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COMPUTING AND ESTIMATING THE GLOBAL
DIMENSION IN CERTAIN CLASSES
OF BANACH ALGEBRAS

YU. SELIVANOV

Let A be a Banach algebra (always nonzero). In this work, we shall study the
homological dimension of a certain Banach A-module M , (A4) of right multipliers
on A. It turns out that the inequality

dhyM,(4)=<dh,A4+2

holds and that this inequality often becomes equality. In that case A is not
projective, we have dh, M, (4) = 3 and, as a consequence,

dgAd=3.

The latter estimate holds, for example, for all topologically nilpotent com-
mutative Banach algebras and for a wide class of algebras I'(w), where w is
a radical weight and multiplication is by convolution.

The key result of the paper is Theorem 1. In this theorem, the homological
dimension of an A-module X is calculated, given that the reduced module X ; has
certain properties. In Corollary 2, Theorem 1 is used to prove the homological
infinite-dimensionality of 4 provided that dh,A; < dh, A4 and the operator

AR A—> A%:a® b+ ab
4 4

is not an isomorphism,; in particular, we have dh, 4 = oo for algebras such as the
sequence algebra I, with coordinatewise multiplication and the algebra J#% (H)
of Hilbert-Schmidt operators on a Hilbert space H. In Theorem 2, it is shown that
dh,A4 = oo for all nilpotent Banach algebras. The homological dimension of the
A-module M , (4) is calculated in Theorem 3. Finally, Theorems 4-6 are devoted
to estimating the global dimension of algebras I' (w) and topologically nilpotent
Banach algebras.
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§1. Preliminaries.

Let A be a Banach algebra, not necessarily with an identity, and let A, be the
Banach algebra obtained by adjoining an identity to 4. By an A-module we mean
a left Banach module over A. The categories of A-modules and Banach spaces
will be denoted by 4-mod and Ban; the corresponding sets of morphisms from
X to Y will be denoted by ,h(X, Y) and #(X, Y). The fundamental homological
concepts for the categories of Banach modules (the homological dimension,
dh, X, of X € A-mod, projectivity, the global dimension, dg 4, of A4, the cohomol-
ogy groups of A and others) are assumed to be known; they are set out in detail in
[1]. We review some considerations from this book.

The canonical morphism for an A-module X means the morphism
ne h(A® X, X) defined by n(@a® x) = a*x (ac A,xeX). Here A® X is the
A-module with the left outer multiplication given by a-(b® x) =ab® x
(a,be A, x € X), where ® denotes the projective tensor product of Banach spaces
(see [2]).

The closure of the image of the morphism = is called the essential part of the
A-module X and is denoted by 4- X. An A-module X is said to be essential if
A-X = X, and annihilator if 4- X = 0. We note that an essential A-module X is
projective if and only if the morphism 7n: 4 ® X — X is a retraction in A-mod.

We denote by A2 the essential part, A- 4, of the A-module 4. For each n > 2,
A" denotes A+ A"~ !. A Banach algebra 4 is said to be idempotent if A2 = 4, and
nilpotent if 4" = 0 for some n.

Let E be a Banach space. #(E) and J¢(E) will denote the Banach algebras of all
continuous and all compact operators on E respectively, and .4"(E) will denote
the Banach algebra of all nuclear operators on E. We recall that a Banach space
E is said to have the approximation property if every compact operator from an
arbitrary Banach space into E can be approximated in norm by finite rank
operators. The property is discussed in [1], [2], [3] and [4].

We denote by c, the Banach algebra of all sequences tending to zero, with
coordinatewise multiplication. Finally, the sequence algebra /(1 < p < + o0)

@

consists of those ¢ = {£,} for which (€| = (Y. |&,/P)"/7 is finite.

n=1

§2. The reduced module and the homological dimension.
We recall (see [1, II, §5.3]) that there is the so-called reduced module
Xp = A® X associated with any left A-module X. Let &: Xig— X be the
morphisx:n of A-modules defined by '(a ® x) = a* x(a€ 4, xe X).

A

We shall prove the following theorem.
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THEOREM 1. Let A be a Banach algebra such that dh,A = n < 0, and let
X e A-mod. Then,if dh X > n + 1,wehavedh, X = dh X, andif dh Xz < n,
then:

() dh, X <n+2;

(ii) if ¥: Xy — X is a coretraction in Ban, then dh,X < n + 2;

(iii) if ¥ : Xy — X is not a topologically injective operator, and A does not have
a right identity, then dh, X =n + 2.

