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PUSHING DOWN LOEB MEASURES

HERMANN RENDER

0. Introduction.

Representations of measures via nonstandard techniques were studied by vari-
ous authors [4, 8, 12, 15, 16, 24] and these techniques play an important role in
nonstandard stochastics. The aim of this paper is to develop new methods of
representing measures. But before let us give a short outline of the known theory:
Letv: o/ — *[0, c0) be an internal finite content on the algebra </ over an internal
set Z. Peter Loeb recognized in his fundamental paper [16] that the set function
stv.of — [0, 00) defined by (st v)(A): = stg(v(4))is always a premeasure. The Loeb
measure is the measure extension of st v on the Loeb g-algebra L(v) consisting of
all subsets Q = Z such that for all &> 0 there exists A4;,4,e with
A; = Q < A,and v(4,) — v(4,) < & Itis a well-known fact that some important
subsets, e.g. the set of all nearstandard points, are generally not Loeb measur-
able. This measurability problem can be circumvented if we are looking at
reasonable extensions of st v to the power set of Z which is denoted by #(Z). The
Loeb outer measure v: (Z) - [0, c0) and the Loeb inner measure y: #(Z) — [0, c0)
respectively are defined by

#(Q):= inf{stv(A): Ae,Q < A}
¥v(Q):=sup{stv(A): Ae o/, A = 0}

respectively. If we restrict 7 on the Loeb g-algebra L(v) we obtain the Loeb
measure. It is an important fact that the restriction of ¥ and v on the s-algebra
Ly)nY:= {4~ Y: A€ L(v)} are measures for every subset Y < Z.

. Assume now that v is an internal content on a standard set Z: = *X.Itisa very
Important problem to develop methods for pushing down the Loeb measure ¥ to
ameasure on the space X and it is this point where usually topological methods
come in. Recall that the monad of a point x in a topological space (X, 7) is just the
Set m(x):= Ny, v *U and ns*X:= U,y m(x) is the set of all nearstandard

—
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62 HERMANN RENDER

points. Instead of y e m(x) we use also the more suggestive notion y ~ x. We call
the map

1) st P(X) - P(*X), st~ Q):= Uyreom(x)

the inverse standard part map. Note that this definition does not require any
assumption on the topological space. Landers and Rogge proved in [12] that the
set functions vost™! and vost™?! restricted to the Borel g-algebra o[t] (the
o-algebra generated by 1) are measures provided that X is a regular Hausdorff
space. An analysis of the proofs shows that the only important property is the fact
that st ! is a reasonable extension of the following set function:

@ my:F > P*X)0Y, m{(F):=yerev*UnY,

where & is the set of all closed subsets of X and Y is equal to ns *X. The equation
(2) is the key for a more general approach since it makes sense for rather general
systems of subsets. An extension theorem of R. Sikorski allows us to extend m! to
a g-homomorphism from o[ ], the g-algebra generated by &, into L(v) N Y if
we impose some conditions on & and t which are dependent on the size of Y.
A ¢-homomorphism ¢ from a o-algebra # over X into a g-algebra # over X is
a function preserving all the natural operations on a g-algebra; more precisely, it
suffices to require that ¢(X) = X and ¢(X\B) = X\¢(B) and ¢ (U™, B,) =
U ¢(B,) for all B, B, e .

In the first section we show that m,: = m} with Y : = *X defined on the set of all
closed subsets is extendible to a s-homomorphism iff X is normal and countably
compact (every countable open covering has a finite subcovering). The system of
all zerosets, i.e. the preimages of zero under continuous real-valued functions, is
denoted by Z and 2 is the set of all complements Z° of Z € . We show that my.
defined on & can be extended to a o-homomorphism on the Baire g-algebra
o[ Z] (the o-algebra generated by %) if and only if X is pseudocompact, i.e., that
every continuous real-valued function on X is bounded. For the extension of m g
we can give an explicit formula using countable open coverings. We define
so-called covering functions which may also be useful for other applications.

In the second section we discuss several properties of the inverse standard part
map. A byproduct of our investigations is that most of the results in [12] carry
over to the class of all regular spaces; hence the Hausdorff axiom can be omitted.

In the third section we want to represent measures by internal measures. Here
we assume that ¢ is a o-homomorphism extending the set function
m!: #F — L(v)n Y where v is an internal content and ° = #. Roughly speaking
we prove that ¥ o ¢ is equal to a measure u on o[ 7] iff u is regular with respect to t°
and %(Y) = ¥(*X) and v(*F) = w(F) for all Fe1®. Here a < b for two hyperreal
numbers g, b means that either a < b or ais infinitesimal near to b, and a measure
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1 B — [0, o) is regular with respect to a system F of subsets if for every B e 2 the
equality u(B) = suprcs,rcpM(F) holds. Recall that a Borel measure [Baire
measure resp.] is just a finite (non-negative) measure on at] [on o[ 2] resp.]
where (X, 7) is a topological space. A Borel measure is Radon [regular respective-
ly] if it is regular with respect to the system of all compact [closed respectively]
subsets; it is t-smooth if for every upward directed system & < 1 the equality
u(supse s (S)) = sups.s» #(S) holds. As a consequence we obtain nonstandard
representations of Borel measures and Baire measures resp. on normal countably
compact and pseudocompact spaces respectively. Applying the results to the case
of the inverse standard part map we can give a unified treatment of representa-
tions of measures and the characterizations of the monads of the weak topology
on the set of all -smooth measures over a regular space.

The fourth section is devoted to the question of representability of a measure
w: B — [0, o0) with respect to a partial map s: Y — X, i.e. a function satisfying
Y 5 °X and s(*x) = x for all xe X. We show that some measures u can not be
represented by a partial map: there does not exist a partial map s with
*u(s~}(B)) = u(B) for all Be &.

In the last section we investigate rather general set functions. The most
surprising result may be that for every internal, subadditive and additive set
function defined on a lattice of subsets the set function 7o st ! is still a z-smooth
Borel measure provided that X is a regular space. Using this result we can answer
a question in [2]: the set ns *X is Loeb measurable with respect to all internal,
finite, subadditive and additive set functions v if and only if X is pre-radon, i.e.,
that every 7-smooth Borel measure is Radon.

We always assume a k-saturated nonstandard model where « is a cardinal
larger than the cardinality of every set in the standard universe. A family of
internal sets is called of admissible cardinality if the cardinality of the index set is
smaller than «. In the later sections we use frequently the following continuity
properties of the Loeb inner and outer measure: if & < & is a downward
directed system of admissible cardinality then an internal content v on & satisfies
for every subset Q the nice formula (Theorem 2 in [12]):

G W(Q ninf &) = inf ¥(Q N S).

Se¥

We can replace in (3) the infimum by a supremum if & is an upward directed
System. The same equations hold for the Loeb inner measure. Moreover the
Loeb o-algebra can be characterized in the following way:

“) LO) = {Q c Z: WA Q) + %A n Q%) = 7(A) for all A < Z}.

For unexplained topological notions we refer to [30].
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1. Covering functions and o-homomorphisms.

