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A NUMERICAL INVARIANT FOR FINITELY
GENERATED GROUPS VIA ACTIONS ON GRAPHS

WILLIAM L. PASCHKE!

Abstract.

Let G be a group acting with finite stabilizers on a directed graph X which is finite modulo G and
connected. Consider the G-invariant space h(X) of square-summable complex functions on the edges
of X which have zero directed flow out of each vertex and zero directed circulation around each closed
path in X. The main result of this paper is that the von Neumann dimension of k(X), computed as the
trace of an appropriate projection in a matrix algebra over the von Neumann algebra of G, depends
only on G. The resulting invariant p, defined for all finitely generated groups, enjoys several
computational properties, e.g. p(H) = (G:H) p(G) when H is a finite-index subgroup of G, and
p(G * H) = p(G) + p(H) + 1 for infinite, finitely generated groups G and H.

0. Introduction.

Take a locally finite graph, and give each edge an orientation by specifying an
initial and a terminal vertex. A complex-valued function on the set of edges will
then have a directed flow out of each vertex (sum of values on edges pointing out
minus sum on edges pointing in) and a directed circulation along any
finite-length path with given direction of traverse (sum of values on edges on the
path, with each edge weighted by the number of times the path traverses it
positively.) We will call a function on the edges harmonic if it has zero directed
flow out of each vertex and zero directed circulation around each closed path.
A finite graph is easily seen to admit no non-zero harmonic functions, but
examples are readily manufactured in various infinite graphs if no growth
constraint is placed on the function. The existence of non-trivial harmonic
functions that are square-summable is a more delicate matter. For instance, it
follows from Proposition 3.7 below (or see the last example in [8]) that the
hexagonal honeycomb graph does not support such functions, but that the
analogous k-gonal honeycomb does when k = 7. This crucial distinction has to
do with groups that act properly with finite quotient on these graphs.

Our approach is to turn things around and start with the group. A finitely
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generated group G acts properly with finite quotient on numerous connected
graphs. For each of these, we may consider the orthogonal projection P, of the
space of I?-functions on the edges onto the subspace of harmonic /2-functions.
The number Z |G,|™ '(P49,, 8,), where y runs over a set of orbit representatives for
the action of G on the edges, and J, and G, denote respectively the indicator
function and stabilizer of the edge y, is independent of the choice of orbit
representatives. Our main result below, Theorem 2.1, says that this number in
fact depends only on G. The resulting invariant, which we dub p(G), rather
resembles the /2-Betti number b(,)(G) defined (along with bi,(G) for all non-
negative integers j) by Cheeger and Gromov in [3] for arbitrary countable
groups; see the end of section 2 below. We observe there that p(G) = b;,(G) for
many finitely generated groups G, but leave open the question of the coincidence
of these two invariants in general.

I am grateful to my colleagues Fred McClendon and Saul Stahl for their help
and advice while this paper was being written.

1. Preliminaries.

A directed graph X consists of a set V' of vertices, a set E of edges, and maps
i,t: E — V. The edge y joins the initial vertex i(y) to the terminal vertex #(y). We
will consider only locally finite graphs, that is graphs for which
deg(v) = |i~*(v) U ¢t~ 1(v)| is finite for every vertex v. A path p in X of length n is
a sequence vy, yy, . - - Un, Yus Un+ 1, Where for each j = 1,...,n, the edge y; joins the
vertex v; to the vertex v;, ;. We think of p as having a direction of traverse, from v,
tov, 4 1, s0 each y; will point either forward or backward along p. To keep track of
this, we set

) ={j y = ;i) = v;}l — {k: y = yi, 1) = e},

the net number of times the edge y is traversed positively by p. (Notice that
<{y,p) = 01if y does not lie on p.) We say that p is closed if v, +; = v,. The graph
X is said to be connected if there is a path from u to v for any two distinct vertices
uand v.

1.1. DerINITION. We denote by h(X) the closed subspace of I *(E) consisting of all
harmonic functions in [?(E), i.e. those I*-functions ¢ which satisfy

(i) Y &)= Y &x) YveV, and

iy)=v Hx)=v

(ii) Y (y,ppE(y) = 0 for all closed paths p.
y

Notice that for any function £ on E satisfying (ii), there is a “potential” function
@ on V such that &(y) = @(t(y)) — @(i(y)) Vy € E. If £ also satisfies (i), then for each
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vertex v, the values of ¢ on the immediate neighbors of v must average to ¢(v),
whence it follows that the support of £ must be either infinite or empty. (In
particular, h(X) = (0) if X is finite.) Changing the way in which X is directed
changes h(X) by a unitary operator on /*(E), namely h(X) = diag{r(y): ye E}
h(X')if X' is obtained from X by reversing some of the edges, where r(y)is 1 or —1
depending on whether or not y has the same orientation in X' that it has in X.

