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WEIGHTED PLANCHEREL FORMULA.
IRREDUCIBLE UNITARY REPRESENTATIONS AND
EIGENSPACE REPRESENTATIONS*

HEPING LIU and LIZHONG PENG

§1. Introduction.

Let D be the open unit disk in the complex plane C. The Mdobius group
G = SU(1, 1) consists of all 2 x 2 complex matrices

(5 )

such that |a|2 — |B|?> = 1. It acts on D by means of the maps

zgz =¢g(z) = Z:i, (ze D).

All holomorphic automorphisms are so obtained. Set

i O 01 0 i
z=(o %) 4= o) 2=(% o)
Then {Z, A, B} is a basis of the Lie algebra su(l, 1) of SU(1,1). The Casimir
element is

0=22-4*>-B~

We consider the function space L*(D,du,), where du,(z) = (1 — |2%)" ™ 2dm(z),
dm(z) = dxdy(z = x + iy)is the Lebesgue measure on D. For every f € LD, dy,),
we define

%
£l = {L Lf (Z)Izduv(Z)} ;

then L%(D, du,) becomes a Hilbert space. For geSU(1, 1), we define

* Research was supported by the National Natural Science Foundation of China.
Received December 17, 1991.
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(1) Ty f@- fe2){g@)E = | ( B g)(ﬁz +a)

Then T" gives a projective representation of the group SU(1, 1) for v non integral
and a genuine representation of the universal covering group of SU(1, 1). If ve Z,
then T" gives a continuous unitary representation of the group SU(1,1). T”
induces a representation of the Lie algebra su(1, 1) and its universal enveloping
algebra on the space of C®-vectors for T, which will be denoted by T" also. It is

easy to get

v .0 0 .
T(Z) = 212—{,,-2— - 2iz 7 + iv,
0 0
v = 52 ) P,
T(A)=(1-2 )62 +(1-2% Er vz,

TYB) = i(1 + zz)—a% —i(l + 2'2)—;2_— + ivZ.

Therefore,

2
2) O,=T(0)= —-4(1 - |z|2)2—9—: + 4v(1 — |z|2)z'i_ — v+ 2w
0z0z 0z

(also see [5]). We shall call 1, the Casimir operator or invariant Laplacian. If
v % 0, it is equivalent to the Schrodinger operator with the Morse potential. If
v =0, it is the case studied by Helgason [4]. For that case [4] establishes
Plancherel formula, which is equivalent to the irreducible decomposition of the
unitary representation 7", and gives the results of eigenspace representations as
well. Peetre, Peng and Zhang [ 5] studies the case of v > 0 and v non odd integer,
and establishes a corresponding weighted Plancherel formula. It is different from
the case of v = 0, in that, for the case of v > 1 the Casimir operator [1, has not
only continuous spectrum, but also finite discrete spectra.

The aim of this paper is to study all of the other cases for v e R. We will establish
Plancherel formulas and give the results of eigenspace representations, then we
will give the irreducible decomposition of the unitary representation T°. The
results will show that although the Plancherel formulas have unified form, from
the view point of representation theory there are important differences for the
different v.

As is well known D is holomorphically equivalent to the upper half plane
U = {z; Imz > 0}, and SU(1, 1) is isomorphic to the holomorphic automorphic
group SL(2, R) of U. The classification of the irreducible unitary representations
of SU(1,1) is due to Bargmann [1]. With the notation of Taylor [6], the
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non-trivial irreducible unitary representations of SU(1, 1) have three classes:
principal series, discrete series and complementary series:

First (even) principal series ng,, SER, wE ~ n®
Second (odd) principal series ng, seR\{0}, % ~ n°
Holomorphic discrete series ny, neN*, nis'the lowest weight,

Conjugate holomorphic discrete series 7n_,,neN*, —n is the highest weight,

e

Complementary series nt, se(—1,1)\{0},

where ] and n_, are limits of discrete series representations. They and the
complementary series do not appear in the irreducible decomposition of the left
regular representation.