We preface to the proof of Theorem 1 a lemma, which is related to [5, Theorem
1].

LEMMA 1. Let A be a Banach algebra, and let 1: X, - X (X,, X € A-mod) be
amorphism of A-modules. Further, let E, and E be Banach spaces,and v:Eq — E an
operator which is not topologically injective. Consider the morphism of A-modules

A:Xo® Eg—> (X ® Eo) ®(Xo ® E)
Ax ® y) = (1(x) ® y, x @ v(y)) (x € Xy, y € Ey).

Then the following are equivalent:
(i) the morphism A is a coretraction;
(ii) the morphism t is a coretraction.

PRrOOF. Trivially, (ii) implies (i). To show that (i) implies (ii), suppose (i) holds.
This means that there exists a morphism of A-modules

V:(X®E))®(Xo ®E)— Xo ® Eo

that is a left inverse to 4. Let ¢: X ® Eo — X, ® E, (respectively, Y : X, ® E —
X, ® E,) be the restriction of V to the first (respectively, second) direct summand.
Then ¢ and  are morphisms of 4-modules such that

(1 )@Y+ YR v(Y)=x®y (xeXo,yeEy)

Since the operator v is not topologically injective, there exists a sequence
{¥n}E 1, yn€ Eo, such that for all n || y,|| = 1,and ||v(y,)ll = &,, where lim a, = 0.

Let f,e(Eo)*, 1 £ n < oo, besuchthat f,(y,) = | full = 1. Forn=1,2,...,z€ X,
set

?u(2) = (1x, ® )0z @ ).

Then clearly, for each n, ¢,: X — X, is a morphism of A-modules. From (1), we
see that

Palt(x)) + (Lx, ® LIY(x ® V(yw)) = x

for all n and for all x e X,,. It is clear that
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I(1x, ® £)¥(x @ v(yIIl < W1l l1x]l e

forn=1,2,...,xeX,. It follows that for all n
l@uot — lxollw(xo) < ¥l o

Since lim a, = 0, there is a number m such that

) lpmot — Lyl < L.

Now consider the Banach algebra B = 4h(X,, X,), which is a closed sub-
algebra in 2(X,). It is clear that the element e = 14 is an identity of B. From (2),
for b = ¢@,,o 1t we have ||b — e||g < 1. It follows that b is an invertible element of
the algebra B. Set { = b~! € B. Then clearly {° ¢,,ot = 1y, Consequently, the
morphism of A-modules {° ¢,, is a left inverse to 1, i.e., (ii) holds.

ProOF OF THEOREM 1. By Theorem V.2.1 of [1], for some A-module W there
exist short admissible complexes of A-modules

41

3 0WeVe-ARXy«0
and
@ XU We0,

where V = (4+ ® Xn) ®(A® X), U = (4+ ® X) ® Xp,
4,@a®x)=@®@x,a@ X(x)) (acAc A,,xeXy).

Since dh, A = n, it is clear that dh, A ® X; < nand dh,V < n. Using (3) and
Proposition I11.5.5 of [1], we have

®) dh,W < max{dh,V,dh,A® Xp+ 1} <n+ 1.

Set m = dh 4 X};, and suppose that n + 1 < m < oo. Using Proposition IT1.5.5
of [1], (4) and (5), we have dh, U = m and

(6) dh,X < max{dh,U,dh,W + 1} < m.

The short admissible complex (4) defines, for any A-module Y, the exact
sequence of groups

0 ... = Ext(X, Y) -» Ext™(U, Y) > Ext"(W, Y) - ...

(see [1, Theorem II1.4.4]). Since dh , U = m, there exists an A-module Y such that
Ext% (U, Y) # 0. It follows from (5) that Ext (W, Y) = 0. Since the sequence (7) is
exact, we have Ext(X, Y) £ 0. In view of (6), dh,X = m = dh, X};.