In applications of measure theory the followmg situation often arises: assume
that & is a system of subsets of X and & is a g-algebra on a set X and let
¢: F — & be a function. Is it possible to extend ¢ to a o-homomorphism on the
o-algebra o[ #] generated by #? Suppose there exists such an extension: The
following condition is obviously necessary: for every sequence (Fy)nen and (Ep)men
in&

) NFn()E=0= () ¢F)n () HE,) =0.
n=1 m=1 n=1 m=1

R. Sikorski has shown [25, p. 144] that this necessary condition is also sufficient.

Unfortunately this construction has the disadvantage that we do not have

a simple formula for ¢.

We restrict ourself to the following assumptions (*): let v: o — *[0, c0) be an
internal finite content on *X and let 7, be a base of a topology 7 closed under
finite unions and intersections on X such that °z, < &/ (this means that *U e o/
forall U 1) and assume further that # be a system of subsets closed under finite
intersections. Consider now the mapping
(6) m:F - P*X) m (F):= () *U.

Ueto,Fc U

LEMMA 1.1. Let 1o, %, v satisfy the condition (*). Then m, (F) is Loeb measur-
able for each Fe . If m,: &% — L(v) can be extended to a 6-homomorphism on
o[ F] then the following two conditions are satisfied:

(I) Disjoint sets Fy and F, in # can be separated by t-open sets.

(I1) If (F,)sen < F has the finite intersection property then N, F, + .

Proor. Landers and Rogge have proved in [12] that the intersection of
a subfamily of & of admissible cardinality is still Loeb measurable. Hence it is
clear that every set m, (F) is Loeb measurable. Let F,, F, be disjoint. Then
0= m, (F;)nm,(F;). A saturation argument yields U,,...,U,et, and
Vi,...Vn€to such that U:=U;n...n U, and V:= V;n...NnV,, are disjoint
and satisfy F;, « Uand F, c V.

For (II) suppose that N, F, = @. Then N2, *F, = N m, (F,) = @ and
hence N;_; *F, = @ for some meN, a contradiction to the finite intersection
property.

THEOREM 1.2. Let 1o, #, v satisfy the condition (*) and assume that 15 < F.

Thenm, :  — L(v) can be extended to a a-homomorphism on o[ %] iff (I) and (II)
are satisfied.
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Proor. The necessity has been proved. We show (5). We prove at first the
identity m, (F1 N F3) = m, (F1) " m, (F;) for all F,, F, € #; the inclusion is triv-
ial. Let yem, (F;) nm. (F;)andlet Ve o with F; n F, < V.Then F,\Vand F,\V
are disjoint sets in & and can be separated by sets U, U, €1¢. Then F; c U;u V
and consequently ye*U; U *V and ye*V by disjointness of U; and U,. This
shows the identity.

Now let =, F,n n2_, ES, = @ with F,, E,,e #. Suppose that there exists
yend ym (F)n Ny *X\m, (E,). We can assume that F,,, c F, for all
neN. For every meN there exists V,et, with y¢*V, and E, < V,,. Then
NE L F,nnZo, Ve = 0 and since Ve F condition (II) yields ne N such that
F,nnh_, Vi =@. This means that F, < U}, V,. Now yem,(F,) implies
yeuUn- *V,, a contradiction.

COROLLARY 1.3. Let (X, 1) be a topological space and F be the set of all closed
subsets. Then m: & — L(v) is extendible to a a-homomorphism on [ 1] if and only
if (X, 1) is normal and countably compact.

In the following we want to obtain an explicit description of the extension of
mgcdefined on &. For our applications such a description is not needed since the
extension is unique (cf. [25] or Theorem 1.11) and an explicit formula for the
g-homomorphism for closed subsets is given. On the other side an explicit
formula for a mathematical subject should merit a presentation and we believe
that our techniques may also be useful for other applications. For our approach
we need the following.

DEFINITION 1.4. Let X be a set and % be a set of families of subsets of X. For
every ae# we define apts*X := U4, *A. We call the function ¢g:P(X)—
2(*X) defined by

() $a(@):= () oapts*X

ac¥,Qcva
the covering function with respect to %. If % is the system of all countable families
of cozero-sets g is denoted by ¢... If % is the system of all countable families of
open sets we denote ¢4 by ¢..

In order to avoid pathologies in our last definition we always assume that {@}
and {X} are in %. The proof of the following proposition uses an easy saturation
argument and is omitted.

PROPOSITION 1.5. Let ¢a: P(X) » P(*X) be a covering function. Then the
equation $q(X) = *X holds if and only if every covering a €% of the set X has
a finite subcovering.
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Our original motivation for definition 1.4 based on the following simple
observation whose proof is left to the reader.

PROPOSITION 1.6. Let (X, 1) be a topological space and T be the system of all
families of open sets. Then we have ¢z(Q) = st™(Q) for every subset Q < X.

THEOREM 1.7. Let X be atopological space andmgo: & — L(v) asin(6). Then the
Jollowing statements are equivalent:

1. mg. can be extended to a 6-homomorphism m: o[ Z] — L(v).

2. The system & has the countable intersection property.

3. The covering function ¢ is a 6-homomorphism on o[ Z] extending my-..

PRrROOF. 1) =>2)is clear by condition (II). For the implication 2) = 3) we need
some general properties of covering functions and the proof will be given after
Theorem 1.11. Note that 3) = 1) is trivial.

It is well-known that condition 2) of Theorem 1.7 is equivalent to the
pseudocompactness of X, cf. [30].

PROPOSITION 1.8. Let % be a set of families of subsets of X such that for every
sequence (Q,)nen 0f subsets and for every covering a, € U of Q, there exists a cover-
ing a€ ¥ of the set U | Q, witha = UX.; a,. Then the equation ¢q (VX Q,) =
Un= 1 Pa(Qy) holds.

Proor. Obviously ¢4 is a monotone function, i.e., that Q, = Q, implies
¢a(Q1) © ¢pa(Qo). Hence we only need to show the inclusion part. Let
V€ da (Ui Q,) and suppose y ¢ ¢p4(Q,) for each ne N. Then there exists a cover-
ing a,e¥ of Q, with y¢a,pts *X. Choose a covering ae % of U™, Q, with
o< UL, a, Thenyeapts*X < U2, a,pts *X, a contradiction.

The following easy example shows that we must impose some conditions in
order to obtain nice covering functions.

ExaMPLE 1.9. Let (X, 1) be a topological space and £, be the set of all finite
families of open sets. Then #z,(Q) is exactly Ny, g v *U = m,(Q). Choose now
X =R with the discrete topology and Q,:= {n}. Then #z,(N) = *N, but
¢?,(Qn) = {n}

The proof of the following Theorem is straightforward.

THEOREM 1.10. Let # and & be o-algebrason X and X respectively. Assume that
T: # — P(X) satisfies the following three conditions: (i) T(@) = @, (i) T is mono-
tone and (iii) T(U., A,) = U™, T(A,). Then the set

®) or:={AeBT(A)e&NT(X) and T(4)n T(4A)= 0}

is a o-algebra and T.o1 — & N T(X) is a 6-homomorphism.
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TuroreM 1.11. Suppose S,T-B — P(X) satisfy the conditions (i)(iii) of
Theorem 1.10. If & < o1 N oy is a generator of 8 closed under finite intersections
and S(F) = T(F) for all Fe# and S(X) = T(X)then S = T.