We are mainly interested in graphs acted on by groups. For a group G, we have
the left and right regular representations g — L, and g+— R, of G on [*(G), defined
by (L,¥)(h) = y(g~'h) and (R ¥)(h) = Y(hg). We write VN(Rg) for the von
Neumann algebra generated by Rg. It is well known that VN(Rg) is precisely the
commutant (Lg) of L in the algebra of bounded operators on [%(G); further, the
functional : VN(R¢) — C defined by ©(T) = (T'é,, 6,), where 4, is the point mass
at 1, is a faithful trace, i.e. ©(T*T) > O for all non-zero T in VN(Rg) and
o(ST) = ©(TS) for all S, T in VN(Rg). On the algebra VN(Rg)® M, of n x n
matrices, the functional T ® tr which sums the values of 7 on the diagonal is
likewise a faithful trace. (See chapter 6 of [7] for a thorough treatment of group
von Neumann algebras.)

Let C be a set equipped with a (left) G-action (g, )+ gc. Suppose that the
action is proper (that is, for each ¢ in C, the stabilizer subgroup
G, = {geG: gc = c}isfinite)and that Cis G-finite (that is, the set G\ C of G-orbits
is finite). For ¢ in C, let W, I*(Gc) - 1% G) be the isometry defined by
(W.&)(g) = |G|~ /2&(gc). Pick a complete set C,, of orbit representatives. Ident-
ifying I1%(C) with @ {I*(Gc): ce C,}, we obtain an isometry W= @ {W,: ce Co}:
1%(C) — I*(G)", where n = |Co| = |G\C|. Let g+ A, be the unitary representation
of G on I*(C) defined by (4,¥)(c) = Y(g ™~ 'c). Notice that WA, = (L, ® 1)W for
gin G. Thus, if K is any closed G-invariant subspce of [%(C), the projection Py of
I1%(G)" on WK belongs to (Lg ® 1) = VN(Rg) ® M,. We denote the non-nega-
tive real number t ® tr(Pyx) by dim(K) (or dimg (K) if more than one group is
present); this number is called the von Neumann dimension in [ 3] and elsewhere.
It is independent of the choice of C, because changing C, just conjugates Py x by
a direct sum of n R,’s, which doesn’t affect T ® tr.

1.2. LEMMA. With the notation of the previous paragraph, let Py be the projec-
tion of 1*(C) on K. Then dim(K) = ¥ {|G.|” (Pxd.,d.): ce Co}. In particular,
dim(I%(C)) = Y. {IG.|*: ce Cy}.

PrOOF. For each cin C,, let 4, be the vector in [?(G)" whose entry in the slot
corresponding to ¢ is J;, with all other entries 0. We then have
(Pwkd., 4c) = (WPkW*A,, A,) = (PxW*4,, W*4,) = |G| *(Pkd.,0.), and the
lemma follows by summing over C,.



A NUMERICAL INVARIANT FOR FINITELY GENERATED GROUPS VIA ... 151

1.3. LEMMA. Let G act properly on C and C~, with each finite modulo G, and let
K and K~ be closed G-invariant subspaces of 1*(C)and 1*(C ~) respectively. Suppose
there is a bounded operator T: 1*(C) — 1%(C ™) intertwining the associated represen-
tations A and A~ of G, with TK <« K~ and ker(T)nK =(0). Then
dim(K) < dim(K ™), and if TK is dense in K~ then dim(K) = dim (K ~).

ProoF. Let n =|G\C| and m = |G\C~|. Let W and W~ be the isometric
embeddings of 1*(C) and 1*(C") into [*(G)" and I%(G)™ obtained as above by
choosing orbit representatives. The operator T, = W~ TW*Pyy: I3(G)" -
1(Gy" interwines A ® 1, and A~ ® 1,,, and so belongs to VN(Rg) ® M,, +,;
further, the closure of its range is contained in W~ K ~, and its kernel is precisely
(WK):. It follows that Pyx @0, is Murray-von Neumann equivalent in
VN(Rg) ® M,,,, to a subprojection of 0,@® Py.x~, s0 T® tr(Pyy) <
7 ® tr(Pw~g~). Incase TK isdensein K ~, the range of Ty isdensein W~ K ~,and
equality of the two von Neumann dimensions follows.