We shall prove now that, if m = co, then dh X = o0.
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Indeed, ifdh, X < oo, then, using (4) and Proposition IT1.5.5 of [ 1], we have, in
view of (5),

m = dh,U < max {dh, X, dh,W} < o0.
Now suppose that m < n. Using (4) and (5), we have
dh,X < max{dh,U,dh,W + 1} <n +2,
i.e., (i) holds. If, in addition, & : X;; —» X is a coretraction in Ban, then the short

exact sequence

x

8) 0-X/A - XXeXp<0

is admissible. Using the obvious isomorphism of 4-modules between X/A4-X
and C ® X/A- X, where C = A, /A is the one-dimensional annihilator A-mod-
ule, we see that dh,X/4-X < n + 1. Using (8), we have

dh,X < max{dh,X/A4-X,dh, X} <n+1,

i.e., (ii) holds.

We now assume that m < n, that 4': X; — X is not a topologically injective
operator and that 4 does not have a right identity. To obtain a contradiction,
suppose that dh,X < n + 2. Then, using (4) and Proposition IIL.5.5 of [1], we
have

) dh,W < max{dh,U,dh,X — 1} <n + 1.

Let us consider the case where n > 0. The short admissible complex (3) defines,
for any 4-module Y, the exact sequence of groups

(10) ... > Ext"(V,Y) > Ext} (A ® X, Y) » Ext’," L (W, Y) > ...,

where Ext’," (W, Y) = 0, in view of (9). Since the A-module 4, ® Xj; is projec-
tive, it follows that

Ext"(V,Y) = Ext}(4 ® X, Y),

recalling that n > 0. Therefore, the segment (10) of the long exact sequence for the
group Ext takes the form

Ext"(A® X,Y) - Ext} (A ® Xp, Y) > 0.

Consequently, the morphism of groups & = Ext’(1, ® %, Y) is an epimorphism
for any 4-module Y.
Since dh, A = n, there is a projective resolution

(11) OFA*'PO("“’O—PI&...
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of the A-module A with P, =0 for k > n. One can compute the morphism
& considered above by using the following commutative diagram
0 A® Xy Po®Xg <28 p @ x, £8L
l 19 1 12 l 19
0cARX «P,®X L8 pox A8 |

obtained from (11). It is easy to check that the morphism of groups ¢ is induced by
the operator

A 4h(P,® X, Y) > 4h(P, ® X1, Y),
where A= 4h(lp, ® X, Y).
Nowset Y = P, ® X5, and consider the element defined by 1 yE 4h(Y, Y), of the
group

Ext}; (A ® X, Y) = 4h(Y, Y)/Im Y,

where Y = hd,-; ® lx,, Y). This element belongs to Imd, since 6 is an
epimorphism. It follows that there exist morphisms of A-modules ¢:
P,_y® Xy — Yand n:P,® X — Y such that

1, = yn(&) + A).

But yp(8) =¢éod,-; ® lx,) and A(n) = r’O(lpn®3l”), and hence x® y =
$(@dn-1(X)®@Y) + n(x @ Z(y) (xeP,, yeXp)
Consequently, the morphism

AIP,@XH'—‘(Pn-l®Xﬂ)®(Pn®X)a
defined by
Ax®y)=(d,-1(x) ® y, x® X(y) (x€P,,yeXy),

is a coretraction. From Lemma 1 we see that the morphism d,_,:P, = P,_, is
a coretraction. But then obviously dh,A4 < n. Since n = dh, A, we obtain a con-
tradiction. Thus, if n > 0, then dh, X = n + 2.

Now let n = 0. From (9), the A-module W is projective. Therefore, the short
admissible complex (3) splits. It follows that the morphism of A-modules
4,:A® X;; - Vis a coretraction. From Lemma 1 we see that the morphism of
A-modulesi: A — A, (the natural embedding of 4 in A4 .)is a coretraction. Then
A has a right identity. But we have assumed that 4 does not have right identity.
This finishes the case where n = 0; and the theorem is completely proved.

COROLLARY 1. Let X be a Banach module over a biprojective Banach algebra
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A which does not have a right identity. Then, if & : X;; — X is not a topologically
injective operator, then dh ,X = 2.

The above corollary shows, for example, that dh; ¢, = 2 (see [6]) and that
dh, l,=2(1 <p< +0).

The second example is the algebra 4 = E ® E* (E is any infinite-dimensional
Banach space) with multiplication given by

(x1 ® f1)(x2 ® f2) = {x2, f1) X1 ® f>.

From Corollary 1 we obtain that dh ) (E) = dh%B(E) = 2 (see [4]).
Now set X = A4, and consider the operator 6: A ® A — A2 defined by 6(a ® b)
A A

= ab (a,be A). From Theorem 1 we obtain the following corollary.