The results of this paper (see §4) show that for the different v the irreducible
representations of the irreducible decomposition of T" are as follows.

v=0: n5, seR,

v=24,...: ne, seR, L2 SURE A
v=13,...: no, se R\{0}, =, n5,....n);
v=—2,—4,...: =nf,s€eR, Mgy M gyee s Ty s
v=—1,-3,...: n},seR\{0}, =nl,m s...,7, .

The result of the case v = 0 is due to Helgason [4], the result of the case
v=2,4,...is due to Peetre-Peng-Zhang [5], the others are new. It is clear that
they are very different. So it is necessary to study the cases of different v.
Moreover, when v is odd, a limit of discrete series representation appears in the
decomposition. This is a phenomenon showed by Bargmann [1],i.e. the limits of
discrete series embed in the principal series. And we will show that (see §3) the
different v determines the irreducibility of eigenspace representations.

§3. Weighted Plancherel formulas.

One finds in [5] the family of eigenfunctions of OJ,

—v+1+id
(L=~
v —_—
3 e).,b(z) = v+1+id —v+1+id’

-z 7 (1 —zby 2

AeC, bl = 1.

The corresponding eigenvalues are 1 + 22. We can also write e} (z) as
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e( -v+1 +il)(z,b),

1
ep(2) = =28

where (z, b) is the hyperbolic distance from O to the horocycle through z and b.
Denote B = 0D the unit circle and db be the normalized Lebesgue measure on B.
Let

@ 9i2) = L e3.5(2)db;

then @}(z) is the radial eigenfunction of [J,, and any radial eigenfunction with the
eigenvalue 1 + A% is Co}(z). This implies that ¢}(z) = ¢” ,(z), and ¢}(z) is real if
AeRorileR (see [5])

Let 9(D) be the space of C*-functions on D having compact supports, and
2*(D) be the space of radial functions in 2(D).

For fe2*(D), define the spherical transform f(1) by

4 fw= Lf (@)~ i(2)dp(2),  A€R.

For f e 2(D), define the generalized Fourier transform f(4, b) by

(6) f@,b) = j f(2)e, (2)dp,(2),  AeR,beB.
D

Then we have following results.

THEOREM 1. Assume that veR, k = max{jeZ: j < 251} Then for f e 2*(D),
we have
(i) the inversion formula
()

fm=£jwmwmmu z————i@ﬂ—mrw—ﬂwwhhwn

where the density p, is given by

1 Asinh(nd)

p(A) = n cosh(nd) + cos(nv)’

and (ii) the Plancherel formula

21
@Ljrmlﬁpﬂm—l—ﬂm{

J |f @) du(z) = J I Ao A2 + Z

THEOREM 2. Assume that ve R, k = max{jeZ: j < M1}, Thenforf € (D), we
have
(i) the inversion formula
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fl@= f J J(4,b)e}, (2)p,(A)dAdb

-2l
Z (vl ~ ) j J(=i(vl — 1 = 21),b)e i, - 1 - 2,5(2)db,

(ii) the Plancherel formula

k po—
L /@ dpy(z) = L J 7.0 p,(dAde + 3, _'zl_l_%’l

f J(=i(v] = 1 =21, b)f (v — 1 — 21), b)db,
B

and the integral

I F(=i(v] — 1 = 21),b)f(i(v] — 1 — 2I),b)db
B

is nonnegative,
(iil) the operators P, defined by

(v

P f(z) = *’#Lﬂ“i(lvl —1=2I),b)e” iy~ 1 -21,5(2)db

are jointly orthogonal projections,
and (iv) denote A}(D) = P,I*(D,dp,), then the map f(z)— f(4,b) extends to an
unitary isometry from

k
A%(D) = L¥(D,du,) © ), ®A4)(D)
=0
onto
[XR* x B,2p,(A)dAdb).

THE PROOFs OF THEOREM 1 AND 2. If v = 0, these are the results of Helgason
[4]. If v > 1 and is not an odd integer, these are the results of Peetre-Peng-Zhang
[5] (except (iv) of Theorem 2), and their proof holds also for the case 0 < v < 1.
Now we consider the other cases, and we still use the methods of [4] and [5], so
we give the details only for the points that differ.