Proor. Show that o := {Aeosnoy:S(A) = T(A)} is a g-algebra containing
F.

PROOF OF THEOREM 1.7 2) = 3): Trivially we have ¢..(Z) < mg(Z) for every
ZeZ. But every countable cover of cozero-sets can be reduced to a finite
subcover by 2). Hence ¢, is an extension. By Proposition 1.8 T:= ¢, satisfies
the assumption of Theorem 1.10 with % := L(v). Hence it suffices to show the
relation 2 < or. By our previous remarks we have always ¢ (Z) =
mg{Z)e L(v). Hence it suffices to prove the relation ¢..(Z) N P.(Z°) = O.
Choose a sequence (G, ),y Of cozero-sets and a sequence (F,),ey Of zero-sets such
that G4y c F, < G,and Z = N2, G,. If ye ¢ (Z) N d.(Z°) then y e *G,, for all
neN. Obviously (Fy),.n is @ countable covering of cozero-sets of Z°. Hence
yE UL *¥F;, i.e., that there exists ne N with ye *F; < *G;, ,, a contradiction.

The equivalence of 1) and 2) in Theorem 1.7 can also be derived from Theorem
1.2. For the extension of m, in Corollary 1.3 we have no explicit description: the
next example shows that the functions ¢, and ¢, are in general not ¢-homomor-
phisms on the Borel o-algebra. Note also that the inverse standard part map is
only an extension if st™'(X) = m,(X) = *X holds, i.c., that X is necessarily
compact.

EXAMPLE 1.12. Let w, be the first uncountable ordinal number and let X be
the set of all ordinals smaller than w, with the usual topology, cf. [30]. Then X is
normal and countably compact and X, := X U {w,} is the one-point compac-
tification of X. Then @..(X) = ¢(X) = *X and ¢..(®;) = Pc(w;) * {w,} since
, is not an isolated point. Hence ¢, and ¢, are not s-homomorphisms on the
Borel g-algebra of X ..

' In the sequel we want to show that the covering function ¢, coincides with the
Inverse standard part map for a rather general class of topological spaces, cf.
Corollary 1.15.

ProrosITION 1.13. Let (X, 1) be a topological space. If Q < X is Lindelof then
$:(Q) = st~ 1(Q).

PROOF. Let (U;);.; be an open covering of Q. By the Lindeldf property there
exists a countable subcovering (U,),en. For y€ ¢.(Q) we obtain ye U, *U, <
Vier *U;. Proposition 1.6 yields now ye ¢Q) = st~ }(Q). The other inclusion
st™HQ) = ¢.(Q) is always valid.

THEOREM 1.14. Let (X, 1) be a topological space and let Q < X be a subset. Then
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¢.(Q) = st~ Y(Q) provided that there exists a weaker regular topology p such that
Q is Lindelof and every point of Q is a Gs-set in X both with respect to p.

Proor. The last proposition yields ¢%(Q) = ¢2(Q) = st, '(Q). Let ye ¢i(Q).
Then there exists x € Q with y =, x. Suppose that y 4, x. Then there exists U et
with x e U and y ¢ *U. Choose a sequence of U, € p such that {x} = N, U,. By
regularity we can assume that U, ; < U,. Then {U} U {X\U,:ne N} is a count-
able 7-open covering of Q. Since y € ¢¥(Q) there exists ne N with ye *(X\U,). But
y =, x implies y e *U,, for all me N, a contradiction.

COROLLARY 1.15. Let t be a topology on a set X finer than a metrizable
separable topology. Then ¢(Q) = st~ (Q) for every subset Q = X.

The next result shows that in some cases @q4(F) is determined by ¢4(X).

PROPOSITION 1.16. Let 14 be a base of a topology t on a set X. Let U be a set of
Samilies of setsin toand let F — X. Then ¢q(F) = m, (F) N ¢p4(X) provided that the
Jollowing two conditions are satisfied:

(i) For every a€@ with F < Uy, U there exists Ujet, and F, ety with
FcUjcF|cuy,U.

(i) If Uetoand ae¥ thenow {U}eX.

ProoOF. Observe that by (ii) every finite family of 74-sets is in %. This implies
da(F) = m, (F) and ¢q(F) = ¢pq(X) is trivial. Now let yem, (F) N ¢4(X). Let
a€ be a covering of F. Choose U,, F, as in (i). Then f:=au {F{}eZ is
acovering of X. Hence ye Uy, *U L *F{. Now yem, (F)implies ye *U,; < *F;.
Hence yea pts *X and therefore y € ¢4 (F).

THEOREM 1.17. Let X be completely regular and v: o/ — *[0, 00) be a finite
internal content with °ty < . Then ¢.: [ 2] - L(v) N ¢.(X) is a 6-homomor-
phism extending m%:2® defined on % .

PROOF. Let FeZ. It is easy to see that condition (i) of Proposition 1.16 is
satisfied since the countable union of cozero-sets is again a cozero-set. Hence
@eo(F) = m(F) N ¢e(X) € L(v) N ¢p.(X). We apply now Theorem 1.10: the rela-
tion Z < g,__follows as in the proof of Theorem 1.7 2) = 3).

The following theorem is a slight modification of Theorem 1.2 and it’s proof is
therefore omitted. Recall that the set Loc(#):= {Ac X:AnFe% for all
Fe#} is the set of all local sets of the system %#. Note that Loc(%) = & if
# contains the set X. Moreover Loc(#) is closed under finite intersections and
unions if # has that property.

THEOREM 1.18. Let 19, #, v satisfy condition (*). If F\U € & for all F e # and
U €1, then the following statements are equivalent:
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1. miee**: Loc(#F) = L(v) N & pts *X is extendible to a a-homomorphism on
o[Loc(%)].

2. (I) is satisfied and for every disjoint sets Fy, F, € Loc(%) and for every F € &
there exists Uy, Uyeto with F;c U; fori=1,2and Uy, n U, F = Q.

In general, condition (I) does not imply Theorem 1.18 2): take & as the set of all
compact sets of the line X := R. Then Loc(%) is the set of all closed subsets. Let
7, be the set of all open and bounded subsets and choose F,:= (— o0, —1] and
F,:=T1, 00).

2. An application: The inverse standard part map.

We call a topological space prehausdorff if m(x) n m(y) + @ implies m(x) = m(y)
forall x, y e X. Itis easy to see that every regular space and every Hausdorff space
is prehausdorfl, cf. [22] for details.

PROPOSITION 2.1. Let v: o/ — *[0, c0) be an internal finite content and t, be
a subbase of a topology T with °ty < of. Assume that st™*(U)e L(v) " ns*X for
every U et. Then the following statements are equivalent:

1. st™':6[1] = L(v) " ns *X is a 6-homomorphism.

2. st™hg[to] = L(v) " ns *X is a a-homomorphism.