COROLLARY 2. Let A be a Banach algebra such that the operator 6: A ® A —
4
A% is not an isomorphism. Then, if dh, Ay < dh, A4, then dh, A = o0.

For example, if A = I, with coordinatewise multiplication, then A = /,, and
dh,l; = 0. Therefore, dh;, I, = oo and hence dgl, = .

The second example is the algebra A = # % (H) of Hilbert-Schmidt operators
on a Hilbert space H. It is easy to see that A;; = 4" (H)and hence dh,A;; = 0. By
Corollary 2,dh, A = o0 and dg A = 0.

The third example is the algebra A = A4"(E), where E is a Banach space without
the approximation property. One can show that A, = EQ E*,ando: A ® 4 —

A
A? is the so-called trace homomorphism Tr: E® E* —» 4'(E) defined by
Tr(x® f)(y) =<y, f>x (x,yeE, feE*). Since E does not have the approxi-
mation property, Ker Tr # 0 (see [2]). It is easy to see that dh,A;; = 0. From
Corollary 2, we have dh 4 A (E) = o, and dg A" (E) = oo (see [4]).

THEOREM 2. Let A be a nilpotent Banach algebra. Then dh4A = oo and, as
a consequence, dg A = o0.

The main part of the proof of Theorem 2 is the following lemma.

LEMMA 2. Let A be a Banach algebra without a right identity, and let dhy A =
n < oo. Then, if for some k = 2 dh, A/A* = n + 1, thendh A/A**' =n + 1.

ProoF oF LEMMA. Consider the short admissible complex of A-modules
O A, /A« A ]A « A/A* < 0.
Using Proposition I11.5.5 of [1] and the equality
dh,A4/4* = n + 1, we have
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(12) dh,A,/A* < max {dh A, /A, dh,A/A"} <n + 1.

We can assume that A* + A4**!. Set X = A, /A" then X; = A/A**" (see [,
Theorem I1.3.17]), and Ker & = 4*/4**! % 0. Applying Theorem 1 to X, from
(12) we find that dh, X;; = n + 1. Hence dh,4/A**' =n + 1.

PRrOOF OF THEOREM 2. Let m = 2 be such that A" =0 and A™ "' + 0. To
obtain a contradiction, suppose that dh, 4 = n < co. Itis clear that 4 + 4% and
that A-module A/A? is an annihilator A-module. This implies that

dh,A4/A* = dh,C® A/A®> =n + 1.

Using Lemma 2, we have dh, A/4* = n + 1 for each k = 2. In particular, if
k = m, then

dhAA = dhAA/Am =n+ 1

But we have assumed that dh,A4 = n. Therefore we obtain a contradiction.
Consequently, dh ;A = oo, and the theorem is proved.

We recall that an A-bimodule X is said to be right-annihilatorif x -a = O for all
x € X, a€ A. Eachright-annihilator Banach 4-bimodule X can be regarded as the
A-bimodule £(C, X). Theorem 2 and the formula

H"(A, B(C, X)) = Exty(C, X)
(see [1, Theorem II1.4.12]) yield the following corollary.
COROLLARY 3. Let A be a nilpotent Banach algebra. Then for any n there exists
a right-annihilator Banach A-bimodule X such that #™(A4,X) % 0.
§3. Modules of right multipliers and estimating the global dimension.
Let 4 be a Banach algebra. If we set

M,(A) = 4h(A, A) = {Te B(A): T(ab) = aT(b), a,be A}, we get a left Banach
A-module provided that the outer multiplication is defined by

(a- T)b) = T(ba) (a,be A).

It is clear that M,(A4) contains the identity operator 1,. We consider the mor-
phism of A-modules R: A, — M,(4) given by R(a@)=a-1,= R, where
R,(b) = ba (be A). The closure of the image of this morphism is denoted by
M, (A).

LEMMA 3. Let A be a Banach algebra, and set X = M, (A). Then, up to an
isometric isomorphism of A-modules, the reduced module X; = A ® X coincides
4

with A, and the morphism % : X;; — X coincides with the restiction of R to A.
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Proor. For ac 4, let A(@) =a® 1, It is clear that A is a morphism of
A

A-modules from A4 into Xp, and that |A] < 1.