Suppose that f € 2#(D). As in [5], there exists ge CF(R) such that

™ foy= j e”Mg(t)at,

and
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__ L[ 90 .
® JO=- 2n L sinht © d.
(It is not hard to check that the derivation of (7) and (8) in [5] holds for all ve R.)
Forv>1,
g (t) vedt — __.g’(t) eV gy
R smht q sinht
= —~2J‘ gtet =gy
R
= —2(v— l)f g(t)e! gy
R

= —2(v — ) f(—i(v — 1)).

Thus

Y=L i =)

Form L[ S0 g,

sinh ¢

Repeating this argument, we get

©) 70) = 217[ R s};f}?t (242 gy
¥ Z M=1=2 5 o —1— 2,

For v < —1, notice that
g (t) ——y[ g’(t) (—v—2yt
j sinht © dt L sinht © ydt
= 2f gt~ Ve
R

=2v+ I)I g(te " dt
R

= —2(v| — V)f(—i(v] — 1)),

we have
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1 [ 90

10 JO= -5 | S man Mo i - 1)

1 /
- Q(t) oV 2k= 2 g
21 Jg sinht

k — ———
+ ) 'Ll—z—’f(-iuvl —1-2Iy).
1=0 n

Since f(4) = f(—4), we have

(11) g(t) = % L f(A)cos Atdt,
and
(12) g = — —2% J W ysin .

fv<Oandv+ —1,—3...,then 0 £ —v — 2k — 2 < 1, the integral

e( v—2k—2)t
f f L Jf(M)sinAtdedA

sinh ¢t
is absolutely convergent. By the formula of integral transform (see [2], P. 88)

J o~V 2k=2 nsinh(nA)
R

sinhe o Adt = cosh(mA) + cos(nv)’

we then get
1 e( —v—2k-2)t
(13) F0) e L Af(A) J.R oS Atdtd

1-2I

sy Pl — 1 - 21)

v —

ff(/l)p (Ada + Z f(—l(l | —1-=20)

Forv = +1, +3,...,if westill follow the above argument, we have to deal with
the integrals

eit
- sin Atdt.
q sinht

It is obvious that
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et é
J b1 sin Atdt = J Sinb sin Atdt.
R R

This integral is divergent. So we can not use the same argument as above. This is
a reason that [5] removes the case v =1,3,.... We have to deal with the
oscillatory factor in the integral (9). If v = 1,3,. .., then (9) become

(14) 70) = j e’ (J lf(l)sinltd}.)dt

sinht

k — R
+ I Lk Tk SN}

By (7), we know that f(1)e S(R) for AeR. For any N > 0, the integral

N e—t
f : J Af(A)sin AtdAde
R

_n Sinht¢

is absolutely convergent. Hence

et . R .
(15) L oht ( L Af(A)sin Atdl)dt = lim Lv pr L Af(A)sin AtdAdt

N-w

. Noet |
= 131-1.!:) L/lf(l)(J:N peer smltdt)dl,

and

N e—t N
J - sin Atdt = 2f cothtsin Atdt
_y sinht 0

N -t

N . N e 2 2
=2| (cotht— 1)sinAtdt + 2| sinAtdt=2 : sinAtdt + — — —cos Nt,
0 0 0 sinh¢ A A

we get

N e—t
1 I '
1§  lim L AP (J_N o sin ltdt) i
j A3 ( f © __sintdt + )dA 2 lim J F(#)cos NAdA.
sinht Nowo

By Riemann-Lebesgue’s Lemma we have

a7 lim | f(A)cos NAidi = 0.

N-+wo JR

By the formula of integral transform (see [2], P. 91)
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® et (72|
Atdt = — - - .
L sinh y sin ) coth 7

Finally, we get

. Noemt 7
(18) lim J Af () (J_N o Sin ).tdt) di=n L Ffa coth—z—d}..

