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APPROXIMATELY INNER AUTOMORPHISMS OF
SEMI-FINITE VON NEUMANN ALGEBRAS

THIERRY GIORDANO* and JAMES A. MINGO*

§1. Introduction and preliminaries.

Throughout this paper M will denote a o-finite von Neumann algebra for which
we will assume that (H, J, P)is a standard form. M’ will denote the commutant of
M on the Hilbert space H. Also if y € M, then £, e P will denote the unique
vector in P implementing y. C*(M, M’) will denote the C*-algebra on H gener-
ated by M and M’. In [5, Theorem 3.1] Connes used C*(M, M’) to characterize
approximately inner automorphisms of a separable factor of type II,. As an
automorphism 3 of M is always normal, we obtain by transposition an isometry
3: M, — M,. An automorphism is then said to be approximately inner if it is the
limit in the topology of point-norm convergence on M, of a net of inner
automorphisms. If M is separable, i.e. M, is a separable Banach space, then we
may take this net to be a sequence. Connes’ characterization went as follows. If
dis an automorphism of a separable I, factor M, then as will be explained below,
we obtain @, an automorphism of C(M, M’), the *-subalgebra of & (H) generated
by M and M’, by setting @3 x;y;) = Y. 3(x;) y;. Connes showed that 8 is approxi-
mately inner if and only if @ extends to an automorphism of C*(M, M’). In this
paper we shall give a new proof of this result using a probabilistic technique
introduced by Haagerup [12]. In addition to being conceptually simpler the
proof has the advantage that it works for any o-finite algebra of type II,.

Itis clear that any approximately inner automorphism will act trivially on the
centre of M so from now on we will tacitly assume that the automorphisms of
M under consideration will act trivially on the centre of M. We can now state our
main result.

THEOREM 1. Let M be a semi-finite o-finite von Neumann algebra and 8 an
automorphism of M which acts trivially on the centre of M. Then 3 is approximately
inner if and only if 8 fixes some faithful normal semi-finite trace on M and © extends
to an automorphism of C*(M, M’).
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Most of the work in this paper is devoted to proving the ‘if’ part of the Theorem 1.
Let us dispense with the “only if” part. So let us suppose that 3 is the limit in the
point norm topology on M, of a net {3,} of inner automorphisms. We first want
to show that 3 fixes some faithful normal semi-finite trace. If M is finite &, denotes
the unique centre valued trace on M (see e.g. [20, Theorem 7.11]), then by
uniqueness &, 3 = &, and so for any trace 7, 1 = 1°8, = 106,°3 =13, ([20,
Exercise E.7.12]).

If M is semi-finite and Tr is a faithful normal semi-finite trace then we shall
show that the Radon-Nikodym cocycle (DTro 8 %; DTr), = 1 for all ¢. Then we
may apply [19, Corollary 3.6]. Let y be a faithful normal state, then by the chain
rule(DTro 87 1; DTr), = $(DTr; DY), )(Dyr o 8~ *; Dy o 3, 1), 8,(DTr: DY) _,). For
afixed t, (DY o 37 *; Dy o 3. 1), — 1 strongly ([19, Proposition 7.18]), and for the
same t, 3,((DTr; Dy),) » $((DTr; Dy),) weakly and hence strongly. So (DTro 8~ 1;
DTr), = (DTro9~ %, DTro3;!),—»1 as a— co. This can only happen if
(DTro 974 DTr), = 1,i.e. Tro 3! =Tr.

Now choose a finite projection e in M of central support 1 and let N = eMe.
Write M =~ N® Z(H). By Lemma 3.1 there is a unitary u in M so that
Ad, >3 = a ® 1 relative to the tensor product decomposition of M, where a is an
automorphism of N. Let ¢, be a faithful normal state on .#(H) and t be a faithful
normal trace on N. Then ¢ = 7 ® ¢, is a faithful normal state on M which is fixed
by Ad, 3. Hence both in the finite and semi-finite case we may, upon replacing
3by Ad, - Sif necessary, suppose that 3 fixes some faithful normal state ¢. (This is
only a special case of a more general result [20,25.17). Suppose &, = Ad, , then
by the Powers-Stermer inequality |[|[u,,&,]l1% = 1€, — u¥ & u,? =u|!é,, -
Lion, I S 1928 = 95,1 0.

Now let us recall the canonical implementation of an automorphism [11,
Theorem 2.3]. If y is a faithful normal state on M, let ug(x&,) = $(x) &y 9-1. Then
ug doesn’t depend on  and for all xe M §(x) = ugxu}, Jug = ugJ, and ugP = P.
If§ = Ad, forue M, then uy = uJuJ. If o3 = @, then uyé, = £,

Now if ¥ is any state on M we have ||ugéy, — ug &IPS Yo 8 1 —yo 371
— 0.Sou,Ju,J = ug — ugstrongly,as the linear sp:an of {¢,1Y e M } equals H.
Thus for all x in M [[(3(x) — usxuF) el < ll(us — upJug)xEo |l + l1x[ | [as €,
- 0. Hence for all x in M, u,xu} converges strongly to 3(x).

Let xy,...,X,€M, yy,...,y,€ M, and e H be given, then O x,y.)¢| =
1% S(x)y:ll = 1iin I e xiu? yi&ll < I3 xoill lluéll = 11X xiyill [1€]l. Hence © is

bounded on C*(M, M’). By applying the same argument to 3 ! we may similarly
conclude that ® ! is bounded and thus @ is an automorphism.

