have to do is compare the weights of irreducible constituents of the first
and the second terms of the complex (1).

Let V be the standard (identity) gl(m)-module, and W be the standard
gl(n)-module. Let ¢,,.. ., ¢, be a basis of V and é,,. .., é, be the dual basis of V*
normalized so that

éi(ej) = 5,1
Letf,...,f,and fi,...,f, be similar bases of Wand W*. Recall that the weights ¢;
and §; are defined on the diagonal matrices diag (xy,. .., X,,) and diag(yy,. . ., Yu),

respectively, by the formulas
g(diag(xy,. .., Xm) = Xi,
o(diag (yy,- - ->Yn) = Vi

Then V = R(g,), W = R(J,), V* = R(—¢,), W* = R(—9,), and the highest
weight vectors constituting g-, ® S%(g*,) = (V*®@ W)® S*(V ® W*) and
their weights are:
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parameters highest weight vectors weights
mz2 @n® [)®(e1 ®F)er ® ) 2, — 6 + 8y — 20,
nz?2 Yisisn @ ® f)R(e® [)e, ® fr) & + 0, — 29,
Zl§i§n(ém®ﬁ)®(el ®ﬂ)(el ®i:.) 2e; — & — Oy
En® ) ® (e, ® fo-1)e: ® ) — g+ €& —&m +
—(e: ® filex ® fu- 1) + 0y —0y—y — 6
Zj=1.n2i=1,m(5.‘®fj)®(ei®j})(91®]:-) & — Oy
cither m + 2 Zj=1,nzi=l,m(éi ® B (e ® S ®]j) & — 0,
orn#2
mz3 Yi=1mlE® )@ (e ® Fu-1)ey ® i) — &+ 0y — 6y — 0y
— (& ® e ® fiy)
nz3 Yi 1 ® £) ® (1 ® fide: ® f) — €1+ 62 — & — 0y
— (1 ® f;.)(ez ® ];))

The highest weight vectors constituting g, ® g*; = (¢(sl(m) @ slM) ® (V ®
W*) = (V& V*)/<{1x)) @ (W & W¥)/<1,))® Cz) @ (V® W*), where the
centerzisz =nY ;_y me; ® &)+ mY;—y ,(fi ® f), and their weights are:

+ 1Y i1 (i® )R (e ® f)

for sl(im) ® (V® W*)
parameters highest weight vectors weights
mz2 (€1 ® &) ®(er ® fi) 2 —&m — 0y
nz?2 (m—1e;®& — Yie2me;®E)® (1 ® o) + &1~ 0y
+mYiame; ®E)® (€ ® )
mz3 &1 ®E)® (2 ® fr) — &+ & — &m — O,
~(@©:®&)®(:®f)
Jor slim) @ (V ® W*)
parameters highest weight vectors weights
mz2 (i®L)®E®f) &1 + 81 — 2,
nz2 (=D®fi—Yic1a-1 i® @ (1 ® J1) + &1 — 0,
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parameters highest weight vectors weights
nz3 (i ®f)®E® fi-1) - e+ 8y =8,y =0,
~((®h-0®E®f)
for Cz® (V® W*)
parameters highest weight vectors weights
mz2 i=1mle: ® &) + (m/m) Tie s ol /i @ TN ® (1 ® Fo) &~ 0,
nz2

Since for m # n g, is an irreducible go-module with highest weight ¢; — J, and
for m = n g, consists of two irreducible components whose highest weights are
both equal to ¢; — §,, we are done.

Order 2. We have to find the second cohomology of the complex

2

* agol 2/ % aé}z RIPE 3
91 ®g%; —— g ®5%(g%,) ——g-1 @ S(g%)).