N—-w JR

Together, (14) through (18) give us

k

(19) fo = L FpA)di + Z Y1 h o1y,

Ifv=—1,-3,..., the same argument gives

oy —1-2 ,
(20) jo) = Rf (Dp(A)dA + ’Zo—n— f(=i(Qv] — 1 =21)).

Thus (13), (19) and (20) show that (i) of Theorem 1 holds for the special case
z = 0. The same arguments in [5] give the proofs of Theorem 1 and (i)}(iii) of
Theorem 2. Now we turn to the proof of (iv) of Theorem 2.

Notice that if f e 2*(D), then

(21) f(4,b) = f(4), VbeB.

Let dg be the Haar measure of SU(1, 1), and transfer du,(z) to a measure (also
denoted by dyu, on G defined by du,(g) = (1 — |g-0[%)"dg. It satisfies

Lm 1)f (90)du,(9) = L f(2)du,(2).
Assume that f, f, € 2(D), we define f; * f, by
fixfile) = f . @012 2{@~ YO} "Hg™ Y} dul9).

For f, € 2(D), f, e 2*(D), we have
(22) (fi* )" (4.b)

= J f f1@0) 26~ 2){(g~1Y(©0)} 3
D JSsu(,1)

{&” 1)’(2)}' 'b)” e e YT TIED 4y (g)dpy(2),

and
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(23) f O (O e .b)v TR gy ()
= J fz(z){g'(z)}-%ﬁ_l—-e“"“*“)<”-">ng'(z)|“duv(z).
D

gzb)’
Ifg = (% g), we have

1 1
(1—-gzby (1 —zg7'by (1 - gOb)"

Additionally we have (see [4], P. 83)

(25) {gz,b> = (2,97 'b> + <g0,b).
Using Fubini’s theorem in (22), (23)«25) and (21) then yield
(26) (fi* )" (4,b)

(24 {470} (7@} 2

=.[ f1(g0)e” ;. 5(g0) J S2(2)e” y 7=r5(2)dp(2)dp.(9)
su(L, 1) D

= f 14, b)f 2(4).

In particular if f;, f, € 2*(D), then
27 (f1* )" () = W ().

Since @, is real for AeR, if f€ 2%(D), then
(28) 70 = 7.
Also for any A, e R, there exists f, € 2*(D), such that
29 Jolho) %0
and for any 4,, 4,€R, 4, + 1,, there exists f € 2*(D), such that

(30) JG) + 7 (2).

Using Weierstrass-Stone’s theorem, (27)~30) imply that every h(1)e CF(R*) can
be uniformly approximated by the spherical transforms of elements of 2*(D).
Now we give the proof of Theorem 2 (iv) as follows.
For fe A}(D), we have (see [5])

(€2)] f*o32) = L &5.5(2)f (4, b)db.

Thus
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(32) JDf*¢§(Z)T&7d#v(Z) = Llf(/l,b)lzdb = Llf(—l,b)lzdb, A€eR.

Then Plancherel formula yields

m)LUw%wﬂ=LLwa%wﬂ%=4‘LU@wmwua

Suppose that Fe L(R* x B, 2p,(1)dAdb)and F is orthogonal to the generaliz-
ed Fourier transforms of 4}(D), then for every f e 2(D) and he 2* (D),

(34) 2[ f ]‘ (4, b)ﬁ(A)F(l, b)p,(A)dAdb = 0.
RJB
This implies that
f F(ALb)F(A,b)db =0, ae AeR".
B

Since { f(4,"): f € D(D)} is dense in L*(B) (for the proof, see §3), we deduce that
(35) F(A,b)=0, ae. (i,b)eR* xB.
This completes the proof of Theorem 2 (iv).

We conclude this section by the Paley-Wiener type theorem, which character-
ize the spherical transforms of 2*(D) and the generalized Fourier transforms of
2(D). Using the terminology of [4], a holomorphic function F(4) on Cis called an
entire function of exponential type R, if for any NeZ™,

supe RImA(1 4 |A)Y|F(A)| < oo.

