COMPUTING AND ESTIMATING THE GLOBAL DIMENSION IN CERTAIN CLASSES OF BANACH ALGEBRAS

YU. SELIVANOV

Let A be a Banach algebra (always nonzero). In this work, we shall study the homological dimension of a certain Banach A-module $M_+(A)$ of right multipliers on A. It turns out that the inequality

$$dh_A M_+(A) \leq dh_A A + 2$$

holds and that this inequality often becomes equality. In that case A is not projective, we have $dh_A M_+(A) \ge 3$ and, as a consequence,

$$dg A \ge 3$$
.

The latter estimate holds, for example, for all topologically nilpotent commutative Banach algebras and for a wide class of algebras $l^1(\omega)$, where ω is a radical weight and multiplication is by convolution.

The key result of the paper is Theorem 1. In this theorem, the homological dimension of an A-module X is calculated, given that the reduced module X_{II} has certain properties. In Corollary 2, Theorem 1 is used to prove the homological infinite-dimensionality of A provided that $dh_A A_{II} \leq dh_A A$ and the operator

$$\sigma: A \stackrel{\hat{\otimes}}{\otimes} A \to A^2: a \underset{A}{\otimes} b \mapsto ab$$

is not an isomorphism; in particular, we have $\mathrm{dh}_A A = \infty$ for algebras such as the sequence algebra l_2 with coordinatewise multiplication and the algebra $\mathscr{HS}(H)$ of Hilbert-Schmidt operators on a Hilbert space H. In Theorem 2, it is shown that $\mathrm{dh}_A A = \infty$ for all nilpotent Banach algebras. The homological dimension of the A-module $M_+(A)$ is calculated in Theorem 3. Finally, Theorems 4–6 are devoted to estimating the global dimension of algebras $l^1(\omega)$ and topologically nilpotent Banach algebras.

Received February 6, 1992.

§1. Preliminaries.

Let A be a Banach algebra, not necessarily with an identity, and let A_+ be the Banach algebra obtained by adjoining an identity to A. By an A-module we mean a left Banach module over A. The categories of A-modules and Banach spaces will be denoted by A-mod and Ban; the corresponding sets of morphisms from X to Y will be denoted by Ah(X, Y) and $\mathcal{B}(X, Y)$. The fundamental homological concepts for the categories of Banach modules (the homological dimension, $dh_A X$, of $X \in A$ -mod, projectivity, the global dimension, dg A, of A, the cohomology groups of A and others) are assumed to be known; they are set out in detail in [1]. We review some considerations from this book.

The canonical morphism for an A-module X means the morphism $\pi \in {}_{A}h(A \mathbin{\hat{\otimes}} X, X)$ defined by $\pi(a \otimes x) = a \cdot x$ $(a \in A, x \in X)$. Here $A \mathbin{\hat{\otimes}} X$ is the A-module with the left outer multiplication given by $a \cdot (b \otimes x) = ab \otimes x$ $(a, b \in A, x \in X)$, where $\mathbin{\hat{\otimes}}$ denotes the projective tensor product of Banach spaces (see [2]).

The closure of the image of the morphism π is called the essential part of the A-module X and is denoted by $A \cdot X$. An A-module X is said to be essential if $A \cdot X = X$, and annihilator if $A \cdot X = 0$. We note that an essential A-module X is projective if and only if the morphism $\pi : A \hat{\otimes} X \to X$ is a retraction in A-mod.

We denote by A^2 the essential part, $A \cdot A$, of the A-module A. For each n > 2, A^n denotes $A \cdot A^{n-1}$. A Banach algebra A is said to be idempotent if $A^2 = A$, and nilpotent if $A^n = 0$ for some n.

Let E be a Banach space. $\mathcal{B}(E)$ and $\mathcal{K}(E)$ will denote the Banach algebras of all continuous and all compact operators on E respectively, and $\mathcal{N}(E)$ will denote the Banach algebra of all nuclear operators on E. We recall that a Banach space E is said to have the approximation property if every compact operator from an arbitrary Banach space into E can be approximated in norm by finite rank operators. The property is discussed in [1], [2], [3] and [4].

We denote by c_0 the Banach algebra of all sequences tending to zero, with coordinatewise multiplication. Finally, the sequence algebra $l_p(1 \le p < +\infty)$

consists of those
$$\xi = \{\xi_n\}$$
 for which $\|\xi\| = (\sum_{n=1}^{\infty} |\xi_n|^p)^{1/p}$ is finite.

§2. The reduced module and the homological dimension.

We recall (see [1, II, §5.3]) that there is the so-called reduced module $X_{II} = A \otimes X$ associated with any left A-module X. Let $\mathcal{X}: X_{II} \to X$ be the morphism of A-modules defined by $\mathcal{X}(a \otimes x) = a \cdot x (a \in A, x \in X)$.

We shall prove the following theorem.