The following notation and terminology, for a connected directed graph
X with vertices V and edges E, will be used in the sequel. Let S: 1%(V) — I*(E) be
the bounded operator defined by (Se)(y) = @(i(y)) — (t(y)). For ¢ in I1*(E) and
v in V, we call the number (S*£)(v) the directed flow of & out of v. Let P, be the
projection of 1*(E) on the closure of the range of S. For a path pin X, let p” be the
(finitely supported) function on E defined by p” (y) = <y, p. If pis closed, we call
the number (£, p ") the directed circulation of ¢ around p. Let P, be the projection
of I%(E) onto the closed linear span of {p ”: paclosed path in X}. The projection
P, of I*(E) onto h(X) is then 1 — P, — P,. (Notice that the ranges of P, and P, are
orthogonal.) For ¢ in ker(P,) (which includes h(X)), and vertices v, w, we write
I(&v,w) = (£,p"), where p is a path in X from v to w. The number I(&;v, w) is
independent of the choice of p because & is orthogonal to g " for all closed paths g.
Notice that I(Se; v, w) = @(v) — @(w) for ¢ in I%(V).

When another graph X~ is in play, we use S~, P,”, etc. to denote the
corresponding apparatus there.

2. Dim(h(X)) when G acts on X.

To say that the group G acts on the directed graph X means that G acts on
V and on E, and that these actions satisfy gi(y) = i(gy) and gt(y) = t(gy) for allgin
G and y in E. We say that the action is proper if G acts properly on V and on E,
and that X is G-finite if E and V are. In the presence of these assumptions, X is
necessarily locally finite, so we may consider the closed G-invariant subspace
h(X) and its von Neumann dimension.

2.1. THEOREM. Let the group G act properly on the connected directed graphs
X, and X,, both finite modulo G. Then dim(h(X,)) = dim(h(X3)).
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The main thing is to prove that dim(h(X)) is unchanged by connecting on
a single new edge orbit, either with or without the addition of a new vertex orbit;
these special cases are taken care of in the next two lemmas.

2.2. LEMMA. Let G act properly on the connected directed graph X, with X finite
modulo G. Pick a vertex u in V and a finite subgroup B of G. Let
C=G,nB, V™ =VuU(G/B),and E~ = E U (G/C). Extend the orienting maps to
i~,t: E~ - V"~ by setting i~ (g(C)) = gu and t~(gC) = gB to obtain a connected
proper G-finite directed G-graph X~ . In this situation, dim (h(X)) = dim(h(X ™)).

Proor. For each bC in B/C, choose a path p,c in X from u to bu. Define
L: 1(E) - I*(E™) by setting (L&)(y) = 0 for y in E and

(LEGC) = |B]™* Y {(¢, Agelpoc) " ): ce C,bCe B/C}.

[The right-hand side defines a bounded operator from [ %(E) to [ *(G) that is a finite
linear combination of operators R, W, F, (cin C, y an edge on one or another of the
Poc’s), where F, is the projection of 1%(E) on 1*(Gy) and W, is as in section 1 above.
The averaging makes the resulting /%(G) functions Rc-invariant, so in i%(G/C).]
Notice that L intertwines 4 and A~. Denoting by J: 1%(E) — 1%(E~) the natural
inclusion, we set K =J + L. Let T = P;”K: I*(E) - I*(E™). Clearly T inter-
twines 4 and A~. We claim that the restriction of T to h(X)is bounded below, so
in particular ker(T) n i(X) = (0). [To see this, take £ in h(X), so P,¢ =0 = P.&.
We have (K¢&)(y) = &(y) for y in E and

(K&)(GC) = |B| 7 |CI X {I(£; gu, gbu): bC € B/C}.