AeC

A C>-function F(4,b) on C x Bis called an entire function of uniform exponen-
tial type R, if F(4, b) is holomorphic to 4, and for any NeZ*,

sup e RIma1 4 |AD¥ [F(4,b)| < co.

AeC,beB

THEOREM 3. Let veR. (i) F(4) is the spherical transform of f € 2*(D) if and
only if F(J) is an entire function of exponential type, and satisfies

F(3) = F(—A).

(ii) F(4,b)is the generalized Fourier transform of f € 2(D) if and only if F(, b) is
an entire function of uniform exponential type and satisfies

jehwﬂkw%=Juﬁuwn—Lm@.
B B

The proof, being similar to ones given in [4] and [7], is omitted.
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§3. Eigenspace representations.
For A€ C, we denote the eigenspace of [, by &3(D):
eyD) = {feC=(D): O,f = (1 + 2)f}.
The topology of £4(D) is the reduced topology of C*(D). Then we define the
eigenspace representation:
4oy O f@D{g@}5  feeiD).
The aim of this section is to study the reducibility of T**.

DerINITION. For ve R, AeC is called simple, if the map from L*(B) to C*(D)
given by

F) f(2) = L €;.5(2)F(b)db

is one to one.
LeMMA 1. AeC is simple if and only if
Afi(tv+1+2k), keZ'.

PROOF. Suppose that z = tanhre'®, b = ', then

—v—=1-—ii
2

2n
(38) flz)= —;7? J (coshr)™*1*4(1 — tanhre™ %)
0
(1 — tanhre®)52F(0 + ¢)do.
IfA=i(v + 1 + 2k), then
I )
E;J‘ e}, eiq(z)e‘(k+ l)odo = 0.
o
If A= i(—v + 1+ 2k), then
1 2n
—Z;I €}, enlz)e " * 1040 = 0.
0

Hence A is not simple. Let A 4 (+v + 1 + 2k). Expanding F(f)) into Fourier
series, we have

F@) = i a,e™.

n= — o

If
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1-ia

2= e
(39 EI;I (coshr)™**!*i%(1 — tanhre~ ")~ 32
o

y—1-ii

(1 — tanhre'®) 2 F(6 + ¢)dd = 0,

let r = 0, we get
(40) a, =0.
Differentiating with respect to r in (39), and let r = 0, we then get

v+14id —v+1+4+il .
—_—a,e'"? +———————+—la_1e'°’EO.

2 ! 2
Hence
a;=a_,=0.
By induction, differentiating n times, we get
a,=a_,=0.
Therefore F = 0, so A is simple. This completes the proof of Lemma 1.
Note. If 1 is simple, then {f(4,"): f € D(D)} is dense in L*(B), because if F(b)

satisfies
L f(A,b)F(b)db =0,  for any feP(D),
then
L e’ ;. 5z)F(b)db = L e} ,(2)F(b)db =0, foranyzeD,

and F = 0. This fact had been used in the proof of (iv) of Theorem 2.
For any Ae C and me Z, we define ¢} ,(z) by

42) @i m(2) = J e3,5(2)xm(b) db,

where x,,(e”®) = ¢™. It is easy to see @} o(z) = @}(z). We can give the explicit
expression for @} ,(2):
(43) @} m(€°2) = €m0} (2),
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44 @}, milzl)
—v+ l +iA
=(1 -z I(l — |2l By

F(l + i + s(m)(i+ m))
v+l+1).l ||m| 2 )

=(1 -z
F(1+M+s() )Imﬂ

A o em) 55 o s i),

-

~ tm(b)db

where

-1 m<O.

s(m)={l’ mz0,

(44) follows from an expansion of the integrand and term by term integration.
Clearly, ¢} .(2) e £;(D). Note that ¢} ,,(z) satisfies (43). The following fact is very
useful: if f ee}(D) satisfies

(45) f(€’z) = €™ f(2),
and

?3.m(2) # 0,
then f(z) = Co} ,(z) for some constant C. In fact, for ze D, z = tanhre, the
Casimir operator becomes
2 2

0 24 0
(46) 0, = ———a—r—~—2coth2r-a—r—4smh 2r—92~

0 . _,. 0 5
+2vtanhrar + 2vicosh r—éy—v + 2v

(see [5]). If f e&3(D) satisfies (45), let F(r) = f (tanhr). Then (46) implies that F(r)
satisfies

d*F '
47 —7 + (2coth2r — 2vtanhr) %1—:- + (—4m?*sin~22r

+ 2mvcosh™2r + (v — 1)2 + A)F = 0.