3. tis prehausdorff.

PrOOF. The direction 1) = 2) is trivial. For 2) = 3) it suffices to show that
m(x) " m(y) + @ implies *xem(y). Suppose there exists Uet with ye U and
*x¢*U. Since 1, is a subbase we can assume that U ea[7,] and by 2) we have
st {({U)nst™{(X\U) = @. But for zem(y) nm(x) we have zest™}(U) and
ze st™}(X\U), a contradiction. For 3) = 1) apply Theorem 1.10 with #: = 2(X),
#:= L(v)and T:= st~ !. Then it suffices to show that o contains every open set
Uet. By assumption we have st”'(U)ed. Suppose that there exists
zest™Y(U) nst™{(U°). Then there exists xe U, ye U° with z ~ x and z ~ y. The
prehausdorffness yields *y ~ x € U. Since U is open we obtain *y e *U, a contra-
diction. The proof is complete.

Now let 7, be a subbase of a regular topology. We show that the assumption
st '(U)e L(v) " ns *X for Uer is satisfied: For xe U choose V, 1,..., Vi n €70
such that xe V,:= ¥, ; n...nV,, = ¥, c U. Now it is easy to see that

® st™{(U) = | *Vanns*X

xeU

But U, *V, is Loeb measurable since *V, € o/.

COROLLARY 2.2. Let 1o be a subbase of a regular topology and v: o — *[0, )
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be an internal content with °tqg < &/. Then st™':o[t] > L(v)nns*X is
a a-homomorphism.

The following example seems to be the simplest in order to show thatst ™' isin
general not a 6-homomorphism and that vost™! and yost™' are not measures
even if st ~!(U) is Loeb measurable for every open set and v is a Radon measure.

ExampLE 2.3. Let X:={0,1} be endowed with the Sierpinski topology
{0,{0}, X} and 6;: Z(X) — {0, 1} be the Dirac measure at i = 0, 1. Observe that
both measures are Radon measures. But v:= ,0st™! is not additive since
v{0h +w({1h) =1+1

An example in [12] shows that Corollary 2.2 is even not true for the class of all
Hausdorff spaces. On the other side it is well-known that *uost™! is a Borel
measure provided that u is a Radon measure on a Hausdorff space, cf. e.g.
Theorem 4.4. For further results in this direction we refer to [3].

Finally we mention a slight modification of the inverse standard part map:
define cst ™1 2(X) - 2(*X) by cst " 1(Q): = cpt *X n st~ 1(Q), where cpt *X is the
set of all compact points, i.e. the union of all *K with K < X compact. It is not
very difficult to see that a formula analogous to (9) is valid replacing st~ ! by cst ™!
and ns *X by cpt *X using the fact that every compact subset of a prehausdorﬂ'
space is a regular subspace. Hence we have proved

COROLLARY 2.4. Let °ty = o/ be a subbase of a prehausdorff space. Then the
map cst™1:a[1] = L(v) N cpt *X is a 6-homomorphism.

Let X be a topological space and let .# be the system of all internal subsets of
*X and o[ #] the generated g-algebra. Assume that 4 = X is a strong G;-set, i.e.,
that there exists a sequence (U,),.n of open sets such that
A=n2,U,=n=,U, It is easy to see that st™'(4)=n2
*U,nns*X. Hence st™'(4)ed[F] nns*X for every strong Gsset A in X.
Applying this result to the system 2 of all zero-sets we obtain that

(10) st ho[Z] > 0[*Z:Ze Z] N ns*X < o[ F] N ns*X.

It is a natural question whether st ™ ':6[ 2] — 6[.#] N ns *X can be extended to
a larger o-algebra # > ¢[Z]. Indeed, there exists a maximal o-algebra .# such
that st™!: 4 — o[£] " ns*X is a 6-homomorphism: define

(11) #:={Ac X:st"(A)eo[F]nns*X and st™!(4) st 1(4°) = O}

and observe that .4 is a g-algebra, cf. Theorem 1.10. Henson has proved in [8]
the remarkable result that .# coincides with the Baire g-algebra ¢[ 2] provided
that X is a compact Hausdorff space. Furthermore he proved for a completely
regular Hausdorff space X that st™*(X) is in o[.#] iff X is a Baireset in the
Stone-Cech compactification. A completely regular Hausdorff space with this
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property is called bianalytic. It follows from Theorem 9.10in [6] that a bianalytic
space is necessarily Lindel6f. But observe that the following Theorem is valid for
an arbitrary topological space.

THEOREM 2.5. Let A be a subset of a topological space and assume that st ~*(A4) is
in the c-algebra o[ F] generated by the set # of all internal subsets. Then A is
Lindeldf.

ProoOF. As pointed out in [8] we can assume that there exists a countable
subalgebra .#, of the algebra .# with st “!(4) e 6[.#,]. Then [x]:= N/ so.xerl isin
o[ #] and y ~ x:<>ye[x] defines an equivalence relation on *X which is
identical with the relation xe B = ye B for all Beo[#,]. Now let (U;);; be an
open covering of A and assume that st~ }(4) e 6[.%,]. Let .#, be the set of all I € .%,
such that there exists a finite number of sets in {U;:je J}, say U;,..., Uy , with
I =*Up,v...u*U, and define U, as the unionof Uy ,..., U; . We show that the
system of all open sets occurring in the finite union of U, with I € .#, is the desired
countable open covering. Let xe A. Then [*x] = N4 I < st~ Y(A) € Ve, *U;
and by saturation there exists I € ., with [*x] < I < *U,. Since I is in .#; the
proof is complete.

COROLLARY 2.6. Let X be completely regular and ns*X e a[.#], (e.g. if X is
compact). Then every Baire set is Lindeldf.

COROLLARY 2.7. A regular space X with ns *X e o[.#] is completely regular.
PROOF. A regular Lindelof space is completely regular, cf. [30].

COROLLARY 2.8. Let (X, 1) be a regular Hausdorff space. Then the following
Statements are equivalent:

L. st™':0[t] - o[.#] " ns*X is a a-homomorphism and st~ *(X)e o[ #].

2. st™Y(U)ea[#] for every open set U.

3. Every subspace of X is Lindelof and X is bianalytic.

4. o[ 2] = o[1] and ns *X e a[#].

PROOF. 1) = 2) is trivial and for 2) = 3) observe that by Theorem 2.5 every
open subspace is Lindelof; but it is well-known that then every subspace is
Lindelsf. Henson’s Theorem yields the equivalence of st™!(X)e ¢[#] and the
bianalyticity of X. Also 3) = 4) s clear since every open set is the countable union
of cozero-sets. For 4)= 1) observe that st :6[Z] - 6[F] N ns *X is always
a o-homomorphism.

By formula (10) {st™!(A):Aeco[Z]} is a o-algebra contained in
0'[*2 :Z€Z] nns*X. However, for Hausdorff spaces these g-algebras are often
different: they coincide if and only every Z € % is open; more general, let F — X
be such that *F A ns *X is in {st*(A): Ae o[ Z]}. Then there exists A = X such
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that *F A ns *X = st™ }(4). But this identity implies F = A by the Hausdorff
property and F is open since *F contains every monad m(x) for xe F = A.