As mentioned above when an automorphism & acts trivially on the centre of
M we obtain an automorphism @ of C(M,M’) by the equation
O x.y;) = Y. 8(x;)y; for x;e M and y;e M". This clearly will be an automo-
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rphism if we can show that it is well defined; that this is so follows from the
following lemma of Murray and von Neumann.

LEMMA 2. Let Xy,...,x,eMand y,,...,y,e€ M’ be such that y. x;y; = 0. Then
there exists a projection {e;;} € M,(Z(M)) such that ) e;;x; = 0 forall 1 < j < n,

and Y e;y; =y foralll Si<n.
j

PROOF ([17, Theorem 3 p. 140], and [14, Lemma 3.1.3]). The proofin [17] is
nominally for factors but a careful reading shows that it goes through without
change in the more general case. The projection e is constructed as follows. Let
H™ denote n copies of the Hilbert space H and K the subspace of H™ consisting
of vectors (¢4,. .., &,) such that Z x;a¢; = Ofor all ae M. Then e s the projection
of H™ onto K. ‘

COROLLARY 3. C(M, M) is isomorphic to M @ z M' via ) x;y; — Y. x; ® y; for
x;€M and y;e M', (Z denotes the centre of M ).

The main novelty of our approach is the explicit use of correspondences. Let us
recall briefly the definitions. Let M be a von Neumann algebra and M®P its
opposite algebra; M°? is isomorphic to M’, but from the conceptual point of view
it is easier to use M°P. Effros and Lance introduced the notion of a binormal
representation of the algebraic tensor product M ® M°P; it is a pair of commut-
ing normal representations on the same Hilbert space: one of M and one of M°®.
For xe M @ M® let ||x|v, be the supremum of |z(x)| as = runs over the
binormal representations of M ® M°P. Completing with respect to this norm we
obtain the C*-algebra M ®;, M°P. A correspondence from M to M is a binormal
representation of M ®.;, M°". Given a completely positive normal map
&: M — M, we associate to ¢ a binormal representation (g, Hp) of M ® p;n MP
asfollows. On M ® H define the sesquilinear form generated by (a ® ¢ |b ®@ 1) =
(P(b*a)& | ). Mod out by the null vectors and complete to obtain a Hilbert space
Hy. On H, define a representation of M @ M by 7mp(x®)°)a® ¢ =
xa® Jy*JE If M is o-finite (as it will be throughout this paper) and € P is
acyclic and separating vector then &g = 1 ® ¢ € Hg will be a cyclic vector for the
representation . Two particular completely positive maps will be of interest to
us. The first is the identity map i In this case H,=H, m(x®)°)=
xJy*J e £(H), and 7,(M ®y;, M?) = C*(M, M’). The second example is when
the completely positive map is an automorphism 8. In this case Hy = H,
(x @ y°) = 9(x)Jy*J, and my(M ®y;n M°P) = C*(M, M’). If § is one of those
automorphisms for which @ extends to an automorphism of C*(M, M’), then
Ty = @ ox, and so my and w, are weakly equivalent in the sense of Fell (see e.g.
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Dixmier [9, Definition 2.4.5]), and conversely if n, and w, are weakly equivalent
then @ extends to an automorphism of C*(M, M’). This explains the appearance
of the C*-algebra C*(M, M) in the picture. For further details on corresponden-
ces the reader may consult [1], [2], [3], [15], [16] and [18].

Recall that a completely positive map is called inner if it is of the form
&(x) = Y arxa; with {a;} = M. ® is approximately inner if @ is the limit in the
point-g (M, M) topology of a net of inner maps @, with ||®,| < 1. In[16] and
[3]it was shown that 3is approximately inner as a completely positive mapif and
only if g is weakly contained in =, i.e. if and only if @ extends to a bounded
homomorphism of C*(M,M’). One may ask if it is possible that for some
automorphism 3, @ extends to a bounded homomorphism of C*(M, M’) which is
not an automorphism? In §2 (remark following Lemma 1) we shall show that this
cannot happen; for this reason we shall just say that for a particular automor-
phism @ is bounded, but by this mean that @ extends to an automorphism of
C*(M, M’). But another question arises; can an automorphism be approximately
inner as a completely positive map but not be an approximately inner automor-
phism? If M is a finite von Neumann algebra then we shall show in this paper that
ifan automorphism is approximately inner as a completely positive map then itis
approximately inner as an automorphism. Connes had already done most of the
work necessary to show this for separable finite factors. Moreover he also
observed that for every automorphism 3 of the separable injective factor of type
II,, © is bounded but if 3 scales the trace then 3 cannot be an approximately
inner automorphism. In §3 we shall show that this is the only obstruction for
algebras of type I1,. In the type III case the analogue of fixing the trace is the
condition of having mod (3) = 1, and Connes has suggested that this should be
the only obstruction [8. §4]. We shall conclude this introduction by showing that
for an injective semi-finite von Neumann algebra @ is bounded for any automo-
rphism 3 which acts trivially on the centre.