Expanding F(r) = ) =, a,(sinh )", substituting this into (47), we obtain a recur-
rence formula
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(48) (n+27° —mMa,,,
=—((n+ D> +m*+ v+ 22+ 2vm — n — 1)a,
[*32]
+ 2z (—=D¥m? + 2vm)a,_,_, for n=0,
and
(49) m?ag =0, (1 —m?*a, =0.

This means that
a,=0, for 0<n<|m,
Amj+1 = Amy+3 =... =0,
and
Qi +2> Ajm| + 4, - - - are determined uniquely by ayy,.

The above argument also tells us that there exists 0 & f(z) € &}(D) satisfying (45).
We consider the map from L?(B) to &}(D):

F(b)— f(2) = L e} »(z)F(b)db.

It is easy to see that this map is continuous. We denote its kernel by K}, which is
a closed subspace of L?(B), and denote its image by H}. Then H} can be given
a norm such that H} and {K}}* are isometric, in particular, if A is simple, H} is
isometric to L*(B). Thus H} becomes a Hilbert space with an orthogonal basis
{0}.m(2): @} m(2) + 0}. We denote the restriction of T"** to H} by T**. Itis easy to
check that T** is a representation and T** is unitary for AeR.

The following theorem gives the total characterization of the irreducibility of
the eigenspace representation 7%,

THEOREM 4. The eigenspace representation T** is irreducible if and only if
Af +i(+v+ 1+ 2k), for keZ®*.
In other words, T"* is irreducible if and only if both A and I are simple.
The proof of Theorem 4 can be obtained from the following three lemmas.

LEMMa 2. T%* is irreducible if and only if H} is dense in e5(D) and T** is
irreducible.

LeMMA 3. Hj is dense in £}(D) if and only if A is simple.

LEMMA 4. If A is simple, then T"* is irreducible if and only if Z is simple.
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THE PROOF OF LEMMA 2. Suppose that H} is dense in &j(D) and T™* is
irreducible. If E is a non-zero invariant closed subspace of T"'*, then E n H} + 0,
because there exists f € E such that f(0) + 0, and thus

L J‘Z" f(e2)d6 = f(0)p(z)e E N H}.
2n Jo

This means that E n H} is a non-zero invariant closed subspace of T"*. Since
T**isirreducible, E n H} = H}. Because H} is dense in }(D), E = &}(D),i.e. T"*
is irreducible.

Suppose that 7% * is irreducible. If V is a non-zero invariant subspace of T*%,
then V is a non-zero invariant subspace of 7*'* so V is dense in £}(D). Thus H} is
also dense in ¢3(D). Let

1 2 —i0,),imé 10.
S* @) = 5 f fle™*z)emdp;

then V * y,, < V. Since V is dense in ¢&}(D) and the map f+ f * y,, is continuous,
V * xtmis dense in €3(D) * x,.. Because &3(D) * 1, = Co} _,(2), and ¢} _,(z)€V,s0
V = H},ie. T"*is irreducible.