THEOREM 1. Let A be a Banach algebra such that $dh_A A = n < \infty$, and let $X \in A$ -mod. Then, if $dh_A X_{II} > n + 1$, we have $dh_A X = dh_A X_{II}$, and if $dh_A X_{II} \le n$, then:

- (i) $dh_A X \leq n+2$;
- (ii) if $\mathcal{X}: X_{II} \to X$ is a coretraction in Ban, then $dh_A X < n + 2$;
- (iii) if $\mathcal{X}: X_{II} \to X$ is not a topologically injective operator, and A does not have a right identity, then $dh_A X = n + 2$.

We preface to the proof of Theorem 1 a lemma, which is related to [5, Theorem 1].

LEMMA 1. Let A be a Banach algebra, and let $\tau: X_0 \to X$ $(X_0, X \in A\text{-mod})$ be a morphism of A-modules. Further, let E_0 and E be Banach spaces, and $v: E_0 \to E$ an operator which is not topologically injective. Consider the morphism of A-modules

$$\Delta \colon X_0 \mathbin{\hat{\otimes}} E_0 \to (X \mathbin{\hat{\otimes}} E_0) \oplus (X_0 \mathbin{\hat{\otimes}} E)$$

$$\Delta(x \otimes y) = (\tau(x) \otimes y, x \otimes \nu(y)) (x \in X_0, y \in E_0).$$

Then the following are equivalent:

- (i) the morphism Δ is a coretraction;
- (ii) the morphism τ is a coretraction.

PROOF. Trivially, (ii) implies (i). To show that (i) implies (ii), suppose (i) holds. This means that there exists a morphism of A-modules

$$\nabla : (X \mathbin{\hat{\otimes}} E_0) \oplus (X_0 \mathbin{\hat{\otimes}} E) \to X_0 \mathbin{\hat{\otimes}} E_0$$

that is a left inverse to Δ . Let $\varphi: X \mathbin{\hat{\otimes}} E_0 \to X_0 \mathbin{\hat{\otimes}} E_0$ (respectively, $\psi: X_0 \mathbin{\hat{\otimes}} E \to X_0 \mathbin{\hat{\otimes}} E_0$) be the restriction of ∇ to the first (respectively, second) direct summand. Then φ and ψ are morphisms of A-modules such that

(1)
$$\varphi(\tau(x) \otimes y) + \psi(x \otimes \nu(y)) = x \otimes y \quad (x \in X_0, y \in E_0).$$

Since the operator v is not topologically injective, there exists a sequence $\{y_n\}_{n=1}^{\infty}, y_n \in E_0$, such that for all $n \|y_n\| = 1$, and $\|v(y_n)\| = \alpha_n$, where $\lim_{n \to \infty} \alpha_n = 0$. Let $f_n \in (E_0)^*$, $1 \le n < \infty$, be such that $f_n(y_n) = \|f_n\| = 1$. For $n = 1, 2, \ldots, z \in X$, set

$$\varphi_n(z) = (1_{X_0} \, \hat{\otimes} \, f_n) \varphi(z \otimes y_n).$$

Then clearly, for each n, φ_n : $X \to X_0$ is a morphism of A-modules. From (1), we see that

$$\varphi_n(\tau(x)) + (1_{X_0} \hat{\otimes} f_n) \psi(x \otimes v(y_n)) = x$$

for all n and for all $x \in X_0$. It is clear that

$$\|(1_{X_0} \mathbin{\hat{\otimes}} f_n) \psi(x \otimes \nu(y_n))\| \leq \|\psi\| \|x\| \alpha_n$$

for $n = 1, 2, ..., x \in X_0$. It follows that for all n

$$\|\varphi_n \circ \tau - 1_{X_0}\|_{\mathscr{B}(X_0)} \leq \|\psi\| \alpha_n.$$

Since $\lim_{n\to\infty} \alpha_n = 0$, there is a number m such that

$$\|\varphi_m \circ \tau - 1_{X_0}\| < 1.$$

Now consider the Banach algebra $B = {}_A h(X_0, X_0)$, which is a closed subalgebra in $\mathscr{B}(X_0)$. It is clear that the element $e = 1_{X_0}$ is an identity of B. From (2), for $b = \varphi_m \circ \tau$ we have $||b - e||_B < 1$. It follows that b is an invertible element of the algebra B. Set $\zeta = b^{-1} \in B$. Then clearly $\zeta \circ \varphi_m \circ \tau = 1_{X_0}$. Consequently, the morphism of A-modules $\zeta \circ \varphi_m$ is a left inverse to τ , i.e., (ii) holds.