3. Representations of standard measures.

In our main result Theorem 3.4 of this section we make the following assump-
tions: Let # be a system of subsets and 1, be a system of subsets closed under
finite unions such that t§, = & and let v: o/ — *[0, c0) be an internal finite content
with %ty ¢ & and assume that we have constructed a g-homomorphism
¢:6[F] - L(v) n Y such that

(12) pF)= () *UnY forall Fe#,

Ueto, F U

where Y is a fixed subset of *X. It follows that Vo ¢ and v ¢ are measures on
o[#]. Note also that 6[7,] = o[ #]. Our result answers the following question:
if p:o[10] = [0, 0) is a (standard) measure with v(*X) ~ u(X), under which
conditions holds the equality

(13) wWA) =vop(A) forall Aeo[o].

We call vo¢ an outer Loeb measure representation of p (with respect to ¢) if
v(*X) ~ u(X) and the last equality holds, and similar one defines an inner Loeb
measure representation.

DEFINITION 3.1. Let #, and 1, be systems of sets and let w:o[F, U 10] =
[0, o0) be a function. Then u is called tq-outer regular at F € %, if the equation
W(F) = inf{u(U): U €19, F = U} holds.

PROPOSITION 3.2. Let %, be a system of subsets closed under finite unions and
be a system of subsets with 15 < %, and let p, p,: o[ Fo] — [0, 0) be measures
with py(X) = py(X) < 0. If uy(F) < u,(F) for all F € # and y, is to-outer regular
at every F e F, then u; = p,.

The proof of proposition 3.2 is omitted. Moreover we need a technical Lemma.

LEMMA 3.3. Let v: of — *[0, o) be an internal finite content and Y < *X. If
v(*X) = W(Y) then (A N Y) = %(A) for all Ae .. The same holds for v.

PRrOOF. Let Ae /. By formula (4) we know that W*X) = W(Y) = (Y n 4) +
WY N A°) £ HY N A) + HA°). Hence %(A4) = #(*X) — #(A°) £ WY N A). Now let
WY) = y(*X). Then w(Y) = (Y) = ¥(*X), in particular Y is Loeb measurable.
Hence we obtain (Y) = (Y n 4) + »(Y N A4°) and we can now repeat the above
argument.

THEOREM 3.4. Under the above assumptions v ¢ (v o ¢ respectively) is an outer
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(inner respectively) Loeb measure representation of p on afto] iff the following
properties are satisfied:

L #(Y)=9*X) @Y)=2u*X)resp)

2. uis to-outer regular at every F € .

3. w(*F) < u(F) for all F e},

ProOOF. Let ¥ be either v or v and assume that u(A4) = Vo ¢(A) holds for all
Aea[1,]. Since ¢(X) = Y we obtain v(*X) ~ u(X) = #(¢(X)) = ¥(Y). This proves
1). For Fetl we have *FNY c ¢(F), and our previous lemma yields
#(*F) = ¥(*F N Y) £ %(p(F)) = u(F)and 3)is proved. The equation (3) shows that

/
(14) WF) = ¥((F)) = \7( N\ *Un Y) = inf i{(*U N Y).
Ueto, FcU U

But #(*U N Y) = #(*U) by Lemma 3.3 and v(*U) = u(U) (take complements in
condition 3)), hence we have u(F) 2 inf{u(U): U eto, F < U}.

Now assume that 1), 2) and 3) are satisfied. Lemma 3.3 and 1) yields the
equation V(*U n Y) = #(*U) for all U e 1. Let F et§. By our general assumption
Fisin & and with 2) and 3) we obtain

(15) W(F) = inf y(U) < inf 5(*U) = inf #(*U A Y) = %($(F).
U U U

For the last equality we have used equation (3). Hence we have proved that
UWF) < Vo @§(F) for all Fer. Since u(X) ~ v(*X) ~ #(Y) = io #(X) an applica-
tion of Proposition 3.2 with %,:= 1§ completes the proof.

REMARK 3.5. A short review of the proof shows that for the necessity part we
did not used the fact that Vo ¢ is a measure.

COROLLARY 3.6. Let (X, 1) be normal and countably compact and ¢ the exten-
sion of m, as in Corollary 1.3 and p: o[ 7] — [0, 00) be a Borel measure. Then *p0 ¢
is a Borel measure. The equality ¥ o ¢ = p holds iff u is regular.

PROOF. Apply Theorem 3.4 with Y:= *X, # as the set of all closed subsets
and 7o:= 7 and use Corollary 1.3.

COROLLARY 3.7. Let (X,7) be normal and countably compact. Then for every
Baire measure y there exists a Borel extension.

PROOF. Apply Theorem 3.4 with Y, % as beforeand 7o:= Z°. By Theorem 1.2
We can extend mg: F — L(*1) to a a-homomorphism ¢. Then *p - ¢ is a Borel
measure and by Theorem 3.4 “<=” it is an extension.

Representations of standard measures via the standard part map (for Haus-
dorff spaces) were intensively studied in [4, 12, 13, 16, 17]. It is now not very
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surprising that most of the results carry over to the class of regular spaces. As
pointed outin [5, 12, 17] Loeb representations can be used to give nice character-
izations of weakly compact subsets of the space of all 7-smooth measures and of
all Radon measures respectively on completely regular Hausdorff spaces. These
characterizations are still true for regular spaces and we include here the proof
because all these results can be proved in a rather unified way.

We call a subbase 1, of a topological space regular if every closed subset and
every point outside can be separated by 7,-open sets. This is equivalent to say
that st™!(F) = m,(F) nns *X for every closed set F. Clearly every regular sub-
base induces a regular topology but the converse fails in general. The following
Theorem was proved in [12] for the special case v:= *pu.

THEOREM 3.8. Let 1o be a regular base of a topology t closed under finite unions
and intersections and let p: 6[1o] — [0, o) be a to-outer regular measure at every
Fet). If v:of - *[0,00) is an internal finite content with °to < & and
v(*X) ~ u(X) then the following statements are equivalent:

1. vost™t:a[1] = [0, 00) is a T-smooth Borel extension of .

2. W(*F) < u(F) for every Fe1$ and y(X) = supses u(S) for every upward di-
rected system & < 1, with ¥ 1 X.

3. w(*F) < u(F) for all F e$ and v(ns *X) = #(*X).

4, Vost™! = ponofte].

ProOF. For 1) = 2) apply Theorem 3.4 “=" with ¢:=st"! and & :=1°. For
2)=3) let Ae o with ns*X c A; we have to prove that w(A) ~ v(*X). Since
m(x) < A and A is internal we can find U, € 7, with *U, = A. For every finite
subset E < X define Ug:= uU,g U,. Then (Ug)z 1 X and we obtain

(16) WA) 2 %(*Ug) 2 w(Ug) T (X).

Hence v(ns *X) = #(*X). The implication 3) = 4) follows from Theorem 3.4 “<”
with ¢:= st™!. For 4)=> 1) we know that vost ™! is a Borel measure. Theorem
4 in [12] shows that vost ™! is 7-smooth.