On the other hand, let S:4 x X — 4 be the bilinear operator given by
S(a, T) = T(a), where ae A, Te X < %B(A). It is easily verified that S is balanced
(i.e., S(ab, T) = S(a,b- T) for any a,be A, T € X). The operator from A ® X into

A
A associated with S is denoted by . It is obvious that u is a morphism of

A-modules, that ||| < 1and that uo A = 1, We shall prove now that Ao pis the

identity operator on A ® X, in which case A =y ' and u: A® X - 4 is an
4 4
isometric isomorphism of A-modules.

Indeed, for any ae A, be A, and for T = R(b)e X we have (A p)(a ® T)=
MT(a) = T(a)® 14=ab ® 1= a® T.

It remains only to note that X = R o u, and the assertion is proved.
We define the multiplier seminorm | - ||, on a Banach algebra 4 by
lally = sup {|lball:be A4, ||b]| < 1}.

Clearly |lallp < |la]l (ae A). It is easy to see that, if 4 has a bounded left
approximate identity, then | - || and || - || are equivalent. (The converse is false:
Willis [7, Example 5] shows that there exists a commutative, separable Banach
algebra in which the multiplier seminorm is equivalent to the original norm, but
which does not have a bounded approximate identity.)

By combining Theorem 1 with Lemma 3 we get the following theorem.

THEOREM 3. Let A be a Banach algebra such that dhyA = n < 0. Then
dh, M, (A) < n + 2. If, in addition, || - || and || - || are not equivalent, and A does
not have a right identity, then dh M ,(A) = n + 2.

From Theorem 3 we obtain the following corollary.

COROLLARY 4. Let A be a Banach algebra which does not have a right identity
and in which the multiplier seminorm is not equivalent to the original norm. Then
dg4 =2

We recall that the above estimate of the global dimension was known earlier
for all commutative Banach algebras with infinite spectrum (see [8]) and also for
some other classes of Banach algebras (see [9, Theorem 5] and [10]).

We pick out another corollary of Theorem 3.

COROLLARY 5. Let A be a non-projective Banach algebra in which the multiplier
Seminorm is not equivalent to the original norm. Then dg A 2 3.
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The following corollary is a consequence of Corollary 5, Theorem IV.3.16 of
[1] and Lemma of [11].

COROLLARY 6. Let A be a non-idempotent commutative Banach algebrain which
the multiplier seminorm is not equivalent to the original norm. Let A satisfy at least
one of the following conditions:

(i) oo belongs to the Shilov boundary of the spectrum of the algebra 4 ,;
(i) A is radical.
Thendg A = 3.

For example, let A be the maximal ideal in the (local) Banach algebra I'(w),
where w is a radical weight (see [12]). We recall that the algebra I'(w) consists of
those formal power series a = Y 2 o4, X" for which

©
”a” = Z |an‘wn < .
n=0

Here w = {w,} isa real-valued functiononZ* = {0, 1,2,...} satisfying (i) w, > 0

(neZ*),(ii) Op+n £ Opw,(m,neZ*)and (iii) inf vl = 0. Multiplication in I*(w)

is convolution and hence is given by the formula

n
@sb)p= Y @by (neZ*).
k=0
Then ['(w) is a local algebra, and its unique maximal ideal, 4 =
{a=Y a,X"el'(w):ao = 0} is a radical algebra. It is obvious that the com-
mutative Banach algebra A is always non-idempotent, and therefore (see [11])
the A-module A is not projective.

THEOREM 4. Let o be a radical weight for which there exists a constant C such
that

(13) D +n+1 écwm+lwn+l (m,n€Z+),

and let A be the maximal ideal in I' (w). Then dg A = 3 and, as a consequence, there
exists an A-bimodule X such that #3(A,X) # 0.

Proor. This follows from Corollary 6, since for such w the multiplier
seminorm on 4 is not equivalent to the original norm (see [12, Corollary 1.3 and
Theorem 1.4]).

It was noted in [12] that a sufficient condition for (13) to hold is that the
sequence {w, + ;/w,} be eventually decreasing. For example, set w, = e~ ", where
fNa = N1’ (y > 1), or set w, = 1/n" (or 1/n!); we obtain radical weight sequences on
Z* such that w, + , /w, is decreasing, and hence we have examples of algebras I (w)
with dg I'(w) = 3.
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Thus, for a radical weight function, the “normal” situation is that dg I' (w) = 3.
It is not clear to the author whether the bound dg!!(w) < 3 holds for some w.
Gumerov [11] has shown thatdg I (w) = oo for w, = e "™, wheren, = n’(y > 1).