PROOF OF THEOREM 1. By Theorem V.2.1 of [1], for some A-module W there exist short admissible complexes of A-modules

$$(3) 0 \leftarrow W \leftarrow V \stackrel{\Delta_1}{\leftarrow} A \hat{\otimes} X_{II} \leftarrow 0$$

and

$$(4) 0 \leftarrow X \leftarrow U \leftarrow W \leftarrow 0,$$

where $V = (A_+ \hat{\otimes} X_{\Pi}) \oplus (A \hat{\otimes} X), U = (A_+ \hat{\otimes} X) \oplus X_{\Pi}$

$$\Delta_1(a \otimes x) = (a \otimes x, a \otimes \mathcal{X}(x)) \quad (a \in A \subset A_+, x \in X_n).$$

Since $dh_A A = n$, it is clear that $dh_A A \otimes X_{II} \le n$ and $dh_A V \le n$. Using (3) and Proposition III.5.5 of [1], we have

(5)
$$\operatorname{dh}_{A} W \leq \max \left\{ \operatorname{dh}_{A} V, \operatorname{dh}_{A} A \otimes X_{\Pi} + 1 \right\} \leq n + 1.$$

Set $m = dh_A X_H$, and suppose that $n + 1 < m < \infty$. Using Proposition III.5.5 of [1], (4) and (5), we have $dh_A U = m$ and

(6)
$$\operatorname{dh}_{A} X \leq \max \left\{ \operatorname{dh}_{A} U, \operatorname{dh}_{A} W + 1 \right\} \leq m.$$

The short admissible complex (4) defines, for any A-module Y, the exact sequence of groups

(7)
$$\ldots \to \operatorname{Ext}_{A}^{m}(X, Y) \to \operatorname{Ext}_{A}^{m}(U, Y) \to \operatorname{Ext}_{A}^{m}(W, Y) \to \ldots$$

(see [1, Theorem III.4.4]). Since $dh_A U = m$, there exists an A-module Y such that $\operatorname{Ext}_A^m(U, Y) \neq 0$. It follows from (5) that $\operatorname{Ext}_A^m(W, Y) = 0$. Since the sequence (7) is exact, we have $\operatorname{Ext}_A^m(X, Y) \neq 0$. In view of (6), $dh_A X = m = dh_A X_H$.

We shall prove now that, if $m = \infty$, then $dh_A X = \infty$.

Indeed, if $dh_A X < \infty$, then, using (4) and Proposition III. 5.5 of [1], we have, in view of (5),

$$m = \mathrm{dh}_A U \leq \max \{ \mathrm{dh}_A X, \mathrm{dh}_A W \} < \infty.$$

Now suppose that $m \le n$. Using (4) and (5), we have

$$dh_A X \leq max \{dh_A U, dh_A W + 1\} \leq n + 2,$$

i.e., (i) holds. If, in addition, $\mathcal{X}: X_{\Pi} \to X$ is a coretraction in Ban, then the short exact sequence

$$(8) 0 \leftarrow X/A \cdot X \leftarrow X \leftarrow X_{II} \leftarrow 0$$

is admissible. Using the obvious isomorphism of A-modules between $X/A \cdot X$ and $C \otimes X/A \cdot X$, where $C = A_+/A$ is the one-dimensional annihilator A-module, we see that $dh_A X/A \cdot X \leq n+1$. Using (8), we have

$$dh_A X \leq max \{dh_A X/A \cdot X, dh_A X_{II}\} \leq n+1$$

i.e., (ii) holds.

We now assume that $m \le n$, that $\mathcal{X}: X_{\Pi} \to X$ is not a topologically injective operator and that A does not have a right identity. To obtain a contradiction, suppose that $dh_A X < n + 2$. Then, using (4) and Proposition III.5.5 of [1], we have

(9)
$$dh_A W \le \max \{dh_A U, dh_A X - 1\} < n + 1.$$

Let us consider the case where n > 0. The short admissible complex (3) defines, for any A-module Y, the exact sequence of groups

(10)
$$\ldots \to \operatorname{Ext}_{A}^{n}(V, Y) \to \operatorname{Ext}_{A}^{n}(A \otimes X_{II}, Y) \to \operatorname{Ext}_{A}^{n+1}(W, Y) \to \ldots,$$

where $\operatorname{Ext}_A^{n+1}(W,Y)=0$, in view of (9). Since the A-module $A_+ \mathbin{\hat{\otimes}} X_{\Pi}$ is projective, it follows that

$$\operatorname{Ext}_A^n(V,Y)=\operatorname{Ext}_A^n(A\mathbin{\hat\otimes} X,Y),$$

recalling that n > 0. Therefore, the segment (10) of the long exact sequence for the group Ext takes the form

$$\operatorname{Ext}_{A}^{n}(A \otimes X, Y) \xrightarrow{\delta} \operatorname{Ext}_{A}^{n}(A \otimes X_{\Pi}, Y) \to 0.$$

Consequently, the morphism of groups $\delta = \operatorname{Ext}_A^n(1_A \mathbin{\hat{\otimes}} \mathscr{X}, Y)$ is an epimorphism for any A-module Y.