We give now two applications of Theorem 3.8:

() If to is the system of all cozero-sets of a completely regular space and u is
a Baire measure with the property that W(X) = sups. o w(S) for all & < 1, with
& 1 X then *uost™" is a t-smooth Borel extension.

ProOF. Use2)=>1and v:= *.

(ii) Ifzis aregular topology and p is a regular Borel measure then *post™' = p
holds iff u is t-smooth.

ProoF. Use 2)<>4) with 74:=1.

Let X be a regular space and M,(X) be the set of all non-trivial T-smooth
measures on X. The weak topology is the weakest topology such that every map

26 e
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U: M,(X) — [0, o) defined by U(p):= u(U) with U e is lower semicontinuous
and X: M,(X) - [0, 00) is continuous. Hence v e *M,(X) is infinitesimal near to
pne M(X)iff v(*U) > w(U) for all U et and v(*X) ~ u(X). Hence we have charac-
terized in Theorem 3.8 the monads of the weak topology. As usual let
fin*R: = {x e *R:|x| < n for some ne N}. We prove now that

(17) ns *M,(X) = {ve *M(X):¥(ns *X) ~ v(*X) efin *R}.

PRrOOF. Let vens *M,(X). Then there exists ue M,(X) with w(*U) > u(U) and
v(*X) =~ u(X). Theorem 3.8. 2) = 3) shows that #(ns *X) = ¥(*X). Now let v be in
the set on the right hand side of (17). Define u:= vost ™! and apply Theorem 3.8
4) = 1 = 3) using the fact that ¥#(ns*X) = ¥ost™! = u is a regular measure, cf.
Theorem 3.4.

It is well-known that M,(X)is a regular Hausdorff space if X is regular. Hence
equation (17) yields the following nonstandard compactness criterion (proved in
[12]): a family £ < M,(X) is weakly relatively compact iff ¥(ns*X) =
#*X)efin *R for every ve *#. Lemma 2.4 in [ 12] shows that this is equivalent to
the statement that sups. s inf,.»{(S)/(X)} = 1 for every system & < 7 with
&1 X and | X)| £ cforall pe 2 and some c € R, i.e., that 2 is uniformly t-smooth
and bounded.

THEOREM 3.9. Under the assumptions of Theorem 3.8 the following statements
are equivalent:

1. yost™':0[7] - [0, ) is a Radon extension of .

2. W(*F) < u(F) for every F € t§, and for every ¢ > 0 there exists K = X compact
such that for all U € 1y with K < U the relation w(U) 2 w(X) — ¢ holds.

3. (*F) < u(F) for all F e1$ and y(ns *X) = v(*X).

4. yost™! = yon o[1,].

PrOOF. For 1) = 2) apply Theorem 3.4 “=” and for 2) = 3) choose a compact
set K with the property stated in 2). Then y(ns *X) = y(m, (K)) = infy ., kv
¥(*U) 2 infy w(U) = p(X) — &. For the next implication 3) = 4) apply Theorem
3.4“<".For 4) = 1) observe that v st ! is a Borel measure and by Theorem 4 in
[12] it is a Radon measure.

Let X be a regular space and Mg(X) be the set of all Radon measures on X. An
application of Theorem 3.9 shows that

(18) ns *Mg(X) = {ve*My(X): v(ns *X) ~ v(*X) e fin *R}.

Hence a subset 2 Mg(X) is weakly relatively compact if and only if
¥(ns *X) = y(*X) efin *R for all ve*#. A family 2 = My(X) is called uniformly
tight if the relation supy compact iNf, e #(K)/u(X) = 1 holds. By Lemma 2.4in [12]
this is equivalent to the statement v(cpt *X) = v(*X) for all ve *2. Hence every
uniformly tight family of probability measures on a regular space is weakly
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relatively compact. A regular space for which the converse is also true is called
a Prohorov space.

THEOREM 3.10. Let X be a normal, countably compact space and M,,(X) be the
set of all regular Borel measures on X. Then B,:= {ue M, o(X): y(X) < r} is
compact in the weak topology for every re[0, o).

PROOF. Let ve*B, and let ¢: a[t] — L(v) be the s-homomorphism construc-
ted in Corollary 1.3. Define u:= ¥ ¢. Theorem 3.4 “=" shows that p is regular
and that v is infinitesimal near to u.

A detailed discussion of the local compactness of all Baire measures can be
found in [19]. The literature about compactness Theorems is very large and we
refer to [11, 27, 28, 29] and the references given there.

The following Theorem generalizes slightly Theorem 3.8 in [2] which was
formulated for to = Z°. The proof rests on the results in [12].

THEOREM 3.11. Let 1, be a base of a regular topology. Then the following
statements are equivalent:

1. ns*X e L(v) for all internal finite contents v: o/ — *[0, 00) with °ty = .

2. ns*X € L(*u) for all Borel measures p.

3. X is pre-radon.

Proor. The implication 1) = 2) is trivial. Now let u be a t-smooth Borel
measure. Then u = *uost™! and since ns*XeL(*u) we have *post™! =
*post™ ! Hence pis Radon. Now let us prove 3) = 1. Let v be as in 1) and choose
A,e o/ with ns*X < A4, and v(4,) £ 7(ns *X) + ¢/2. It suffices to construct
A, c ns*X with 4, e &/ and (4,) — v(4,) < &. But vost™!is-smooth and by 3)
it is Radon. Choose K compact such that vost™}(K) = vost (X) — /2 =:a.
We can assume that K is closed. Let 1, be the system of all finite unions of sets in
7o. Weknow thatst ™ Y(K) = Ny, kv *U =:m, (K); hence for every U e 7, with
K < U, there exists Ze o with *K < Z < *U and w(Z) 2 «. By saturation we
can find Z € o/ such that W(Z) = « and Z = m, (K) < ns *X. Define 4, = Z and
observe that W(4,) — v(4,) S V(ns*X) +¢2 —a < e

4. Representability via partial maps.

THEOREM 4.1. Let v:.of — {0,1} be an internal two-valued content over *X and
s5:Y = X be a function with Y < *X. Then either vos~(x) = 1 for some xe X or
vos™! =0.

Proof. If s '(x)) 0 for some xeX it follows immediately that
s~ !(x)) = 1 since v is two-valued. Assume now that W(s~!(x)) = O for all xe X.
Hence there exists A, € o/ with s™!(x) = A, and v(4,) = O (here we use that v is
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two-valued). By Lemma 5 in [14] the set 4:= U,y A, is again a null-set. Now
s Y(X) < A implies that #(s~!(X)) = 0. Since ¥os~! is monotone the proof is
complete.

A measure u: £ — [0, 0) possesses a Loeb representation by a partial map if
there exists a function s: Y — X (where °X < Y < *X) with s(*x) = xforall xe X
satisfying the relations s~ !(B) e L(*y) for all Be # and *1u (s~ !(B)) = u(B) for all
Be . Since s is measurable the latter condition is equivalent to *u(s™!(B)) =
u(B) for all Be &.