Forbyin B,gin G,let p be a path from gu to gbouin X, and let g be the closed path
in X~ consisting of p followed by a (positive) traverse of gb,C to gB and then
a (negative) traverse of gC to gu. We have

(K&,q") = I(& gu, gbou) + (K&)(gboC) — (KE)(9O)
= |B|~CI ) {I(&; gu, gbou) + 1(&; gbou, gbobu) — I(; gu, gbu): bCe B/C}.
= |B|7|CI . {I(&; gu, gbobu) — I(&; gu, gbu): bCe B/C} =0,

because summing over bC yields the same result as summing over by 'bC. This is
enough to show that (K& r") = 0 for any closed path r in X ~, since K¢ agrees
with £ on E, and P,£ = 0. Thus T¢ = (1 — P,)K¢&. Since P¢ = 0, and since J¢
vanishes on all the edges that have been added to make X~ from X, we have
P7JE =0. Thus T¢ = JE + (1 — P;)LE, with the two summands orthogonal:
V&M = PLY) = (1 — PJVE LY = (JE, LE) = 0. Hence [ TE| 2 (€]l This
proves the claim.] We conclude from lemma 1.3 that dim (h(X)) < dim(h(X 7))

For the reverse inequality, we apply lemma 1.3 to the inertwining operator
P,J*: I*(E~) > I*(E), which restricts to E and then projects on h(X). Take ¥ in
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h(X ™) with P,J*§ = 0; we must show that = 0. We have P,J*) = 0 because
Poy =0, so J*y = PJ*y. There is thus a sequence {@,} in I}V) with
Sen— J*Y. Extend each ¢, to @, in I*(V") by setting ¢, (9B) = |B|~!|C|Y.
{@n(gbu): bC € B/C}. Consider S~ ¢, . It agrees with Sg, on E, and on the rest of
E~ we have

(87 02)9C) = ¢, (9w) — ¢, (9B)
= |B|"*|CI Y {@nlgw) — @algbu): bC € B/C}
= |B|™*|CI Y. {I(S@n; gu, gbu): bC € B/C}
= (KS¢,)(gC).

Thus S~ ¢, = KS¢,, which means that (1 — P, )KJ*y = 0. But KJ*y = y:
these two functions agree on E, and on the rest of E~ we have

(KJ*Y)(gC) = |BI™*|CIY, {I(J*; gu, gbu): bc e B/C}
= |B|7!|C| ). {¥(gC) — Y(gbC): bCe B/C}
= (gC) — |B|"*|C]| (directed flow of  into gB) = Y(gC),

where the second equality follows from the vanishing of the directed circulation
of Y around a closed path that goes in X from gu to gbu, then traverses ghC
positively from gbu to gB, then traverses gC negatively to gu. We thus have
Yy=(0— P~ — P )W =0, as required.

2.3. LeMMA. Let G act properly onthe connected directed graph X, with X finite
modulo G. Pick verticesu,winV.LetC = G,nG,, V"~ = V,and E~ = E u(G/C).
Extend the orienting maps to i~, t™: E~ -V~ by setting i~ (gC) = gu and
t~(gC) = gw to obtain a connected proper G-finite directed G-graph X~ . In this
situation, dim (h(X)) = dim(h(X ™).

PrOOF. Choose a path p in X from u to w, and define L: I*(E) - [*(E™) by
setting (L&)(y) = O for yin E and (LE)(@C) = |C| "' Y {(£, 440" ): ce C}. As with
its counterpart in the proof of the preceding lemma, one checks that L is
abounded operator intertwining 4 and A4~ Letting J: 1*(E) — [*(E~) denote the
natural inclusion, we write K = J + L: [%(E) —» [*(E™). Take ¢ in h(X). Notice
that (K&)(gC) = I(£; gu, gw), so & has zero circulation around any closed path in
X~ that traverses gC positively and then winds through X from gw to gu. We
claim that P K¢ = 0. [This is shown as follows. For hin G,, g in G, let r be
aclosed path that starts at gu, traverses gC positively to gw, joins gw in X to ghw,
and then returns to u by traversing ghC negatively. We have (ch,rA) =
(K&)(gC) + I(& gw, ghw) — (KE)(ghC) = I(&; gu, gw) + 1(&; gw, ghw) — I(G; ghw,
gu) = 0. The same is true for paths with two successive edges in G/C followed by
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a path in X from gu to gku, where k € G,. The cases considered so far are enough
to show (K¢&,q”) = 0 for any closed path g in X ~. This proves the claim.] We
thus have P, K¢ = (1 — P;")K¢, and, just as in the proof of the preceding lemma,
1Py KE| 2 K||€|l. It now follows from lemma 1.3 that dim (h(X)) < dim(h(X ™).