Since $dh_A A = n$, there is a projective resolution

$$(11) 0 \leftarrow A \leftarrow P_0 \stackrel{d_0}{\longleftarrow} P_1 \stackrel{d_1}{\longleftarrow} \dots$$

of the A-module A with $P_k = 0$ for k > n. One can compute the morphism δ considered above by using the following commutative diagram

$$0 \leftarrow A \, \hat{\otimes} \, X_{\Pi} \leftarrow P_0 \, \hat{\otimes} \, X_{\Pi} \stackrel{d_0 \, \hat{\otimes} \, 1}{\longleftarrow} \, P_1 \, \hat{\otimes} \, X_{\Pi} \stackrel{d_1 \, \hat{\otimes} \, 1}{\longleftarrow} \, \dots$$

$$\downarrow 1 \, \hat{\otimes} \, \mathcal{X} \qquad \qquad \downarrow 1 \, \hat{\otimes} \, \mathcal{X} \qquad \qquad \downarrow 1 \, \hat{\otimes} \, \mathcal{X}$$

$$0 \leftarrow A \, \hat{\otimes} \, X \leftarrow P_0 \, \hat{\otimes} \, X \stackrel{d_0 \, \hat{\otimes} \, 1}{\longleftarrow} \, P_1 \, \hat{\otimes} \, X \stackrel{d_1 \, \hat{\otimes} \, 1}{\longleftarrow} \, \dots$$

obtained from (11). It is easy to check that the morphism of groups δ is induced by the operator

$$\lambda: {}_{A}h(P_n \hat{\otimes} X, Y) \rightarrow {}_{A}h(P_n \hat{\otimes} X_{II}, Y),$$

where $\lambda = {}_{A}h(1_{P_n} \hat{\otimes} \mathcal{X}, Y)$.

Now set $Y = P_n \otimes X_H$, and consider the element defined by $1_y \in {}_A h(Y, Y)$, of the group

$$\operatorname{Ext}_{A}^{n}(A \otimes X_{\Pi}, Y) = {}_{A}h(Y, Y)/\operatorname{Im} \psi_{\Pi},$$

where $\psi_{\Pi} = {}_{A}h(d_{n-1} \hat{\otimes} 1_{X_{\Pi}}, Y)$. This element belongs to Im δ , since δ is an epimorphism. It follows that there exist morphisms of A-modules ξ : $P_{n-1} \hat{\otimes} X_{\Pi} \to Y$ and $\eta: P_n \hat{\otimes} X \to Y$ such that

$$1_{\nu} = \psi_{\Pi}(\xi) + \lambda(\eta).$$

But $\psi_{\Pi}(\xi) = \xi \circ (d_{n-1} \hat{\otimes} 1_{X_{\Pi}})$ and $\lambda(\eta) = \eta \circ (1_{P_n} \hat{\otimes} \mathcal{X})$, and hence $x \otimes y = \xi(d_{n-1}(x) \otimes y) + \eta(x \otimes \mathcal{X}(y))$ $(x \in P_n, y \in X_{\Pi}).$

Consequently, the morphism

$$\Delta: P_n \mathbin{\hat{\otimes}} X_{\Pi} \to (P_{n-1} \mathbin{\hat{\otimes}} X_{\Pi}) \oplus (P_n \mathbin{\hat{\otimes}} X),$$

defined by

$$\Delta(x \otimes y) = (d_{n-1}(x) \otimes y, x \otimes \mathcal{X}(y)) \quad (x \in P_n, y \in X_{\Pi}),$$

is a coretraction. From Lemma 1 we see that the morphism $d_{n-1}: P_n \to P_{n-1}$ is a coretraction. But then obviously $dh_A A < n$. Since $n = dh_A A$, we obtain a contradiction. Thus, if n > 0, then $dh_A X = n + 2$.

Now let n = 0. From (9), the A-module W is projective. Therefore, the short admissible complex (3) splits. It follows that the morphism of A-modules $A_1: A \otimes X_{\Pi} \to V$ is a coretraction. From Lemma 1 we see that the morphism of A-modules $i: A \to A_+$ (the natural embedding of A in A_+) is a coretraction. Then A has a right identity. But we have assumed that A does not have right identity. This finishes the case where n = 0; and the theorem is completely proved.

COROLLARY 1. Let X be a Banach module over a biprojective Banach algebra

A which does not have a right identity. Then, if $\mathcal{X}: X_{\Pi} \to X$ is not a topologically injective operator, then $dh_A X = 2$.

The above corollary shows, for example, that $dh_{l_1}c_0 = 2$ (see [6]) and that $dh_{l_1}l_p = 2(1 .$

The second example is the algebra $A = E \otimes E^*$ (E is any infinite-dimensional Banach space) with multiplication given by

$$(x_1 \otimes f_1)(x_2 \otimes f_2) = \langle x_2, f_1 \rangle x_1 \otimes f_2.$$

From Corollary 1 we obtain that $dh_A \mathcal{K}(E) = dh_A \mathcal{B}(E) = 2$ (see [4]).

Now set X = A, and consider the operator $\sigma: A \mathbin{\hat{\otimes}} A \to A^2$ defined by $\sigma(a \mathbin{\otimes} b)$ = $ab \ (a, b \in A)$. From Theorem 1 we obtain the following corollary.