COROLLARY 4.2. Let u:# — {0,1} be a non-trivial two-valued measure with
{x} € # and u({x}) = 0. Then p does not possess a Loeb representation by a partial
map.

PrOOF. Assume that u has a representation. Then *pos™!(x) = u({x}) = 0.
Theorem 4.1 shows that u is trivial, a contradiction.

As a concrete example one can take the measure u defined by u(4) =0 or
1 according as A is a countable or co-countable subset of an uncountable set X.
On the other side, Lindstrem has shown in [15] that every measure u: 2 — [0, 0)
has a weak Loeb measure representation, i.e., that there exists a g-algebra
4 <= L(*u) and a surjective 6-homomorphism 6 & — B such that *(B) = u(6(B))
for all Bed. His proof uses the above-mentioned extension theorem of R.
Sikovski. This homomorphism can be explicitly described: define %:= o[*B:
Be#] and 6(B):= B n X. Obviously 8: # — & is a surjective s-homomorphism
and by Theorem II.2 in [10] we obtain the desired equation *u(B) = u(6(B)).

It is an interesting question which measures can be represented by a partial
map. As in [24] a measure u: 8 — [0, 00) is called compact if it is regular with
respect to a compact family k = 9. A family k of subsets is called compact if the
intersection of every subfamily of k with the finite intersection property is
non-empty. D. Ross has shown in [24] that every compact measure has a repre-
sentation by a partial map; whether the converse is true is unclear and our result
Theorem 4.6 concerns only the simple case of two-valued measures. A key
observation is the following Proposition which implication part was proved in
[24] and whose proof is included here only for completeness.

PROPOSITION 4.3. Let F be a system of subsets of X. Then F is compact iff there
exists a partial map s:*X — X with*F < s Y (F) for all Fe #.

ProOF. For *xe°X define s(*x) = x. Let ye # pts*X\°X. Then {Fe #:
Y€*F} has the finite intersection property. Since & is compact we can choose
XE€Npeg ,eor F and we put s(y):= x. For ye*X\& pts *X we define s(y)e X
arbitrary. Now it is easy to check that *F < s~ !(F)for all F e &. For the converse
let #, be a subfamily of # with the finite intersection property. By saturation
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there exists y€ Ng. s, *F. Define x:= s(y). Since y € *F for all F e #, we obtain
x = s(y)es(*F) c s(s"'(F)) = F. Hence xe Nng_4  F.

The following Theorem is an abstract formulation of the fact that every Radon
measure on a Hausdorff space is Loeb representable by the standard part map.

THEOREM 4.4 Let u: B — [0, o0) be a finite measure and regular with respect to
a system F < & and let v. o — *[0, ©) be an internal content with v(*F) ~ u(F)
forall Fe F.If Y is a subset of *X with W(Y) = v(*X) and s: Y — X satisfies the
relation *FNY < s X(F) for all Fe% then s~ '(B)eL(v) for all Be# and

vos™Y(B) = u(B) for all Be &.

ProoF. Let Be #. For every ¢ > 0 we can find F;,F,e % with F; c B c F;
and u(F3) — u(F,) < ¢ by regularity. On the other side we have

(19) *F,nY s Y(F) cs Y(B) s }(F5) c *F;

Lemma 3.3 yields y(*F, nY)=y(*F;) and therefore we have w(*F5)—
V*FNnY) S vF3) — v(*Fy) = u(F3) — u(F,) < &. Since Y and therefore *F; 'Y
are Loeb measurable we infer the Loeb measurability of s~*(B). The above
inequality and (19) yield also the equation v(s ~'(B)) = u(B).

Proposition 4.3 and Theorem 4.4 (with v:= *u, Y := *X) yield now the follow-
ing result due to D. Ross [24]:

COROLLARY 4.5. Every compact measure possesses a Loeb representation by
a partial map.

Finally we show that for two-valued measures the converse is also true:

THEOREM 4.6. A two-valued measure y: 8 — {0, 1} possesses a Loeb representa-
tion by a partial map iff it is a Dirac measure iff it is compact.

PRrROOF. Assume that u possesses a Loeb representation. By Theorem 4.1 we
have *uos }({x})=1 for some xeX. Let Be®. If xeB then uB)=
*u(s~'(B) 2 *u(s~'({x}) = 1. If x¢B then xeB® and hence u(B°)=1, ie.
u(B) = 0. It follows that u is the dirac measure J,. For the next implication
observe that every Dirac measure J, is compact: choose k:= {Be #:x ¢ B}.
Corollary 4.5 yields the last implication.

J. Alda}_constructed in [2] a (two-valued) measure p over N such that the Loeb
measure * is not a compact measure therefore answering a question of D. Ross
negatively. The following result is more general but it uses essentially the same
proof.

THEOREM 4.7. Let v:of — {0,1} be an internal two-valued non-trivial content
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with {x} € o and v({x}) = O for all xe *X. Then the Loeb measure v: L(v) — {0, 1}
is not compact.

PROOF. Suppose there exists a compact family k = L(v) such that ¥ is regular
with respect to k. Since #({x}) = O there exists K € k with K, = *X\{x} such that
1 = #(*X\{x}) = #(K,). It is easy to see that {K,: x € *X} has the finite intersec-
tion property. But N,y K, © N, ox *X\{x} = 0, a contradiction.

5. Generalized set functions.

The definition of a content requires that the domain of the set function is an
algebra. This section deals with set functions which are only defined on a lattice,
i.e. a system of subsets containing @ and X which is closed under finite unions
and finite intersections. Moreover we drop the finiteness condition of the set
function. We call v a set function if it is a function on a lattice & into [0, co] such
that (@) = 0 and v is monotone, i.e., that A = B implies v(4) < v(B) for all
A,Be #. The meaning of an internal set function should now be clear. We
mention the following example which illustrates the advantages of our weakened
assumptions: let C(X) be the set of all continuous real-valued functions on
a compact Hausdorff space X and L: C(X) — R be a positive linear functional.
Then

(200  v:*Z > *[0,00) W(Z):= internal inf{*L(f): fe*C(X), x, £ f}

defines an internal set function where y, denotes the characteristic function of
Ze*Z. It can be shown that vost™! is a Radon measure with L(f)=
[ fd@ost™1) for every f e C(X). This is of course the Riesz-Alexandroff represen-
tation Theorem, cf. [2, 16, 23, 31].

Now let v: & — *[0, oc0] be an internal set function over an internal set Z. As
before we can define the outer Loeb function v: Z(Z) — *[0, oo] and the inner Loeb
function y: P(Z) - *[0, 0], if we use the extended real standard part map
st: *[0, 00] — [0, c0]. A subset Q < Y is called Loeb integrable if for every ¢ > 0
there exists 4,, 4, € % with 4; = Q = A, and v(4,)efin *R and v(4,) — v(4,)
< &. We denote the set of all Loeb integrable subsets by L(v); obviously L(v)
contains all 4 € & with v(4) € fin *R but L(v) is in general not an algebra evenif vis
a finite set function as the following example shows:

EXAMPLE 5.1. Let X be an uncountable set and # be the system of all finite
subsets of X. Define a set function u: # U {X} — [0, o) by u(F) = Oforall Fe #
and u(X) = 1. Then p even satisfies the condition

(21) WA U B) + (AN B) = puA) + wB) forall A,BeF u{X}
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It is easy to check that L(*u) = {4 = *X:3E hyperfinite with 4 = E} U {X}.
Hence L(*y) is not an algebra.