To go the other way, we use P,J*: I3(E~) - I*(E). We will show that the
restriction of this operator to h(X ~)is injective. Take ¥ in h(X ~) with P,J*y = 0.
We have P.J*y = O because P,y = 0,so J*y = P, J*J. There is thus a sequence
{¢n} in 1*(V) with S, — J*. Since V™~ = V, we have S™: 1*(V) - I*(E™), with
($™ @n)() = (S@a)») = (KS,)(y) for y in E, and ($7¢,)(¢C) = oalgu) —
©algw) = I(S@,; gu,gw) = (KS@,)(gC). Thus S~ ¢, = KS¢,—~KJ*y. But
KJ*y =y - these two functions agree on E, and furthermore (KJ*y)(gC) =
I(J*y; gu, gw) = Y(gC). We have Py = y because S~ ¢, — ¥, but also P =0,
because Y € h(X ™). Thus ker(P,J*) N i(X~) = (0), and lemma 1.3 gives us the
desired inequality.

PROOF OF THEOREM 2.1. Let X have vertices ¥}, edges E;, and orienting maps i;,
tj. Pick vertices v, in ¥; and v, in V,, and let C be the intersection of their
respective stabilizers in G. Let V be the disjoint union of ¥; and ¥, and let E be
the disjoint union of E,, E,, and G/C. Define i, t: E — V by setting i(y) = i;(y) and
t(y) = tj(y) for yin E;, and i(gC) = gv,, {gC) = gv,. The resulting directed graph
X is connected, and G acts on it properly with finite quotient. We can obtain
X from X, by performing several times the constructions covered by lemmas 2.2
and 2.3, so dim(h(X,)) = dim(h(X)), and likewise dim (h(X)) = dim (h(X>)).

2.4. REMARK. The groups that act properly with finite quotient on connected
directed graphs are precisely the finitely generated groups. [If G is generated by
ay,...,a, let X be the corresponding Cayley graphwith V = G,E = G x {1,...,n},
i(g,j) = g9, t(g,j) = ga;. Then X is connected, and all stabilizers are trivial. Given,
conversely, a connected X on which G acts properly with finite quotient, let ¥, be
a complete set of vertex-orbit representatives, and let V; be the finite subset of
V consisting of ¥, and all the immediate neighbors of vertices in V. Let
F = {heG: hV; 0V, + ¢}. We claim that every g in G is a product of elements in
F. To see this, pick win V. If gw is either w or an immediate neighbor of w, then
g€ F. Otherwise, consider a path in X from w to gw passing succesively through
vertices w = wo, Wy,..., W,_, W, = gw. Write each w; as g;u;, where u;e V;, (and
go=1,9,=g).Seth;=g; 'g;s,forj=0,...,r — 1. Wehave hju;,; = g; ‘w41,
which is an immediate neighbor of g; 'w; = uj, so each h;e F, and of course
g=hohy...h_.]

2.5. DEFINITION. Let G be a finitely generated group. We set
p(G) = dim(h(X)), where X is any connected directed graph on which G acts
properly with finite quotient.
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We end this section with a brief description of the /2-Betti numbers b,,(G)
defined in [3] for arbitrary countable groups G. Fix a countable set V and
consider the family C of simplicial complexes with vertices contained in ¥ on
which G acts freely and simplicially with compdct quotient. For X in C, write

(X)) =1 %(S;), where S; is the set of j-simplices of X, j = 0,1,2,.... Each §; is
finite modulo G, and we have coboundary maps d;: Cf,,(X) - C/;;*(X) which are
bounded operators intertwining the respective actions of G. Let Hf,(X:G) =
kerd; nkerd}_,, a subspace of Ci(X). If X, is a G-subcomplex of X, in C (in
which case we write X, > X,), restriction gives a map ry, x,: H,)(X,: G) »
H},)(X 1: G). Take the inverse limit of this system of maps, i.e. form the vector
space E’ of C-tuples (£x) where each &y belongs to the corresponding H{z,(X :G)
andry, x,(¢x,) = {x, whenever X, 2 X,. Foreach X in C, let E, be the closure of
the image of the projection from E/ to H},(X:G). One then defines b{,(G) in
[0, o] as sup {dimg(E%): X € C}.