COROLLARY 2. Let A be a Banach algebra such that the operator $\sigma: A \ \hat{\otimes} A \to A^2$ is not an isomorphism. Then, if $dh_A A_{II} \leq dh_A A$, then $dh_A A = \infty$.

For example, if $A = l_2$ with coordinatewise multiplication, then $A_{II} = l_1$, and $dh_A l_1 = 0$. Therefore, dh_I , $l_2 = \infty$ and hence $dg l_2 = \infty$.

The second example is the algebra $A = \mathcal{H}\mathcal{S}(H)$ of Hilbert-Schmidt operators on a Hilbert space H. It is easy to see that $A_{II} = \mathcal{N}(H)$ and hence $dh_A A_{II} = 0$. By Corollary 2, $dh_A A = \infty$ and $dg A = \infty$.

The third example is the algebra $A = \mathcal{N}(E)$, where E is a Banach space without the approximation property. One can show that $A_{II} = E \, \hat{\otimes} \, E^*$, and $\sigma : A \, \hat{\otimes} \, A \to A$

 A^2 is the so-called trace homomorphism Tr: $E \otimes E^* \to \mathcal{N}(E)$ defined by $\operatorname{Tr}(x \otimes f)(y) = \langle y, f \rangle x$ $(x, y \in E, f \in E^*)$. Since E does not have the approximation property, Ker Tr $\neq 0$ (see [2]). It is easy to see that $\operatorname{dh}_A A_{II} = 0$. From Corollary 2, we have $\operatorname{dh}_{\mathcal{N}(E)} \mathcal{N}(E) = \infty$, and $\operatorname{dg} \mathcal{N}(E) = \infty$ (see [4]).

THEOREM 2. Let A be a nilpotent Banach algebra. Then $dh_A A = \infty$ and, as a consequence, $dg A = \infty$.

The main part of the proof of Theorem 2 is the following lemma.

LEMMA 2. Let A be a Banach algebra without a right identity, and let $dh_A A = n < \infty$. Then, if for some $k \ge 2 dh_A A/A^k = n + 1$, then $dh_A A/A^{k+1} = n + 1$.

PROOF OF LEMMA. Consider the short admissible complex of A-modules

$$0 \leftarrow A_+/A \leftarrow A_+/A^k \leftarrow A/A^k \leftarrow 0.$$

Using Proposition III.5.5 of [1] and the equality

 $dh_A A/A^k = n + 1$, we have

(12)
$$dh_A A_+/A^k \le \max \{dh_A A_+/A, dh_A A/A^k\} \le n+1.$$

We can assume that $A^k \neq A^{k+1}$. Set $X = A_+/A^k$, then $X_{II} = A/A^{k+1}$ (see [1, Theorem II.3.17]), and Ker $\mathcal{X} = A^k/A^{k+1} \neq 0$. Applying Theorem 1 to X, from (12) we find that $dh_A X_{II} = n + 1$. Hence $dh_A A/A^{k+1} = n + 1$.

PROOF OF THEOREM 2. Let $m \ge 2$ be such that $A^m = 0$ and $A^{m-1} \ne 0$. To obtain a contradiction, suppose that $dh_A A = n < \infty$. It is clear that $A \ne A^2$ and that A-module A/A^2 is an annihilator A-module. This implies that

$$dh_A A/A^2 = dh_A C \otimes A/A^2 = n + 1.$$

Using Lemma 2, we have $dh_A A/A^k = n + 1$ for each $k \ge 2$. In particular, if k = m, then

$$dh_A A = dh_A A/A^m = n + 1.$$

But we have assumed that $dh_A A = n$. Therefore we obtain a contradiction. Consequently, $dh_A A = \infty$, and the theorem is proved.

We recall that an A-bimodule X is said to be right-annihilator if $x \cdot a = 0$ for all $x \in X$, $a \in A$. Each right-annihilator Banach A-bimodule X can be regarded as the A-bimodule $\mathcal{B}(C, X)$. Theorem 2 and the formula

$$\mathcal{H}^n(A, \mathcal{B}(C, X)) = \operatorname{Ext}^n_A(C, X)$$

(see [1, Theorem III.4.12]) yield the following corollary.

COROLLARY 3. Let A be a nilpotent Banach algebra. Then for any n there exists a right-annihilator Banach A-bimodule X such that $\mathcal{H}^n(A, X) \neq 0$.

§3. Modules of right multipliers and estimating the global dimension.

Let A be a Banach algebra. If we set

 $M_r(A) = {}_A h(A, A) = \{ T \in \mathcal{B}(A) : T(ab) = aT(b), a, b \in A \}$, we get a left Banach A-module provided that the outer multiplication is defined by

$$(a \cdot T)(b) = T(ba) \quad (a, b \in A).$$

It is clear that $M_r(A)$ contains the identity operator 1_A . We consider the morphism of A-modules $R: A_+ \to M_r(A)$ given by $R(a) = a \cdot 1_A = R_a$, where $R_a(b) = ba$ $(b \in A)$. The closure of the image of this morphism is denoted by $M_+(A)$.