In what follows we will need the vectors v; and u;, i =1,...,8, and c;,c;
introduced in the following three tables.
The highest weight vectors constituting go ® S*(g* ;) and their weights are:

for sl(m) ® SA(V @ W*)

parameters highest weight vectors weights
mz2 vy = (61 ® &) ® (e ® f)e1 ® fo) 36; — bm — 20,
vy =mY ey mle; ®E)® (@ ® fe®f) - 2, — 20,
Vi ime ®E) @ (e; ® )er ® fo)
v3=Yi-1mlles ® ) ® (e ® Ji)Ne2® J1) — &1 + & — 20,

—(208)® (€ ® f)er ® Ju)
e = (e, ®E)® (e ® fr-1)e2 ® Jo) —
— (0 ®e)® (e ® fr- e ® Jo)

2, + 63— Em —

—6n~l - 6:1
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parameters

highest weight vectors

weights

mz=3

vs=(e, RE) D (2 ® fi)e, ® f) —
— (@ ®8)® (e ® e ® fr)

Ve = Zi=l,m(el ®&)® ((e: ®];—1)(e1 @ﬁ-) -

—-@® i:.)(ex ®ﬂa—1»

07=2Y - 1@ ®E) R ey ® fi-1)e: ® f) —
~ (@1 ® [ ® fus )+ mYicimle; ®E)®

®(e:® fi-)e® f) — (2 ® f)e: ® fo-1)) +
AmYim i mler ® &)@ (e ® JiMei ® fu-1) —

~ (€ ® fi-)e® )

2e, +¢; —
— &y — 20,
251 - 6n—-l - 671

&y + &3 —

_én—l - 6:-

vs=(e1 ®E) ® (2 ® fi=Nes® i) —
— (e @) @2 ® J)es ® fu-)) +
+(€2®8)®(€3® fi-1)ler ® fi) —
— (2@ ®(e3® f)er ® fi-1) +
+E:3®e)® (e, ® f-)e:® ) —
—(e3® &) ® (e ® [)e2 ® Jo-1)

e +6;+ 63—

—&m — 67-'1 - 6;1

for sl(n) ® S2(V ® W*)

parameters

highest weight vectors

weights

nz2

uy=(fi ® ) ®e: ® f)es @ J)

U = "Zi:l.n(ﬁ ®]::)®(el ®.ﬁ)(el ®ﬂ) -

=Yl fi® R)er ® f)er ® f)

3= Zi:l.n((fi@ﬁ-)@(el ®]::—l)(el ®ﬂ) -

~(fi® fi-) ® (e, ® f)e, ® f)
“4=(f1®ﬂ)®(el ®f- e, ® f) —
~ (@) ®e,® f)e:® fu-y)

2e, + 8y — 35,
¢, — 26,

28y — Opoy — Oy

& + 6+ 0, —
_5:1'1 —20,,
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nz3

highest weight vectors

weights

us = (/i ® L) ®(e; ® fu-1)ley ® fy) —
(1 ®f-1)® (e, ® f)e: ® f)
U = Yi=1al/i ® f1) ® (e, ® f)e: ® ) —
— (€2 ® f)e1 ® 1))

Uy =2Y 1l fi® ) ®(e2® fi-)er ® fi) —
—(€1® fi-1)e2® ) + nYi=1al i® [) ®
®er® fi-Ne2® f) — (€2 ® fu-1)le, ® fi)) +
+ ”Zi=|.n(ﬁ®f:—1)®((€1 ® f)e:® f) -
—(e:® f)e, ® f,)

26 + 0, —

&+ &y —

= Oyt — Oy

= Gpy — 20,
£ + & — 20,

ug = (1 ® f-2) @ (e, ® fo-1)e2 ® fy) —
~(i® fi-2) ®(€2® fu- e ® f) +
+(i®fi-)®(e1 ® fie: ® fi-2) —
—(i® f-1)®(2® f)er ® fo-2) +
+(i®M)® (e ® fi-2)er® fiy) —

- (i ®j::)®(ez ®ﬁu—2)(91 ®f;—-1)