By the equivalence of injectivity and semi-discreteness, we know that for an
injective von Neumann algebra M there existsamap n: M ® i, M’ = C*(M, M')
(see [10, Proposition 4.5]). When M is a factor 7 is an isomorphism by the
minimality of the spatial norm || * ||, If we transfer the automorphism 3 ® 1 of
M ® min M’ to C*(M, M') via n we get that @ is an automorphism of C*(M, M’).
When M is not a factor we need to show that the kernel of 7 is left invariant by
3 ® 1. We were able to prove this only by an indirect method; we construct
a C*-algebra which we call M ® ,_.;, M’, which, for any von Neumann algebra
M is always a quotient of M ®,;, M’ via a homomorphism we shall call n,, such
that the automorphism 3 ® 1 of M ® ,;, M’ descends to an automorphism, called
9 ® 1 provided that § acts trivially on the centre of M. The algebra M ® ;_p;n M’
is a completion of M ® ; M’ (the tensor product over Z, the centre of M), which is
minimal in a certain sense. When the centre of M is two dimensional i.e.
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M=M ®M, with M, and M, factors then M ®z ninM’ = (M; ® min

) @ (M2 ®min M3), 5o heuristically M ® ;_in M’ can be regarded as a direct
integral of minimal tensor products. The properties of M ® ;_,.;» M’ that we shall
have to establish are as follows.

THEOREM 4. For any von Neumann algebra M there is an automorphism 8 ® ;1
of M @z.minM’' suchthat S@z1°oms = Tgo I ® 1.

THEOREM 5. Let M be a semi-finite von Neumann algebra, then there exists
a *-homomorphism p: C*(M,M') - M ® z_nin M’ which is onto and extends the
isomorphism of Corollary 3.

THEOREM 6. Let M be an injective semi-finite von Neumann algebra, then there
exists fit: M ® z.minM' = C*(M, M’) such that fj = p~* and n = fio m,.

Let us recall some facts from Takesaki [21, §4] about conditional expectations.
Let ¢ be a faithful normal state on M and &, € P the implementing vector. Let e;
be the projection onto [Z(M)é&,]. Then e;Me, = e;Z(M)e, and e; commutes
with J (in this special case a more direct proof is available that avoids most of the
technical complications of the general case, see e.g. [15, Lemma 1.1]). Let &
Z(M) — e;Z(M)e; be the isomorphism &(x) = ez xe;. Then &(x) = ¢~ (ezxez) is
a faithful normal conditional expectation of M onto Z, such that e;&(x) = ezxe;
and ¢(&(x)) = ¢(x) for all x in M.

Now consider the von Neumann subalgebra N of #(H) generated by M and
ez. Let xe N’ then xe M’ and e;x = xez; hence x = JyJ for some ye M. Thus
IyJE, = xezé, = ezx&, = Jezyl, = JE(y)J&,, and x€ Z as £, is separating for
M. Thus NN=ZandsoN=M v M.

Now N is a type I von Neumann algebra and we shall construct a normal
faithful semi-finite trace Try on N as follows. First observe that the central
support of e, in N is 1, and second that e, is a finite (in fact abelian) projection in
N;in fact w,_is a trace on N,,. Thus there is a unique faithful normal semi-finite
trace e Try on N such that Try|N,, = w, (for example one could write N as

s ® L(I(N)) and let Try = wg, ® Tr, where Tr is the usual trace on L(I*(N)).

Now form the Hilbert space LZ(N Try). Letting Jyfr,, (%) = 1., (x*) and
Py =y (N™) we obtain a standard form for N. By restriction we obtain
a correspondence from M to M: for x, ye M and éeI*(N,Try) let xéy =
xJyy*Jy&. Observe that 5y, (ez) is a cyclic vector for this correspondence as e,
has central support 1 and (X1, (e2)y|n1ey(€2)) = (repy(X€2Y) | N1ey(€2) =
Try(ezxezy) = (ezxezyé, | &,) = (E(x)E,y | £,). Thus as a correspondence from
M to M I2(N, Try) = H,. Moreover as Z(M) = Z(N) we have that for all £ € H,
andallz e Z z¢ = ¢z. Thus we have a representation of the *-algebra M ® ; M’ on
H,. This representation is faithful: for if Y x;¢y; =0 for all ¢ in H, then
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Y x:(3. ajezb;)y; = Oforall a;, b;in M, and as e, has central support 1 we get that

i

iny,-l = 0 and hence by Corollary 3) x; ® y; = 0in M ® ; M". Thus ||ms(-)| is
anormon M ®;M'. Let M ®;_...,M' be the completion of M ®,; M’ with
respect to this norm.

If  is another faithful normal state on M and we let ¢} be the projection onto
[Z(M)¢,], then e; € Z(M) = N, and so e} is an abelian projection with central
support 1. Thus €} is also a cyclic vector for the M—M correspondence IZ(N, Try).
Hence the norm ||mg(-)| is independent of the choice of which conditional
expectation we choose.

PROOF OF THEOREM 4. Let u = uy be the canonical implementation of the
automorphism 3. For ze Z and ae M, uza, = 3(2)9(a)¢, = z3(a)¢,, = zual,.
So by the cyclicity of &, ueZ’' = N.

Vectors of the form T = )" a;e;b;, with a;, b;e M form a dense set of vectors in
I?(N, Try), moreover if S =u*T then ||S||% = Try(5*S) = Try(T*T) = || T3
Hence for x4,...,x,e M, and y,,...,y,€ M’,

e} 9(x)) @ yi)lI?
= SUP{“Z s(xi)Tyi"%:T = Zaiezbi: 1T, =1}
= sup { Z Try(yIbfezaguxt xu*aiezby) |T = Zaiezbb 1T, =1}

ik,

= SUP{"in u*Ty||*|IT = Zaiezbia 1T, = 1}
= "”ar(zxi ® J’i)||2~

PROOF OF THEOREM 5. What we must show is that n, is weakly contained in 7,.
By [3, Theorem 2.6] we must show that & is approximately inner as a completely
positive map.