LEMMA 3. Let A be a Banach algebra, and set $X = M_+(A)$. Then, up to an isometric isomorphism of A-modules, the reduced module $X_{II} = A \otimes X$ coincides with A, and the morphism $\mathcal{X}: X_{II} \to X$ coincides with the restiction of R to A.

PROOF. For $a \in A$, let $\lambda(a) = a \otimes 1_A$. It is clear that λ is a morphism of A-modules from A into X_{II} , and that $\|\lambda\| \le 1$.

On the other hand, let $S: A \times X \to A$ be the bilinear operator given by S(a, T) = T(a), where $a \in A$, $T \in X \subset \mathcal{B}(A)$. It is easily verified that S is balanced (i.e., $S(ab, T) = S(a, b \cdot T)$ for any $a, b \in A$, $T \in X$). The operator from $A \otimes X$ into

A associated with S is denoted by μ . It is obvious that μ is a morphism of A-modules, that $\|\mu\| \le 1$ and that $\mu \circ \lambda = 1_A$. We shall prove now that $\lambda \circ \mu$ is the identity operator on $A \otimes X$, in which case $\lambda = \mu^{-1}$ and $\mu : A \otimes X \to A$ is an isometric isomorphism of A-modules.

Indeed, for any $a \in A$, $b \in A_+$ and for $T = R(b) \in X$ we have $(\lambda \circ \mu)(a \otimes T) = \lambda(T(a)) = T(a) \otimes 1_A = ab \otimes 1_A = a \otimes T$.

It remains only to note that $\mathcal{X} = R \circ \mu$, and the assertion is proved.

We define the multiplier seminorm $\|\cdot\|_{M}$ on a Banach algebra A by

$$||a||_{M} = \sup \{||ba|| : b \in A, ||b|| \le 1\}.$$

Clearly $||a||_M \le ||a||$ ($a \in A$). It is easy to see that, if A has a bounded left approximate identity, then $||\cdot||$ and $||\cdot||_M$ are equivalent. (The converse is false: Willis [7, Example 5] shows that there exists a commutative, separable Banach algebra in which the multiplier seminorm is equivalent to the original norm, but which does not have a bounded approximate identity.)

By combining Theorem 1 with Lemma 3 we get the following theorem.

THEOREM 3. Let A be a Banach algebra such that $dh_A A = n < \infty$. Then $dh_A M_+(A) \le n + 2$. If, in addition, $\|\cdot\|$ and $\|\cdot\|_M$ are not equivalent, and A does not have a right identity, then $dh_A M_+(A) = n + 2$.

From Theorem 3 we obtain the following corollary.

COROLLARY 4. Let A be a Banach algebra which does not have a right identity and in which the multiplier seminorm is not equivalent to the original norm. Then $dg A \ge 2$.

We recall that the above estimate of the global dimension was known earlier for all commutative Banach algebras with infinite spectrum (see [8]) and also for some other classes of Banach algebras (see [9, Theorem 5] and [10]).

We pick out another corollary of Theorem 3.

COROLLARY 5. Let A be a non-projective Banach algebra in which the multiplier seminorm is not equivalent to the original norm. Then $dg A \ge 3$.

The following corollary is a consequence of Corollary 5, Theorem IV.3.16 of [1] and Lemma of [11].

COROLLARY 6. Let A be a non-idempotent commutative Banach algebra in which the multiplier seminorm is not equivalent to the original norm. Let A satisfy at least one of the following conditions:

- (i) ∞ belongs to the Shilov boundary of the spectrum of the algebra A_{+} ;
- (ii) A is radical.

Then dg $A \ge 3$.

For example, let A be the maximal ideal in the (local) Banach algebra $l^1(\omega)$, where ω is a radical weight (see [12]). We recall that the algebra $l^1(\omega)$ consists of those formal power series $a = \sum_{n=0}^{\infty} a_n X^n$ for which

$$||a|| = \sum_{n=0}^{\infty} |a_n| \, \omega_n < \infty.$$

Here $\omega = \{\omega_n\}$ is a real-valued function on $Z^+ = \{0, 1, 2, ...\}$ satisfying (i) $\omega_n > 0$ $(n \in Z^+)$, (ii) $\omega_{m+n} \leq \omega_m \omega_n (m, n \in Z^+)$ and (iii) inf $\omega_n^{1/n} = 0$. Multiplication in $l^1(\omega)$ is convolution and hence is given by the formula

$$(a*b)_n = \sum_{k=0}^n a_k \cdot b_{n-k} \quad (n \in \mathbb{Z}^+).$$

Then $l^1(\omega)$ is a local algebra, and its unique maximal ideal, $A = \{a = \sum a_n X^n \in l^1(\omega) : a_0 = 0\}$ is a radical algebra. It is obvious that the commutative Banach algebra A is always non-idempotent, and therefore (see [11]) the A-module A is not projective.