In [3], this definition is embedded in a larger context that includes an arbitrary
topological space Y on which G acts. There are, correspondingly, /2-Betti
numbers b,(Y: G), with bj,,(G) = b}, ({pt}: G). If K ¢ is a contractible cell complex
on which G acts freely, a significant feature of this theory is that
b{)(G) = b},(K¢: G). Suppose that such a K can be found in the family C con-
sidered in the previous paragraph. (There seems to be no concise characterization
of the groups G for which this is possible; see [6]. Suffice it here to remark that
there are many such groups.) Let X be the 1-skeleton of K, so X is a connected
graph on which G acts freely with finite quotient. On the one hand,
h(X) = H},(Kg: G) because every closed path in X can be gotten by adding up
boundaries of 2-simplices in Kg. On the other hand, the inverse limit in the
previous paragraph turns out in this case to be simply H,(K¢: G). We thus have
p(G) = bl,,(G) for finitely generated groups G which act freely, simplicially, and
cocompactly on a contractible simplicial complex. By our Proposition 3.6 below
and the corresponding result in [3] for their Betti numbers, the same is true if
G has a finite-index subgroup which so acts.

Properties of p.

All groups considered in this section are assumed to be finitely generated.

3.1. LEMMA. Let G act properly with finite quotient on the connected directed
graph X. Then

p(g) = Z IGyl_-l - Z |Gv|_l - ZIGyI—l(Pcéy’ 5}')9

Where the sums extend over complete sets of edge-orbit representatives y and
vertex-orbit representatives v, and P, is the projection described at the end of section
1 above.
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ProOF. Therange of I — P, is the orthogonal complement in [?(E) of the range
of the operator S: 1%(V) — [%(E), which is injective because X is connected. Thus
by lemma 1.2,

dim(range(I — P,)) = dim(I*(E)) — dim(I*(V)) = Y IG,| ' = Y |G|~ "
Now use P, =1 — P, — P, and lemma 1.2 again.

3.2. PROPOSITION. (a) Suppose that G acts properly on a directed tree with
finite quotient. Then p(G) =Y |G,|™* — Y |G,| ™', where the sums extend over
complete sets of edge-orbit representatives y and vertex-orbit representatives v.

(b) In particular, if Hy,...,H, are finite groups with H; and H;., sharing
a subgroup A; forj=1,...,n — 1, then

P(Hyxg Hywgx..ovq  H) =Y A7 =Y |H]| ™"
(c) For the free group F, on n generators, p(F,) =n — 1.

ProoF. For a directed tree X, we have P, = 0, so part (a) of the proposition
follows immediately from lemma 3.1. The amalgamated product
G=H x4 Hy*4,*...%,4 _ H,actsonthedirected graph X whose set of edges is
the disjoint union of G/4; (j =1,...,n — 1) and whose set of vertices is the
disjoint union of G/Hy (k = 1,...,n), with i(gA4;) = gH; and t(gA;) = H; . This
X isinfact a tree [9], so part (b) follows from part (a). If a, ..., a, freely generate
F,, the corresponding Cayley graph is a tree on which F, acts freely with one
vertex orbit and n edge orbits; part (a) then implies that p(F,) =n — 1.

For more about how p treats amalgamated products over finite groups, we will
need the following graph-theoretic lemma.

3.3. LeMMA. Let X (with vertices V and edges E) be a directed graph, and X,
(with vertices V; and edges E) be a directed subgraph, that is, E, and V; are subsets
of E and V respectively, with i(E,), t(E,) = V,. Suppose that X, has the following

property:

(*) no path in X that begins at v in V, and then leaves X, on an edge in E\E,
Jjoining v to a vertex in V\V; can re-enter X, at any vertex in V; except v.

Let P (resp. P,) be the projection of 1*(E) on the closed linear span of {p": p aclosed
path in X (resp. X,)}, and let Q be the projection of 1*(E) on I1*(E,). Then
QP = PQ = Py, and in particular, P;6, = P9, forall y in E,.

Proor. Consider a closed path p in X that traverses at least one edge in E;,
and at least one edge in E\E,. By (*) there is a sequence of paths p,,..., p, (some
possibly empty) in X; and a sequence ry,...,7, - of closed paths in X that use
only edges in E\E; such that p traverses p,, then r;, then p,, and so on, finally
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traversing r, 1, and then p, back to the vertex from which p, started. Putting the
p, ’s together without the interpolating r’ S, ylelds a closed path q in X, such that
=Y r". We then have P,p" = P,;qg" =q" = Pq" = PQp”. For
closed paths pin X that traverse only edges in E, or only edges in E\E,, it is clear
that P;p" = PQp”. We have so far shown that P, P = PQP, but P, projects onto
a subspace of the range of P, so PP, =P,P=P; = PQP. Since also
QP, = P, = P,Q, the sclfadjoint element QPQ — P; has square zero, so
= QPQ. At this point, we have (QP — P,)(QP — Py)* = QPQ — P, —

P, + P, =0, and the lemma is proved.