Before giving the next result, we introduce some further notation.

For a Banach algebra A, we set

N, (M) =sup{llasa,...a,|'":a;€ 4, |la;| £1(1 i L n)}.
It is clear that, for all a4, a,,...,a,€ 4,
laiaz...aqll = Ny(m)* llayll llazll. .. llaal.
Following [13], we say that a Banach algebra A4 is topologically nilpotent if

lim N,(n) = 0. For example, the algebra (C[0,1],*) of all continuous com-

plex-valued functions on [0, 1], with supremum norm |- ||, and convolution
multiplication

(f*9)0) =[5 () gt — 5)ds,
is topologically nilpotent (see [ 14, Example 2.2]).

LEMMA 4. Let A be a Banach algebra in which the multiplier seminorm is
equivalent to the original norm. Then there is a constant o. > O such that, for all n,
Ny@n) 2 o

PROOF. Since || - || and || - || are equivalent, there is C > 0 with ||a| < Clla||
(ae A). Choose ae A4 such that a & 0. Since

lallxe = sup {libal :be 4, |Ib]| < 1},

for every ¢; > O there is an element b, € 4 with |b;|| < 1, such that |a|, <
by all + ¢,. Hence

(14) lall = Cllbyal + Ceé;.

We then obtain an inequality of type (14) for the element b, a € A to get, for every
e >0,

lall £ C|lbybyall + C?e; + Cey,

where b, € A with ||b,|| < 1. Proceeding in this way we obtain that for every nand
for every ¢ > O there are some b,,...,b,e A with ||b;]| £ 1(1 £i £ n), such that

lal < C"||byby—1...b1al +e.
Since

Ibnba-y ... boll < Na)" 1ball 1Ba-sll-. b1l = Naln)’,
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we deduce that
lall = C"N4(ny'|lal.
It follows that N (n) = a, where « = 1/C.
Theorem 3 and Lemma 4 yield the following corollary.

COROLLARY 7. Let A be a topologically nilpotent Banach algebra. Then, if
dhy4 =n< oo, thendh M, (A) =n+ 2.

The following lemma is proved by Dixon.

LEMMA 5 (see [13, Lemma 4.2]). Let A be a Banach algebra and X a left Banach
A-module such that the multiplication between algebra and module elements induces
a surjective mapping A ® X — X. Then there is a constant K > 0 such that, for all
n, every x € X is expressible in the form

@
X = z Qi1 Qi ...040; " X;
i=1
for some a;, a;,,...,a,€ A, x;€ X (1 £ i < o0) with
0
Y laall laszll - llawmll Ix:0 £ K™ |1x].
i=1

THEOREM 5. Let A be a projective idempotent Banach algebra. Then there is
a constant a > 0 such that, for all n, N 4(n) = a.

Proor. Since the left A-module 4 is essential and projective, the canonical
morphism n: 4 ® A — A is a retraction in A-mod. It follows that = is surjective.
Applying Lemma 5 for the case where X = A, we obtain, for any x € 4,

© N
lxll = |l Z Gy iz ... Qi X |
i=1
a0
< Y laaiz. .. ai l1xll
i=1
e ]
s .Z N4 Nlaig |l Nlaszll - - - llamll l1x:l

i=1

S Ny(m) K™ || x].
If x # 0, we deduce that N(n) = «, where « = 1/K.

By combining Lemma 4 and Theorem 5 with Corollary 5 we get the following
theorem.
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THEOREM 6. Let A be an idempotent, topologically nilpotent Banach algebra.
Then A is not projective and dg A = 3.

For example, let A = { f e C[0,1]: f(0) = 0} with convolution multiplication.
Itis noted in [ 14, Example 5.3] that 4 is idempotent and topologically nilpotent.
By Theorem 6, we have dg 4 = 3.

The following corollary is a consequence of Corollary 6, Lemma 4 and
Theorem 6.

COROLLARY 8. Let A be a topologically nilpotent commutative Banach algebra.
Then dg A = 3 and, as a consequence, there exists an A-bimodule X such that
#(A,X) % 0.

For example, if 4 = (C[0,1], *), thendg 4 = 3.
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