First let us suppose that M is finite, and that & denotes the centre valued trace
of M; & is the conditional expectation of M onto Z along any trace 1. (Observe
that if & is such a conditional expectation then it is tracial: (§([x, y])aé. | b&,) =
7([x, y] £(b*a)) = 0.) By the Dixmier averaging theoremforeachxe M and ¢ > 0
there exists an inner completely positive map & of the form x — Y A;u;xu¥, with
u;aunitary in M and 0 < 4; < 1, ) 4; = 1, such that ||€(x) — ¢(x)|| <.

So let xy,...,x,€M and ¢ > 0 be given. Choose &, of the form above such
that ||€(x,) — ®,(x,)]| <& Choose &, of the same form again so that
16(Py(x2)) — P2° Dy (x;)ll <& Then as E(x)eZ, [|E(xy) — PyoPi(xy)] =
[P2(8(x1) — Bi(x ) S [6(x1) — P1(x)| <& and [E(x2) — D, ° Py(x,)] =
|&(P1(x2)) — P20 Py(x,)l| < e Finally choose &, such that |&(x,) — P,o...°
D,(x,)ll <eandlet® = P, o...0 P Then ||£(x;) — DP(x;)| < & foralli. Thus we
have shown that the centre valued trace is approximately inner. As observed
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above H, is independent of which conditional expectation we choose. Thus every
faithful normal conditional expectation onto the centre is approximately inner.

Let us turn to the semi-finite case now. M may be decomposed as M; @ M,
with M, finite and M, properly infinite and & as §; @ &,. So to conclude the
proof we shall assume that M is properly infinite. Write M = N ® #(H) with
N afinite algebra. Let ¢ = © ® @, where 7 is a faithful normal trace on N and ¢, is
a faithful normal state on ¥ (H) of the form ¢, = Tr(h-) where h is a positive trace
class operator: h = diag(hy, h,,...) which is diagonal with respect to a system of
matrix units {e;;} of & (H). Let & be the conditional expectation of M onto Z(M)
along ¢; then é"(z a;; ® e;;) = Y hi6.(ay;), where &, is the conditional expectation

of N onto Z(N ) along 7. Let xy,...,x,,€ M and ¢ > 0be given. Choose nsuch that

n

for p = Z 1 ® e;; one has |(x; — px;p)&,| < &/2. Write px;p= Y a? ® e,
i=1 st=1
So choose an inner map @, given by unitaries in M, ® 1 as above so that

Z hy | 8.(aQ) — D,(aD)|l < &/2 for all i. Suppose P,(x) =) Axu¥ with u

5=

unitaries in N. For xe N ® Z(H) let &(x) = Z Aihj(u; ® ej) x(u; ® ej)*.

i,jk=1

If x= Z Xij ®eu then ¢(x) Zhi(po(xii)' Hence ”J(xl) - ‘p(Px:P)”q; é
i,j=1
1€(x)) — Epxip)ly + 16(pxip) — <I’(Pxip)|| < xi = pxiplly + 112 hy(E:af)) —
D (@)l <e.

Our proof of Theorem 6 is a paraphrase of the technique of [7]. As before let
N=Mv M ={M,ez).

IA

LEMMA 7. Let M be a finite injective von Neumann algebra with faithful normal
tracet.Lete > Oand x,,. . .,x,€ M be given, then there exists a normal state of N,
@, such that ||[x;, @]l S efor 1 Si<n,and |t — ¢lul S e

PROOF. Let E be a projection of norm 1 of N onto M which exists as M is
injective, and let = 1 E. Then y/ is a state of N, (in general non-normal), and
xy =yx for all xeM. Let K =co{N, u{x —t(x)1|x=x* |x| <3e!
x€ M}}. Then K is a 6(N, N,,) closed convex set of the real Banach space N ,. (the
self-adjointelements of N). Let K° = {fe N*, | f(K) > —1}and K, = K° N N,.
By [4, Théoréme 1 of chap. II §2 n°3] K = (K,)°. Regarding K, as a subset of
N¥, weobtain that (K,)°)° is the 6(N*, N) closure of K, but (K,,)° = K. Thus K°
is the o(N*, N) closure of K,. Now ¥/, = 1, so ¢ € K°. Hence there exists a net
{¢.} in K, such that ¢, converges to ¥ in the a(N* N)-topology. As
¢«(N,) = —1, we have that ¢, = 0, moreover as @,(1) - 7(1) = 1 we may sup-

pose that ¢, is a state and ||t — @,|y]| < &
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Let N™ be the von Neumann algebra formed from n copies of N. We have that
0isin the o(N®, N®) closure of {([x, @], .., [x,, @])|w €N || = 1}. As this
set is convex we have that O is in the norm closure. Thus there exists a state o e N}
such that [[x;, ]|l < e and [t — ¢ly| S &

PROOF OF THEOREM 6. We begin by assuming that M is finite. It is clear that
(Y x; ® yi) = Y. x;y:, what we must show is that this is bounded. As ¢, is a cyclic
vector for /7 we only have to show that |(f(X) ¢, | &) < [ne(X)| for Xe M @ M'.

Nowlet X = Y x; ® y;with ||x;]l, [ly:ll < 1. Let ¢ > 0 be given. Write y; = Y u;;
i=1 J
with u;; unitaries. Recall that N is the von Neumann subalgebra of Z(H)

generated by M and e;. By Lemma 7 we may choose a normal state ¢ of N such
thaty_ ||[u;;, @]ll < €*/4n*and ||t — @ly || < &/2n. Let T, € Py be the vector imple-
j

menting . Then "[yu Tw] ”2 é Z " [ul'j9 Tq)]"l = Z “ui_iT:pu?j - Tcp "2’ and so by
J J
the Powers-Stermer inequality [|[y;, T,]ll2 < Y. | [ui, @111'/* < &/2n.