& +6+ 0, —

—6n—2 _(5n—l _(Sn

parameters

for Cz® S*(V ® W*)

m=2

highest weight vectors

weights

nz2

—

¢y = (Zi=l‘m(ei® &)+ (m/n)2(=l.n(ﬁ®j;» ®
® (e ® f)er ® fo)
= (Zi=x.m(fi® &)+ (m/n)2i=l‘n(fi ®MH®
® (s ® f)le:® fu-1) —
—(e1® fu-1)e2® )

26y — 20,

g+ &2 —

"611—1 - 6»:

We leave it to the reader to verify that ker 0% consists of the following

go-modules:

parameters

highest weight vectors

weights

m=2n23

vy + (2/n)u; + ¢4
vy + U3
vy + Ug

Us — NCy

2¢y — 26,
28l —‘Sn~l —(5,,
&y + &3 — 26,

€ + & — Op-y — Oy
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parameters highest weight vectors weights
m=2nz4 ug )+ &3+ 0 —Oyeg — Opyq — Oy
m=3n=2 vy + (M2u, + ¢y 2¢, — 20,
Ve — U3 26, — dp—y — Op
U3 + Uy £y + &5 — 20,
vy + 2¢, & +& — 0,y — 9,
mz4n=2 vg €y + &)+ &3 — &y — Oyey — Oy
mz3n23 vy + (m/muy + cyifm#En 2¢, — 26,
vy + Ug,cyifm=n 2¢, — 20,
bg — U3 28y ~ Oy—q — On
vy + Ug &+ & — 20,
vy — (m/mu, + 2c,ifm$n gy + & — 04—y — Oy
v —Upcifm=n gy +& —0,-y— 9,
m=n=2 vy + Uz, Cy 2¢; — 26,
Vg + U3 281—61—52
Uy + Uy & + €3 — 20,
cy g +8& —8; —06,

Since the go-module g, is irreducible for m 3 n and consists of two irreducible
components for m = n whose highest weights are both equal to ¢, — §,, then the
go-module g, ® g*, consists of the irreducible components with the following
highest weights: 2e; — 26,21 — 0,y — 0, &1 + &2 — 20,81 + €3 — 0=y — Opy
each with multiplicity 1 if m & n and each with multiplicity 2 if m = n.

For m + nwe have g, = 0. For m = n = 2 the highest weights of the irreduc-
ible go-modules that constitute g, are &, + &, — 6, — J,, 2¢; — §; — 0, and
& + &, — 20,; Now apply the Lemma and this case of the Theorem is also done.

Order 3. We have to find the second cohomology of the complex
(3;;1 63.‘)2
©) 8: ®g*, ——g; ®S*(g*,) —— 90 ® $°(g*)).

Notice that, as go-module, g, is isomorphic to g* , form + nand to g* ; ® g*,
otherwise. The highest weight vectors constituting g*, ® S*(g*,) and their
weights are given in the following table (s and ¢ denote the cyclic permutations of
(1, 2, 3) and of (n — 2, n — 1, n), respectively):
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parameters highest weight vectors weights
m=2 v, =(;® f)®(e; ® f)e, ® fi) 3y — 34,
nz2 1= ®)®® )N ® ) - 2e; + ¢, — 35,
- (@:Qf)VE® e ®f)
U5=(el®ﬂ—l)®(el ® fi)e: ® f) 3¢y = Op-y — 26,
—@®L)®E® fi-1)e: ®f)
v, = ®[)®(e:® fo-1)er ® f) — 2 +e;—
— (€1 ® fa-1)e2® 1) ~8y-y — 26,
V5= ®[)®E:®fi-)e®f) - 2e, + 63—
- @:®f)QE®f-)e®F)+ —0p-1 — 26,
+@®@/-1)®E: @) ®f) -
—@®fi-)®E: ® ) ® fr)
mz3 Vg = Yi=0.2(€50) ® J) ® (s112) @ fo-1)esiiny ® fo) — &yt ex+ 63—
— (exy ® f)ewn ® Jo-1)) —0p-y — 26,
nz3 vy =Yi-0.(e ®];‘(n—-2))® (&2 ® fin-1))es ® fugm) — 2e; + & — 0p-2
—-(@® ]l"(n— nle: ® ﬂ‘(u)» —0p-1 = 0y
mz3 Vg = Yi=o0,2(es1) ® Foe2) ® (es2) ® fr- 1)esiny ® AR &+ &3+ ¢€3—
nz3 — (w2 ® J)(esis) ® fo 1)) + (s ® fo-1) ® ~On-2 =061 — 0p
® () ® Jo-2)(esii3) @ Jo) — (exiiz) ® Jullewiny ® Jo-2) +
+ (ew) @ f) ® ((esay ® fu-2Xews ® fa-1) —
— (e ® Ja- sz ® j:--z))