Theorem 4. Let ω be a radical weight for which there exists a constant C such that

(13)
$$\omega_{m+n+1} \leq C \omega_{m+1} \omega_{n+1} \quad (m, n \in \mathsf{Z}^+),$$

and let A be the maximal ideal in $l^1(\omega)$. Then $dg A \ge 3$ and, as a consequence, there exists an A-bimodule X such that $\mathcal{H}^3(A, X) \ne 0$.

PROOF. This follows from Corollary 6, since for such ω the multiplier seminorm on A is not equivalent to the original norm (see [12, Corollary 1.3 and Theorem 1.4]).

It was noted in [12] that a sufficient condition for (13) to hold is that the sequence $\{\omega_{n+1}/\omega_n\}$ be eventually decreasing. For example, set $\omega_n = e^{-\eta_n}$, where $\eta_n = n^{\gamma} \ (\gamma > 1)$, or set $\omega_n = 1/n^n$ (or 1/n!); we obtain radical weight sequences on \mathbb{Z}^+ such that ω_{n+1}/ω_n is decreasing, and hence we have examples of algebras $l^1(\omega)$ with $dg \ l^1(\omega) \ge 3$.

Thus, for a radical weight function, the "normal" situation is that $dg l^1(\omega) \ge 3$. It is not clear to the author whether the bound $dg l^1(\omega) < 3$ holds for some ω . Gumerov [11] has shown that $dg l^1(\omega) = \infty$ for $\omega_n = e^{-\eta_n}$, where $\eta_n = n^{\gamma}(\gamma > 1)$.

Before giving the next result, we introduce some further notation.

For a Banach algebra A, we set

$$N_A(n) = \sup \{ \|a_1 a_2 \dots a_n\|^{1/n} : a_i \in A, \|a_i\| \le 1 \ (1 \le i \le n) \}.$$

It is clear that, for all $a_1, a_2, \ldots, a_n \in A$,

$$||a_1 a_2 \dots a_n|| \le N_A(n)^n ||a_1|| ||a_2|| \dots ||a_n||.$$

Following [13], we say that a Banach algebra A is topologically nilpotent if

 $\lim_{n\to\infty} N_A(n) = 0$. For example, the algebra (C[0,1],*) of all continuous com-

plex-valued functions on [0, 1], with supremum norm $\|\cdot\|_{\infty}$ and convolution multiplication

$$(f * g)(t) = \int_0^t f(s) g(t - s) ds,$$

is topologically nilpotent (see [14, Example 2.2]).

LEMMA 4. Let A be a Banach algebra in which the multiplier seminorm is equivalent to the original norm. Then there is a constant $\alpha > 0$ such that, for all n, $N_A(n) \ge \alpha$.

PROOF. Since $\|\cdot\|$ and $\|\cdot\|_M$ are equivalent, there is C > 0 with $\|a\| \le C \|a\|_M$ $(a \in A)$. Choose $a \in A$ such that $a \ne 0$. Since

$$||a||_{M} = \sup \{||ba|| : b \in A, ||b|| \le 1\},$$

for every $\varepsilon_1 > 0$ there is an element $b_1 \in A$ with $||b_1|| \le 1$, such that $||a||_M \le ||b_1 a|| + \varepsilon_1$. Hence

$$||a|| \leq C||b_1a|| + C\varepsilon_1.$$

We then obtain an inequality of type (14) for the element $b_1 a \in A$ to get, for every $\varepsilon_2 > 0$,

$$||a|| \le C^2 ||b_2 b_1 a|| + C^2 \varepsilon_2 + C \varepsilon_1$$

where $b_2 \in A$ with $||b_2|| \le 1$. Proceeding in this way we obtain that for every n and for every $\varepsilon > 0$ there are some $b_1, \ldots, b_n \in A$ with $||b_i|| \le 1$ $(1 \le i \le n)$, such that

$$||a|| \leq C^n ||b_n b_{n-1} \dots b_1 a|| + \varepsilon.$$

Since

$$||b_n b_{n-1} \dots b_1|| \le N_A(n)^n ||b_n|| ||b_{n-1}|| \dots ||b_1|| \le N_A(n)^n$$

we deduce that

$$||a|| \leq C^n N_A(n)^n ||a||.$$

It follows that $N_A(n) \ge \alpha$, where $\alpha = 1/C$.

Theorem 3 and Lemma 4 yield the following corollary.

COROLLARY 7. Let A be a topologically nilpotent Banach algebra. Then, if $dh_A A = n < \infty$, then $dh_A M_+(A) = n + 2$.

The following lemma is proved by Dixon.