J

Thus |25 T,yill2 2 1E x0Tl T~ (ExL Tyl T > (Cxin T, T —
¢/2. On the other hand |} xyiT,| T,) — 1} x;y:)l <&/2. Thus —g/2 <
QxinT|T,) —tQxy), so X xT,yll2> |(inJ’i7:p| T,) — &/2 > ©(}.x; )
—&= (ﬁ(zxiyn')ézléz) —e&  Hence (ﬁ(z x;yi)¢. | &) < sup {”Z x; Tyill 2| IT2 =
1} = e xy)l-

Now let us turn to the general case. As in the proof of Theorem 5 we may
assume that M is properly infinite. What we have just shown is that when M is
a finite injective von Neumann algebra =, is weakly contained in 7, and we must
show the same in the semi-finite case. By [3, Theorem 2.6] we must show that the
identity map 1 can be approximately factored through &.

Solet xy,...,x €M, @y,...,p,€ M, be states, and ¢ > O be given. We may
find a finite projection e of central support 1 such that |p;(x; — ex;e)| < ¢/2,for all
iand j. Let y; = ex;e. Write M = M, ® #(H), identify M, with M, ® 1, and let
¢ = 1 ® @, be afaithful normal state on M, ® £ (H) where 7 is a trace on M, and
@, is a faithful normal state on .#(H). Then Z(M) = Z(M,) ® 1 and if & is the
conditional expectation of M onto Z along ¢ then &(exe ® y) = &,(exe) p.(y),
where &, is the conditional expectation of M, onto Z, along t. Hence
E(y:) = Ey)).

Now by the result in the finite case we know that there exist a;;, b;; in M, such
that |@,(y, — _;kb?}é’,(a?}ytau)bu)l < &/2. Thus |py(x, — ;kbzé’(a?}x,akj)bk,-)l <e
Thus the identity can be approximately factored through & and so =, is weakly

contained in m,.
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§2. The case of an algebra of type II,.

To begin with let M be a o-finite von Neumann algebra. In the first two lemmas of
this section we have adapted some of the techniques of [3, §2].

On the set CP (M) of completely positive maps from M to M we shall consider
two topologies:

1) point-o-weak

2) point-g-strong

LEMMA 1. Suppose F = CP(M) is convex. Then FP'~° =k = [ipt=o-strong

PrOOF. It is clear that FPt=o~strone  fipt=o-wk Jet T FP~2-%k we shall
show that T e FPt—o~stne Qo let x4,...,x, €M, &,,... ¢, € H (unit vectors), and
¢ > 0 be given. We must show that 3SeF such that ||[(T(x;) — S(x;))& | < e.
Let x=x,®x,®.. Dx,eM"=MOM®D...®M, and F, = {S(x;)®
5x2)® ... ® S(x,)| SeF} = M™. Then F, is a convex set in the von Neumann
algebra M™, Thus F? ™"k = F~sron8 (see e.g. Takesaki [22, Theorem I1.2.6]). So
3SeF such that )

IK(T(x1) — S(x1)) @ (T(x2) — S(x2) D ...
D (T(xn) — SN @ D ... &l
<éek
Thus ||(T(x;) — S(x))&ill <eVi.
Now let us define two states f and fy on M ®4;, M°P. Let

fOEx®y)=mQxi®y)¢,1¢,)and
fo (X xi® y7) = (s (X x: ® ¥9) &y 1 &)

As &, is a cyclic vector for both #, and my we see that n, and ny are the GNS
representations associated to f and f; respectively. Let u = ug be the canonical
implementation of 9. For a normal state  on M let Y, =y 3. If {,eP
implements ¢ then u*¢, implements ¥, and (3(x)&,y1&y) = (x&, 97 (M1 &y,).
¥, is faithful whenever y is. Thus if y is a faithful normal state on M then
[ ®y°) = (x£y, 97 (W1 &y,) = (F(x)&yy1 &) is a state on M @i MP giving
a representation equivalent to 7.

From now on we shall suppose that rg is weakly contained in 7, or equivalent-
ly that @ is a bounded homomorphism on C*(M, M’). This is equivalent by [3,
Theorem 2.6] to the condition that 3 is approximately inner as a completely
positive map. Note that Lemma 2 shows that 3~ ! is approximately inner as
a completely positive map, which is equivalent to ©®~! being bounded on
C*(M, M’). This will then justify the remark made in §1 that when @ is bounded it
is automatically an automorphism for any o-finite von Neumann algebra. Our
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hypothesis that g is weakly contained in 7, implies by [9,3.3.4] that f; is a weak*
limit of finite sums of vector forms associated to =,.

LEMMA 2. Given X;,X3, ..., Xm€M, @1,02, ..., ®,€ M, and ¢>0, 3
ay,a,,...,a,€ M such that Vi,j @37 (x;) — Y axx;af)| < e.
x

ProoF. Choose a faithful € M such that ¢; < . Let &, e P implement .
Then3 yy,y,,..., Y€ MsuchthatVxe M, o(x) = (x&, y:| &) (see [20,5.19]). Let
/1 be as above. By hypothesis f; is a weak* limit of finite sums of vector forms
associated to m,. As [£,M] = H we may choose these vector forms to be of the
form x ® y° > (x¢yay| &), for some aeM. Let t;; = y; ® xje M @ M. We
may then choose aj,a,,...,a,e M so that |fi(t;) — Y.(m(tij)Eparn| Eyar)l

k
<e, for all i and j. Hence |@/(3 '(x;)— Y aex;af)l = (3~ 1(x;)Euyil &y) —
k
Z(akxjaffw)ﬂ'léw)l = I(Yifwvg—l(xj)l Ey) — Z(J/ifwakle Syar)l = 1f1(tij) —
k k

Z(nx(tij)éwakléwak)l <é&.
k

COROLLARY 3. 97! isa point-g-strong* limit of inner completely positive maps.