THE PROOF OF LEMMA 3. Suppose that 4is simple. This means that forallme Z,
©}.m(2) + 0. Let f e¢}(D). Expanding f(e'z) into Fourier series with respect to 6,

(50) f@%) = 3 Cal2)e™,

we know that (50) is absolutely convergent in the topology of C*(D). Then we
have

(51) Cp(2) = %J‘Zx f(e%z)em9 49,
0

It is clear that C,(z) e &}(D) and satisfies
C(€z) = €™ C,(2).
Thus C,,(z) = a,,@} ,.(2). This means that
N
f@) = lim }, a,0} ,(2).
N-w —-N

Conversely, suppose that 4 is not simple. From the expression of ¢} ,.(z) we
know that there exists meZ such that ¢} ,(z) = 0. Because that there exists
f(@) # 0 in }(D) satisfying f(e'’z) = ™ f(z), we know that H} is not dense in
&3(D).
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THE PROOFOF LEMMA 4. It follows from the definition that A is simple if and
only if the set

{F(b) = Y axe}"(z:): aceC, z,e D}
k
is dense in L*(B). Suppose that [ is simple and V is a non-zero invariant closed

space of T"* From the proof of Lemma 2 we know that ¢}(z)e V.
Notice that (see [S])

(52) 032 = {(g™ YO} {g~ (2} 3 Chold)e” , G0 db.
We get
(53) §ak<p;(z){(g;‘)'(z)}%

= L €3,5(2) ; a{gi YO}z e’ , 5(@:0)db

= L €;.5(2) ; a{(gc YO} €} @ 0)db.

Since Zis simple, ¥, a; {(g7 1)(0)}2 e} ,(z) is dense in L*(B). Thus V is dense in H},
and V = H}. So T**is irreducible. Conversely, if T"*is irreducible, notice that
A is simple and

¥ a0 {(gr (@)% areC, g, eSU(L, 1)}
k

as a non-zero invariant subspace of T"* is dense in H}. We get

{; a {5 1Y(0)}2 €% 4(9:0): a,€C, g, eSU(L, 1)}

is dense in L*(B). Thus 1 is simple.

As in Theorem 4.3 of [4], we can also give the integral representation of
eigenspace ¢}(D). Let A(B) denote the holomorphic function space on B, 4’(B) its
dual space. The element T of A'(B) is called a holomorphic functional (or
hyperfunction). For f € A(B) and T e A'(B), we define formally

T(f)= Lf(b)dT(b)

THEOREM 5. Let J be simple, then the map
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T—f(x)= L €3.5(2)dT(b)

is a bijection from A'(B) onto ¢}(D).
We omit the proof.

§4. Irreducible decomposition of T,
In §2, we establish the Plancherel formula which is equivalent to the irreducible
decomposition of the unitary representation T*. Now we give some further
discussion.

THEOREM 6. For veZ, the unitary representation T" of SU(1, 1) is decomposed
uniquely into the sum of the irreducible representations as follows

(* 0

@ ifv=0, T~ | w50, R)dA

@ ifv=24,..., T ~ oo (Adl®ry @nf ... ®n},
Ur‘w

(i) if ve =2 —4,..., T'~| w50 )dA®n ,®n ... @1,

i) ifv=13,..., T ~ 0, (A)dl®ni Drl...®n),

W ifv=1-3,.., T ~ TP (AN)dA PR @ n’s... D7, ,
J T

where 1% should be replaced by =] in (iv) and n_, in (v) respectively.

Proor. First let us describe the discrete parts. As in [5], we can write out the
reproducing kernel K}(z, w) of A}(D)

’ v —1-21 ) _—
(54) Ki(z,w) = —‘“‘T’“ R € _ivl-1- 21),b(z)ei(|v; -1- Zl),b(w) db.

It is easy to verify that

(55) Kl(gz,gw) = K}(z,w){g'(2)} "2 {g(w)} 3.
If v > 1, we have (see [5])
o oy v=1=21 1
(56) K}(z,w) = T

|z — wf? )
Fl—-Ll—-v+ 11— ,
( (1 =1z — Iw?)
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in particular,
v—1 1
K —_——
oW = Ty

is just the reproducing kernel of the weighted Bergman space A%D), (x = v — 2),
i.e. Ay(D) = A%D). And A;(D) has an orthogonal basis (again see [5])

. I+ n) . ) 2|2 ;
(57) sl,n(z)z‘ n! F _I,l_v+1an+1)_ 1""]2'2 z, ng -1
- el 0
Let T"' denote the restriction of T to A}(D). Then for ky = < 0 e‘“’) , we
have
(58) T™!(ko)e} nl2) = €0 F 2%} (2).