Ifm + n,then(g_4,80), = sl(m|n) = g_; @ go @ g1, Where the highest weight
of the irreducible go-module g, is ¢, — J, and the highest vector is

YicimEe1 ®E)®E® fo) + Ni=1afi® ) ®(es ® f).

Ifm = n, then (g- 1, 80)4 = Psl(n|n) = g_1 ® §o ® §: (ifn > 2) and (31, 80)s =
H(014) = g_, @ §o D §; @ C (if n = 2), where the highest weight of the irreducible
go-module §, is ¢; — J, and the highest vector is

”( Y (@®)®E@® )+ % (fi®f:n)®(ex®ﬂ))“

i=1,n i=1,n

(Z e®é+ Y, ﬁ®ﬂ>®(€1®ﬁ.),

i=1,n i=1,n

whereas (3_1,80)y = (8- 1,80) < S*(8* ) =9-1 DD 6: ® ..., where g, =
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§; @ §, and §; is an irreducible go-module with the same highest weight &, — §,
and the highest weight vector is

(Y e®@é&+ Y fi®fH®E®h.
i=1i,n i=1,n
Now, let v} and u;, i = 1,..., 8, introduced above, be the highest weight vectors
of the modules §; ® S*(g*,) and §, ® S*(g* ,), respectively. We leave it as an
exercise to the reader to verify that ker 32;* consists of the following go-modules:

parameters highest weight vectors weights
m22n22m%n - —
m=n=2 Y 28y + &3 — 36,
uly 3y, — 0y — 20,
s, s — U} 28 + & — 0y — 20,
m=nzx3 ul 2y + &3 — 30,
uy 3¢y — 84—y — 20,
us — 2u 26, + & — 8,y — 20,
ug £ + &3+ 83— 0p—y — 20,
u'7 281"‘82—5,,—1—‘6,,_1'-6"

Therefore, it is clear that SFs of order 3 vanish if m % n.
If m = n, then the highest weights of the irreducible components of the g,-mod-
ule g, are as follows:

26, — 0y — 02,81 + &3 — 204,81 + &, — 0y — O, forn =2
& + & — 20,26y —06,-, — d,forn=3.

The highest weights of the irreducible components of the go-module g, ® g* , are
as follows:

3, — 0y — 20,,2¢; + €; — 38,5, 261 + &5, — 8; — 20, (of multiplicity 3) for n = 2;
2e; + &, — 36,, 3¢, — 8,1 — 20,,2¢; + &, — 0,1 — 20, (of multiplicity 2),

6+ 83+ 63— 30,36 —8p—3 — Op—y — Op, &1 + €3 + €3 — Op—y — 20,

26, + & — 043 — 0y_q — O, for n > 2.

The highest weights of the irreducible components of the go-module g5 are as
follows:



PENROSE’S TENSORS ON SUPERGRASSMANNIANS 189

28, + & — 0y —20,forn=2;
&1 +82 +63 - 3571’ 381 _6n—2 ""671—1 “6;.,231 +82 +5,,-1 —2(5,,forn> 2.

By the Lemma, imd;;' and g, ® ¢*,/g; are isomorphic as g,-modules and,
therefore, SFs of order 3 vanish for m = n > 1 as well.
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