LEMMA 5 (see [13, Lemma 4.2]). Let A be a Banach algebra and X a left Banach A-module such that the multiplication between algebra and module elements induces a surjective mapping $A \mathbin{\hat{\otimes}} X \to X$. Then there is a constant K > 0 such that, for all n, every $x \in X$ is expressible in the form

$$x = \sum_{i=1}^{\infty} a_{i1} a_{i2} \dots a_{in} \cdot x_i$$

for some $a_{i1}, a_{i2}, \ldots, a_{in} \in A, x_i \in X (1 \le i < \infty)$ with

$$\sum_{i=1}^{\infty} \|a_{i1}\| \|a_{i2}\| \dots \|a_{in}\| \|x_i\| \leq K^n \|x\|.$$

THEOREM 5. Let A be a projective idempotent Banach algebra. Then there is a constant $\alpha > 0$ such that, for all n, $N_A(n) \ge \alpha$.

PROOF. Since the left A-module A is essential and projective, the canonical morphism $\pi: A \mathbin{\hat{\otimes}} A \to A$ is a retraction in A-mod. It follows that π is surjective. Applying Lemma 5 for the case where X = A, we obtain, for any $x \in A$,

$$||x|| = ||\sum_{i=1}^{\infty} a_{i1} a_{i2} \dots a_{in} \cdot x_i||$$

$$\leq \sum_{i=1}^{\infty} ||a_{i1} a_{i2} \dots a_{in}|| ||x_i||$$

$$\leq \sum_{i=1}^{\infty} N_A(n)^n ||a_{i1}|| ||a_{i2}|| \dots ||a_{in}|| ||x_i||$$

$$\leq N_A(n)^n K^n ||x||.$$

If $x \neq 0$, we deduce that $N_A(n) \geq \alpha$, where $\alpha = 1/K$.

By combining Lemma 4 and Theorem 5 with Corollary 5 we get the following theorem.

THEOREM 6. Let A be an idempotent, topologically nilpotent Banach algebra. Then A is not projective and $dg A \ge 3$.

For example, let $A = \{ f \in C[0, 1] : f(0) = 0 \}$ with convolution multiplication. It is noted in [14, Example 5.3] that A is idempotent and topologically nilpotent. By Theorem 6, we have $dg A \ge 3$.

The following corollary is a consequence of Corollary 6, Lemma 4 and Theorem 6.

COROLLARY 8. Let A be a topologically nilpotent commutative Banach algebra. Then $dg A \ge 3$ and, as a consequence, there exists an A-bimodule X such that $\mathcal{H}^3(\mathcal{A}, X) \ne 0$.

For example, if A = (C[0, 1], *), then $dg A \ge 3$.

REFERENCES

- A. Ya. Helemskii, The homology of Banach and topological algebras, Kluwer, Dordrecht, 1989. (Russian original 1986.)
- A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16, 1955.
- 3. P. Enflo, A counterexample to the approximation problem, Acta Math. 130 (1973), 309-317.
- Yu. V. Selivanov, Homological characterizations of the approximation property for Banach spaces, Glasgow Math. J. 34 (1992), 229–240.
- Yu. V. Selivanov, Homological "additivity formulae" for Banach algebras, in "Int. Conf. on Algebra (Barnaul 20–25 Aug., 1991)", Novosibirsk, 1991.
- Yu. V. Selivanov, The values assumed by the global dimension in certain classes of Banach algebras, Vest. Mosk. Univ. ser. mat. mekh., 30 (1975), 37-42, Moscow Univ. Math. Bull. 30 (1975), 30-34.
- G. Willis, Examples of factorization without bounded approximate units, Proc. London Math. Soc., to appear.
- 8. A. Ya. Helemskii, The lowest values taken by the global homological dimensions of functional Banach algebras, Trudy sem. Petrovsk. 3 (1978), 223-242, Amer. Math. Soc. Trans. (1984).
- Yu. V. Selivanov, Biprojective Banach algebras, their structure, cohomology and relation with nuclear operators, Funkc. anal. i pril. 10(1976), 89-90; Functional Anal. Appl. 10 (1976), 78-79.
- Z. A. Lykova, A lower bound for the global homological dimension of infinite-dimensional CCR-algebras, Uspekhi Matem. Nauk 41 (1986), 197-198.
- R. V. Gumerov, Homological dimension of radical algebras of Beurling type with rapidly decreasing weight, Vest. Mosk. Univ. ser. mat. mekh. 5 (1988), 18-22.
- W. G. Bade, H. G. Dáles, K. B. Laursen, Multipliers of radical Banach algebras of power series, Mem. Amer. Math. Soc. 303, 1984.

- 13. P. G. Dixon, Topologically nilpotent Banach algebras and factorization, Proc. Roy. Soc. Edinburgh A, 119A (1991), 329-341.
- 14. P. G. Dixon, G. A. Willis, Approximate identities in extensions of topologically nilpotent Banach algebras, Proc. Roy. Soc. Edinburgh A, to appear.

CHAIR OF GENERAL MATHEMATICS MOSCOW AIRCRAFT TECHNOLOGICAL INSTITUTE N.A. TSIOLKOVSKY PETROVKA 27, MOSCOW K-31 103767, RUSSIA.