3.4. PROPOSITION. Let I' = G xp H, where F is a finite subgroup of G and H.

a) If G is infinite and H is finite, then p(I') = p(G) + |F|"! — |[H|™".

(b) If G and H are both infinite, p(I') = p(G) + p(H) + |F| ™.

PrOOF. (a) Let {a,,...,a,} be a set of generators for G. Consider the directed
graph X with vertex set V = I'/H, edge set E = (I'/F) x {1,...,n}, and orienting
maps defined by i(sF,j) = sH, t(sF,j) = sa;H (seI). This graph is connected
because I is generated by H and the a;’s. The subgraph X, with V; = {gH: g€ G}
and E; = (G/F) x {1,...,n} satisfies condition (*) of lemma 3.3. Lemmas 3.1 and
3.3 give

p() = n|F|™* — H|"" = Y |FI” (P, j O )
=n|F|"' = |H|™' = Y |FI"Y(P1dr. jp» 0. ),

where P, is the counterpart of P, for X,. On the other hand, X, is a connected
graph on which G acts properly with finite quotient, so by lemma 3.1 again,

p(G) = n|F|™* — [F|™* = Y |F|”'(P1d(r, s O, p)-

This proves part (a).

(b) Let {ay,...,a,} and {b,,...,b,} generate G and H, respectively, and form
the graph X with vertex set V = I'/F, edge set E = (I'/F) x {1,...,n,1*,...,m*},
and orienting maps defined by i(sF,j) = sF = i(sF,k*), t(sF,j) = sa;F,
HsF,k*) = sb,F (seI’). The subgraphs X, and X, with V; = G/F, V, = H/F,

= (G/F) x {1,...,n}, and E, = (H/F) x {1*,...,m*} satisfy condition (*) of
lemma 3.3. By lemmas 3.1 and 3.2, we have
p(G) = (n — D|F|™* = Y |FI” (Pedi, j» Or. ), and
p(H) = (m — 1)|F|_1 - ZIFI_1(P06(F,k')>5(F.k'))’
while for I', lemma 3.1 says
p()=(m+n—1)|F|"* =Y |F|” (PO, jps O, ) — Y FI ™ (Pde, k) O, k).

This proves part (b).
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3.5. REMARK. If we define p* for (finitely generated groups by
p*(G) = p(G) —|G|~*, then propositions 3.2(b) and 3.4 say that
p*(G *¢ H) = p*(G) + p*(H) — p*(F)for all G and H sharing a finite subgroup F.

3.6. PrOPOSITION. Let H be a subgroup of G of finite index. Then
p(H) = p(G)(G: H).

ProOOF. Let X be a Cayley graph for G, so all stabilizers are trivial. Let G, be
acomplete set of right H-coset representatives in G, and let E, be a complete set of
orbit representatives for the action of G on E. Lemma 1.2 then gives

p(H) = Z {(Phégyy 5gy): yE EO: gE GO} = lGOI z {(Ph‘sy’ 5)’): yE EO} = P(G)(G : H),
where the second equality comes from the G-invariance of h(X).

3.7. PROPOSITION. Suppose that G acts with finite stabilizers and compact
quotient on a two-dimensional cell complex K homeomorphic to R? by orienta-
tion-preserving cellular maps. Then

plg) = —YIGI™ + YIGI™! = XIG| ™,

where t, ¢, and s range over complete sets of orbit representatives for the action of
G on the 0-, 1-, and 2-cells, respectively.

Proor. Forj = 0,1,2,let CY be the set of j-cells of K. Let V = C@ u CV and
E = C x {1,2}. Define orienting maps by i(c, 1) = i(c,2) = ¢ for ¢ in C'*), and
t(c,1) = oneend of ¢, t(c, 2) = the other end of c. The resulting directed graph X is
obtained pictorially from K by drawing arrows from the midpoint of each 1-cell
to the O-cells at either end of it. The actions of G on V and E come from the action
on K;in particular, g(c,j) = (gc, k), where k is such that t(gc, k) = gt(c, j). For each
s in C?, let p(s) be the closed path in X obtained by traversing ds once
counterclockwise. For each y in E, let n(y) and I(y) be the 2-cells in C'® that lie on
the right and left of y as y is traversed positively; we then have
3 p10)) = 1 = =y, p(r(y))). Define T: 1*(C®) — I*(E) by (Tn)(y) = n(I(»)) —
n(r(»)). Then T8, = p(s)” for all sin C®. Notice that for any closed path gin X, we
have