PrOOF. Lemma 2 shows that 3! is in the point g-weak closure of the inner
completely positive maps. Thus by Lemma 1 it is in the point o-strong* closure of
the inner completely positive maps.

LEMMA 4. Given x1,X3,...,Xm€M,, ©1,95,...,0,e M}, and ¢ > 0,3 ay,a,,
..» @€ M such that Y ayaf < 1, and |99~ ' (x;) — Y arx;jaf)| <e.
P k

PROOF. Choose by,b,,...,b,eM such that |¢,(37*(x;) — Y by x;b¥)| < ¢/2Vi,j
k
and |971(1) — . beb}lly)? < ¢/6. Letb = 1 + (3 b — 1), Here we are using
k k

the notation that for a self-adjoint element x, x, and x_ are the positive and
negative parts respectively of x; x=x, —x_, x,x_ =0, x,, x_ 2 0. Then

b>1 and so (b'?—1)*<b—1. Let a,=b""*b, and P(x) =) ayxay.
k

Then &(1) = b~ Y2Y bb¥b™ 12 = b~12(b — (Y byb¥ — 1) )b~ 2 < 1. Also
k k

1612 — 11y, = /o' — 1?) £ /o)b — 1) = J(Ebub¥ — 1)y, le4 &) <
k
1), bebf — 1]|3/> < ¢/6, where e, is the support projection of (¥ bybf — 1)..
k

Hence |p[(®(x;) — 2 bixib})l = |9,(P(x;) — b' 2 @(x)b"1?)| = lp (1 — b"/) B(x;) +
k
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b2(x)(1 — b)) = 11 = b2y, (PG + 12(x)b'2]l,) < (11— Y2,
@+ 11 = b'2]l,,) < &/2. Thus [p,(P(x;) — 97 (x))| < |} @(x:) — Y. bex;bF)| +
k

@i} biex; b — I3 (x)) <e.
x

We have not yet used the fact that M is a finite von Neumann algebra, so far
our argument (adapted from Anantharaman-Delaroche and Havet) works for
any o-finite von Neumann algebra. For the rest of this section let M be a finite von
Neumann algebra and let 7 be a faithful finite normal trace on M and &, € P the
implementing vector.

COROLLARY 5. Given xy,X,,...,X,€ M and ¢ > 0 there are a,a,,...,a,eM
such that Y, a;a¥ < 1 and for allyeM and 1 <i<n
i

[ ([9(x) — ;a;}" xia ]y < el yll.

Proor. If @: M — M is any completely positive map let Tp: M — M, be
defined by Tp(x)(y) = ©(P(x)y). We have by Lemma 4 that T, !
e{Tol @ inner, P(1) < 1} As 1([97 ' (x) — Yaixa}]y) = 1(x[(y) — Y. a¥yaid)
we thus have

Tye{Tp| D(x) = ) a*xa; and ) a;a¥ < 1}™
Hence by the convexity of {To | (x) = Y a¥xa; and ) a;af < 1}
Tye {To| D(x) = ), a¥xa; and ) a;a} < 1}

exactly as required.

LEMMA 6. Given 1 = X,,X1,X2,... Xms V1, V25« - - » Vn € My (the unit ball of M),
and ¢ >0, 3 ay,a,,...,a,€ M such that ¥ aca¥, Y ata, <1, and |1((9(x;) —
Za:xia:)yj)l <e

PRrOOF. Suppose ¢ < 1. By Corollary 5 there are by,b,,...,b,€ M such that
Y. b;b¥ < 1 and for all ye M

[t([8(x) — Y bExibidy)l < (/4 Iy, 0 S i = m.
k

Let b= 1+ (Y. bb;, — 1),. Then Y. b¥b, = 1 + (L b¥b; — 1), — Cb¥bi— 1)_ =
b— (O b¥b;—1)_. Let a;=hbb Y2 Then Y aFa;=b""2Y bbb '*=
b™12(b — (Y b¥b; — 1)_)b" Y2 <1, and Yaa¥ =Y bb 'b¥ <) bibt <1
Also [|b'2 — 1|3 = t('* — 1)?) S (b — 1) = «((¥ bf b — 1)) = w([X b xoby
— 3(xo)]e+) < (¢/4)%, (where e, is the support projection of (}_ b} b; — 1).;). Then
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[t([S(x) — ;a,‘:‘ xia]y;)l
< le([3(x:) — Zk:b,’:‘xib,‘]yj)l + |t([b'? gla,‘:‘x,-akb”z - ;a,“‘x,-ak] vl
< (e/9? |yl + |T(2k: at x;a(1 — b'2)y;)l
+ [t(0** — l)zk:a,’"‘x,- acb?y)
Sefd+ l(}’j;afxiakiol(l — b)) &)
+ I(Xk: at x;ab'?y;&,|(1 — b*)E,)

Se/d+ 11 =02 (1 + |bY2))
Se/d+ 11 =022 + |11 = b'2|l,)
<e/4+ 3|1 -b"?,<e.
COROLLARY 7. Given x,...,x,€M, and € > Q, there exists a,,a,,...,a,€ M
such that ¥ a¥a;, Y a;af < 1and |3, a¥x;a; — 9(x))|l; <&
Proor. Apply Lemma 1 and Lemma 6 to the convex set of inner completely
positive maps @ such that &(x) = Y a¥xa; with ) a¥a;, Y a;a¥ < 1.