This shows that T"' has the lowest weight v — 2] for v = 2,3,4,.... Therefore
™' ~n},, v=23,4,...

(see [6]). And itis clear that A}(D)and 4*~2(D), as SU(1, 1)-modules, are unitarily
equivalent.

Ifv<0letyg = (; 5 ) satisfy gw = 0, then (55) yields

(59)  Ki(zw) = K}(g2,0){g ()} H{gW)}% = (1 — 2w)"'K}(g2,0)

G =12
T

= (1 — 29 (1 —lgz)

J (1 — gzb)'(1 — gzb)~™*'db
B

L B ¢ e A S e L
B n (1 — zw)

{(1 — |z%)(1 - lez)}-lF(——l,Ivl _bL |z — w|2)

11— 2|2 | — zw|?

M =1 =2 = M = ™
- n (1 — zw)

F(—l,l + 1= (1 =231 = w? )"

Here we have used the formula (see [3], P. 64)
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F(a,b;c;z) = (1 — 2)™°F (a,c - b;c;szl).
Comparing (56) with (59), it is easy to see that the map
U f@=Q1 -2 f@2)

is an unitary isometry from A}(D) to 4}"'(D), where

AP\D) = {f 2y fR)e AP'(D)}-
So A}(D) has orthogonal basis:
(60) ga2) =0 —2Meh@,  nz -1
Since
(61) T*!(ko)e} n(2) = €' 2%} (2),

we see that T"! has the highest weight v + 2l forv = —2, —3, —4,..., and
T ' ~ny 0, v=—2 -3, —4,....

Clearly A}(D) and A**2(D), as SU(1, 1)-modules, are unitarily equivalent.

Now we turn to the continuous part. Let v= +1, £3,... and AeR\{0} or
v= +2,+4,...and AcR. We have seen that { {(1,*): f € (D)} is dense in L*(B),
H; is a Hilbert space with an orthogonal basis {¢}, ,(z): meZ} and T** is an
irreducible unitary representation. Since

(62) T* Hke)p} m(2) = €720} (),
we know that
% ~ 78, for v=0,+2 14,...,
and
T™*~nd, for v=+1,43,....

Finally let us look at the point A = 0 for v = +1, +3,.... Notice that
1
pv(O)—-~2—7;2-=1=0, as v=+1,4+3,....

These cases should not be ignored. Suppose v = 1,3,...,. From the expression
(44) of @} ,(2), we see that ¢} ,(z) = 0 provided m < 15~ So H} has an orthog-
onal basis {¢} ,(z): m = 13%,35¥ .. }. Let L be the subspace of L*(B) spanned by
{xm(b): m = 152,352 .} Then {f(0,b): f € D(D)} n Lis dense in L. This can be
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proved by the argument found in the note after Lemma 1. Thus (62) tells us that
T™° has the lowest weight (v + 2-15%) = 1 and

T"° ~ 7}, v=1,3,....
The same argument shows that
™°%°~nZ,, v=—1,-3,....

REMARK. In particular, in the case of v=1, ¢§ ,(z) = z" for m 2 0 and
@4 m(z) = 0 for m < 0. Then Hg is nothing but the Hardy space

H*D) = { f(2):  fis holomorphic in D and

1 (> e\
| fllgz = sup (—Z;f If(re'”)|2d0> <oo}.

0<r<i 0

Now HY (v = 3,5,...)and H}, as SU(1, 1)-modules, are unitarily equivalent, thus
they are unitarily equivalent to the Hardy space H%(D). And we know that if
feH}, f £ 0, then f ¢ L*(D,du,). This gives an explanation for the reason that
one considers the Hardy space H(D) as the limit of the weighted Bergman spaces
A*(D)as o — —1.

We would like to thank the referee for some valuable comments.
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