q" =Y {n,p(s)": s in C? inside q},

where n, is the number of times g winds counterclockwise around s. It follows that
the range of T is dense in the range of the projection P,. The operator T is injective
—afunction in its kernel would have to be constant —and appropriately respectful
of the actions of G, so by lemma 1.3 we have dim(range(P,)) =
dim(I*(C®)); the latter quantity is Y. |G,| ~*, where s runs over a complete set of
representatives for the action of G on C*?), For each c in C'), either every g in G,
fixes both endpoints of ¢, in which case G, = G, ;) = G, and theedges(c, 1)and
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(¢, 2) lie in different edge orbits, or some g in G, interchanges the endpoints of ¢, in
which case (c, 1) and (c, 2) lie the in same edge orbit and |G,| = 2|Gy)|; thus
2Y1Gd™ ! where the sum extends over orbit representatives for the action of
G on CY, coincides with ) |G,| !, where the sum extends over orbit representa-
tives for the action of G on E. By lemma 3.1, we then have

p(G) =2Y G = X IGI™ + L IGI ™) — X IG,I 7
3.8. PROPOSITION. For infinite groups G, and G,, we have p(G, x G,) = 0.

Proor. Let G; act properly with finite quotient on the connected directed
graph X;, with vertices V, and edges E; (i=1,2). Let V=V, x V,,
E = (V; x E;)U(E; x V), and define orienting maps i,¢: E — V by

{0 =(ouf,09) ana fonra=({ ounna).

One checks easily that the resulting directed graph X, with the product action of
G, x G,, is suitable for the computation of p(G, x G,). Given edges y; in E;
(i = 1,2), with i(y;) = u; and 1(y;) = v;, let p(y,, y,) be the following closed path in
X:

(ul, uZ), (yl, uZ)’ (Ub uZ), (vl’ )’2), (vl’ UZ)’ (yl’ UZ), (ul, UZ)’ (ul’ y2)’ (ula u2)'

The first two edges are traversed positively, the second two negatively. Ident-
ifying I*(E) with (12(V,) ® I*(E.)) @ (1*(E,) ® I1%(V>)), we have

pY1,y2)" = (—513,) ®5,,,0,, ® 539,,).
Thus the range of the map
T=(-St®LI®SY: I"(E,) ®I*(Ey)
= (1(V)) ® IX(E2)) ® (1%(E)) ® 1%(V,)) = IX(E)

is contained in the range of P,. Notice that ker(T) = ker(S¥) ® ker(S%). Applying
lemma 1.3 to the restriction of T to the orthogonal complement of ker(T), we
have

dim(range P,) 2 dim(/*(E,) ® I*(E,)) — dim(ker (S}) ® ker(S%))
= dimg (I%(E,)) dimg,(I(E.)) — dimg,(ker (S1)) dimg (ker(S%)).

(In the last line we have taken advantage of the fact that the natural trace on
VN(Rg, « ,), which acts on 1%(G,) ® I*(G,), is the tensor product of the traces on
VN(Rs)) Write a, =dimg(%E)) and b =dimg(%V)). Then
dimg, (ker(S¥)) = a; — b;, and the previous inequality says
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dim(range P,) = a,b, + a;b, — b,b,.
As in lemma 3.1 and its proof, we have on the other hand
p(G, x G,) = dim(I*(E)) — dim(/*(V)) — dim(range P.)
= a,b, + a,b, — b;b, — dim(range P,),
50 p(Gy x G3) £0,50 p(G; x G;)=0.

3.9. CONCLUDING REMARKS. Proposition 3.6 above says that p is an Euler
characteristic in the generous sense of Chiswell [4]. It coincides with (minus) the
famous rational Euler characteristic (see [1], [2], [9]) on the groups covered by
Propositions 3.2 and 3.7. (For instance, when G is a Fuchsian group having
a Dirichlet region with finite hyperbolic area A4 (see [5]), we have A = 2rp(G).)
Proposition 3.8 indicates that in general p captures at best only a low-dimen-
sional piece of the rational Euler characteristic.
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