Let us recall Haagerup’s probabilistic technique [12, §4] and [13, §2]. Suppose
we are given ay, a,,...a,€M and a finite set of unitaries uy,u,,...,u,eM, and
¢ > 0 such that

Y.ata, Y aar < 1,[Ya¥a;— 1], <eand
Z laiS(u) — wpall; < e, 1 Sk <n.

Given an integer r < ¢~ ! (This implies that t(1 — Y a¥a;) < |1 — Y. a¥aill, <.
Sot(} afa;) > 1 —e> 1 — 1/r, and thus we have exactly the starting condition
at the beginning of the proof of [12, Lemma 4.3].) he constructs by, b,,...,b,e M
such that

I3 bFb: — 1113, I bib¥ — 1|13 < 9/r and
Y 1b:S(us) — uebil|3 < 3ne, 1 < k < n as follows.

Let Q = T™ s, be the ith coordinate function function on ©, dw be Haar measure
on @, and a(w) = Y s(w)a;. Let & = (w,,w,,...,w,) €. Then



APPROXIMATELY INNER AUTOMORPISMS OF SEMI-FINITE . .. 143

r

11/r 3 alwi)*ale;) — 113dd < 3/r
Jar

~

I11/r Y a(w;)a(w;)* — 1|3d & < 3/r, and
o

~

1/rZ la(w)ue — ua(@)|3dd <e 1 Sk n

Jar

Hence 3d = (wy,...,w,)€Q" such that

[11/rY a(@;) *a(w;) — 113, 11/r) a(w;) a(w;)* — 1]|3 < 9/r, and
1/rY lla(w)ux) — wa(@;)|; < 3ne, 1 <k <n.

So let b; = 1/\/; a(w;) 1 £i £ r. Letting ¢; = g(b;b¥)b; where

g(t)={1 0<t=<r

/r/ t r< t
we have the following.

LemMaA 8 ([12, Lemma 4.3 and Lemma 4.4]). Suppose a,,a,,...,a,€ M and
unitaries u,, u,, . .., u, € M, and ¢ > 0 are given such that Za;“a,» <1, Z aar <1,
IYa¥a; — 1], <e, and Y, [la;Nw) — ua;l|3 < e Then for any r <e™'dcy,cy,

oy €M such that |lcill . /r IY.ckei— 113 IXcick — 13 < 18/r, and
Y lleiHu) — weeil|2 < 3ne, 1 Sk < n.

COROLLARY 9. Let uy,u,,...,u,c %(M), r > 1 an integer, and ¢ > 0 be given.
Then 3¢y, c,,...,c,€ M such that

leall </

I ke — 1 < 18/r

1T cx — 11 < 18/r

Yilleiduy) —ucill; <e 1 <jsn

PrOOF. Choose & > 0 so that 6% + 26 < 3n¢ and 6 < 1/r. Let u, = 1. By
Corollary 73a,,a,,...,a,€ M such that

Yara, <1
Za,a}" =< 1
I afuea; — w2 <5,0=k=n

Let &(x) = ¥ a*xa;. Then ¥ [|a, () — weaill2
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=Y 1(2a¥ a; — Mw)*a¥ ua; — afuf a;9(u))

<t(1 4+ 1 — S(uw)* D(wy) — P(w)* Huy))

= [|@() — w3 + t(Hwe) — Plu))* Hur)
+ (D )* (S(we) — P(wi))

= D) — S@il3 + 2 D) — Sy

< 6? + 26 < &. Now we may apply Lemma 8.

THEOREM 10. Let uy,us,...,u,€e %(M) and ¢ > 0 be given, then there exists
a unitary w € M such that |w3(u,) — w,w| 2 < &, and thus 3 is approximately inner
as an automorphism.

Proor (Cf. [13, Proof of Theorem 2.3]). Let w € BN\ N be a free ultrafilter. Let
H,, be the ultraproduct of the Hilbert space H. Let 4 = [*(N) ® M be the von
Neumann tensor product of [*(N) and M. H,, is a Hilbert A-bimodule in that we
have commuting pair of *-homomorphisms: one of 4 and one of A°°. Let us
suppose at first thatn = 1. Let & = (ué,)e H, and 1 = ($(w)&,)e H,. Letr > O be
given. By Corollary 9 we may for each integer m choose ¢{™, ¢, ..., c™ e M such

that
le™ | < /.
I(E cm*e™ — 1yug, |12 = [T em*cm — 12 < 18/,
IX cmem* — 1) 3w &, |12 = |3 ™ c™* — 1]|3 < 18/r, and
Z "cg"')‘g(u)éo - uéoct"n) ”2 + Z "cg'n)'g(u*)ﬁo - u* éocs'") “2 < l/m
i=1 i=1

Let ¢; = ({,¢{?),...)e A. Then |i¢;|| < \/r. Also
IQ ctei — DEN? = lim ||[Ycf™*c™ — 1]ué,|1* < 18/r,
I cict — Dnll? = lim [|[Y ™ c™* — 119(w)&,11* < 18/r,

2llein — Eeill? = lim 3 | ™ Sw)E, — u&ocf™| =0

o i=1

T ller& — nef|? = lim ¥, |l ¢ 9(u*) — u*c™|3 = 0.
o i=1
Thus ¢;n = &c; and c*¢ =ncf for 1 £i<r. So by [13, Lemma 2.6] there is
a unitary win A4 so that ||Wwn — &W||, < &/2, and thus 3 a unitary we M such that
[[w8(u) — uw|, < &. This finishes the proof when n = 1.
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When n is arbitrary we replace H by HY = H®H® ... ® H, and ¢ by
w & @u b, ®... ®u,é,, and apply the previous proof as in [13, Proof of
Theorem 2.3].

We have now shown that for any finite set of unitaries u,,. .., u, in M and any
¢ > 0 we may find a unitary w in M such that ||3(w;) — w*u;w|, < e. As the
unitaries in M span M we may replace the u; by an arbitrary finite set {x;} in
M and the norm || - ||, by the smaller one || - || ;. Thus $is the limit in the topology
of point norm convergence on M, of inner automorphisms.

3. The case of an algebra of type II .

In this section we shall suppose that M is a g-finite von Neumann algebra of type
II, and § is an automorphism of M which acts trivially on Z(M) and fixes
a faithful normal semi-finite trace Tr (and hence by the chain rule for
Radon-Nikodym cocycles $ must fix every trace). We shall show that if @ is
bounded on C*(M, M’) then § is approximately inner as an automorphism. Our
approach will be to reduce to the II; case.

LEMMA 1 (cf. [5, Lemma 3.11]. Let ee M be a finite projection with central
support 1 and N = eMe. Then there is a unitary u in M such that relative to the
tensor product decomposition of M = N @ £(K), Ad, >3 = « ® 1 where o is an
automorphism of N.

PrOOF. As 8 preserves Tr and is the identity on the centre, 3(e) ~ e. (For if z is
a central projection such that ze < z9(e) but ze + z3(e), then there would exist
a partial isometry u such that u*u=ze and uu* <:z3(e);, and so
Tr(ze) = Tr(uu*) < Tr(z9(e)) = Tr(ze), which is impossible.) One can now apply
the argument of Connes [5].

So in order to show that 3 is approximately inner it suffices to show that
3= Ad, 3 is approximately inner, and so from now on we shall assume that
3 = a ® 1 with a an automorphism if N. Our strategy will now be to show that
a satisfies the condition of Theorem 2.10. That is we must show that if
A:C(N,N’) - C(N,N’) is given by A(Y xiy;)) = Y a(x;)y; then A extends to
a bounded map on C*(N, N").

LEMMA 2. There is anisomorphism of C*(N, N') with a subalgebra of C*(M, M’)
such that @ restricted to this subalgebra is A.

PrOOF. Let K° be the conjugate Hilbert space of K. On K ® K° define
a conjugate linear isometry Jy by Jx(¢ ® n°) = n ® &°, let Py be the closure of
{Z'li®n§|n1,‘..,r7,,eK}, and let xe #(K) act on K® K° by x® 1. Then

ij



146 THIERRY GIORDANO AND JAMES A. MINGO

(K ® K¢, Jg, Px) is a standard form for £ (K). If P is the closure of {Z x;; ®

n@nS|ny,...,neK, (x;)e My(N)+} in Z(N)® K ® K, and J = JN®JK on
I>(N) ® K ® K°, then (I>(N) ® K ® K*, J, P)is a standard form for N ® £ (K).
Thus IN® 1)J =JyNJy®1=N® 1L

Now C*(N,N)®1=C*(N®1, JIN® 1)J)) € C¥M,IMJ) = C*(M,M’),
and so Olc,vvy®1 =A® L

THEOREM 3. Let M be a von Neumann algebra of type 11, and 3 an automo-
rphism trivial on the centre which fixes a faithful normal semi-finite trace. If
© extends to an automorphism of C*(M, M’), then § is an approximately inner
automorphism.

PrOOF. By Lemmas 1 and 2 we may assume that M = N ® #(K) and
3 = a ® 1 with 4 extending to an automorphism of C*(N, N'). By Theorem 2.10
o is approximately inner as an automorphism of N. So there exists a net v, of
unitaries in N so that a(x)=limv,xv% (strongly) for all x in N. Let

A

u,=v,®1eM. Then I (x® y) = a(x) ® y = limvxv¥ ® y = limu,;(x @ y)u?
2 1

(strongly) for all xe N and ye Z(K). As finite sums of elementary tensors are
strongly dense we have for all xe N ® Z(K), u;xu} converges strongly to 3(x).

Let ¢, be a faithful normal state on #(K) and 7 be a faithful normal trace on
N, and ¢ =1 ® ¢@,. Then u, ¢, = &,u;, so for xe M |(ug — uJu,JY)xE, || =
I(3(x) — Ad, (x))éq,ll — 0. Hence u;Ju;J converges strongly to ug. So for any
yeMy, Iy R Yo Adl S 211 llugly — upJuzJEyll - 0. Thus § is ap-
proximately inner.

NoTe ADDED DECEMBER 1991. Since this paper was submitted we have been
able to show that Theorem 1.5 and Theorem 1.6 hold for any o-finite von
Neumann algebra. Also, as suggested by Connes [8,§4] there is an extension of
this result to the case of factors of type III, where one assumes that @ is bounded
and mod (§) = 1. We have been able to show that these two hypotheses imply
that § is approximately inner when M is a factor of type III, for 0 < 4 < 1.
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