An internal set function v:.% —*[0,00] is called subadditive if
WA U B) < W(A) + B) for all 4,Be¥ and additive if AnB=¢ implies
WA U B) = v(A) + v(B) for all 4, Be &. A set function is called modular if the
equation (21) holds. Trivially every modular set function is additive and subaddi-
tive.

It turns out that the set L(v) is not so important as in the case of contents.
Despite of this fact we prove the following theorem about L(v).

THEOREM 5.2. Let v: & — *[0, c0) be an internal finite set function. If ¥ < £ is
a family of admissible cardinality then U & and N & are in L(v). If v is modular then
L(v) is closed under countable unions and intersections.

Proor. The first statement follows by a modification of the proof of Theorem
1in [12], cf. Theorem 3.5 in [2]. For the second statement let B;, C; € £ be given
with B; « C;fori = 1,...,nandlete,,...,¢,€[0, c0). The modularity and an easy
induction argument shows that v(C;) — w(B;) <¢; for i = 1,...,n implies that
WCiu...uC,)—VvB;u...UB,) < & + ... + ¢, It follows that L(v) is closed
under finite unions. Now let (4,),.y be a sequence in L(v). We can assume that
A, A,,; and let ¢>0. Choose B, C,e¥ with B, A4,< C, and
wC,) —v(B,) <2 " Let C,:=C,u...uC, and B,:=B,;u...uB,. Then
WC,) — W(B,) < ¢ Leta: = lim, .y 7(B,) and choose n, € N with w(B,) — v(B, ) < e.
For every neN with n = ny we have WC,) < v(B,) + ¢ < v(ﬁ,,o) + 2¢. By the
overflow principle there exists Ne*N — N with w(Cy) — v(1§,,0) < 2¢. Since
§,,o c u®, A, < Cy the proof is complete. The proof for intersections is quite
similar.

J. Aldaz proved in [2] that the function vost™! restricted to ¢[7] is a Borel
measure for an internal subadditive additive finite set function v provided that
ns *X is Loeb integrable. We show in the sequel that this assumption is redun-
dant. The following result is an easy consequence of the saturation principle.

PROPOSITION 5.3. Let v: % — *[0, c0] be an internal set function. For every
upward directed system & < & of admissible cardinality we have 7(U, o S) =
SUPses WS). If & < £ is a downward directed system of admissible cardinality and
%S) < oo forallSe & then V(N S) = infy & W(S). The same results are true for v.

The following Theorem is due to P. Loeb, cf. [16].

THEOREM 5.4. Let v: & — *[0, 00] be an internal subadditive set function. Then
V:#(Z) - [0, 0] is an outer measure and the following equality holds:
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(22) Q) = inf{ Y stv(d,):neN, 4, £,Q < U™, A,,}.
n=1
More can be proved if we assume that v: & — *[0, c0] is an internal modular
set function: then v is monotone and satisfies the following two conditions:
(i) V(U 4,) = lim,_, , ¥(A4,) for every increasing sequence (4,),cn-
(ii) ¥(n%, B,) = lim,, ,, ¥(B,) for every decreasing sequence (B,),.y in .& with
% B,) < 0.

In other words: ¥is a non-negative #-capacity in the sense of [ 7, p. 52] if vis an
internal finite modular set function. Here Property (ii) follows from Proposition
5.3 and the proof of (i) is omitted.

Let v: &£ — *[0, oo] be an internal subadditive set function. We have seen that
L(v)isin general not an algebra and the equation (4) is not longer valid. We define
M(7) as the set of all Q = Z such that the outer measurability condition
WA N Q)+ WA N Q°) = ¥(A)is valid for all A = Z. It is well-known that M(¥) is
an algebra and that v restricted to M(¥)is a content and M(¥)is the largest algebra
with this property. If ¥ is an outer measure then M(7) is an o-algebra and
vrestricted to M(v) n Yisa measureforall Y = Z. Moreoverasubset Q = Zisin
M) iff
(23) VF)ZWFNQ)+ WFnQ) forall FeZ.

We emphasize that in general the sets Le.# are not contained in M(¥), cf.
Proposition 5.9. Hence the measurability of the inverse standard part map must
be proved in a different way as before. The following result is a sufficient criterion
for outer measurability.

THEOREM 5.5. Let v: & — *[0, oo] be an internal subadditive and additive set
function. Assume that Q is the intersection of a family & < ¥° of admissible
cardinality and that for every S € & there exists Ze ¥ withQ ¢ Z < S. Then Q is
in M(v).

PrOOF. By assumption we have Q = N, S and we can assume that & is
closed under finite intersections. We have to prove the inequality (23) for every
Fe¥. For Se ¥ and Fe % choose Ze & with Q =« Z < S. Since F n §° and
FnZ are disjoint sets in % we obtain vw(F N S) + vw(F n Z) < v(F). Hence
W(F N §°) + #(F n Q) £ v(F)since Q = Z.But Q° = U, S and now Proposition
5.3 yields #(F N Q°) + WF N Q) < %(F).

THEOREM 5.6. Let 1 be a regular base of a topology t and let v: & — *[0, c0] be

an internal subadditive and additive set function with °to < £°. Then the inverse
standard part function st ~': 6[1] = M(¥) N ns *X is a a-homomorphism and Vo st™*
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is a measure on the Borel o-algebra. If v is finite, or if v is modular and there exists
a sequence of sets A, = *X withns*X < U%, A, and WA,) < oo, then Vost™ Lis
T-smooth.

Proor. For the first statement it suffices to show that st ™ *(F)e M(¥) N ns *X
for all closed subsets F = X. Let Q be the intersection of all *U with U € 1, such
that there exists Zet§, with F = Z < U. By Theorem 5.5 Q is in M(?) and it
suffices to show that @ nns*X = st }(F). Let ye Q nns *X. Then there exists
xe€ X with y & x. Suppose that x ¢ F. Then there exists U € 7, with x € U which is
disjoint to F. Choose a closed neighborhood Z e tj with xe Z < U. Since y & x
we have ye*Z, but ye Q and F = U® < Z° implies y e *Z°, a contradiction.

Now let & 1 be upward directed. It suffices to show that vost™?
(Uses S) £ sup,cs ¥o st~ (S) since ¥ is monotone. For every Se€ & and xe S we
canfind U,, V,eto and Z, €1 such that xe U, « Z, c V, c *V, < *S.Itis easy
to see that st™Y(U,eS) = Urx*U,nns*X. We first prove that
F(st™ Y (U &) N A) £ sup,e o ¥(st~1(S) N A) for every A = ns*X with #(A4) < .
Choose Ee¥ with AcE and WE)<W%A)+¢e By Proposition 5.3
V(St— l(u g n A)) é v(uxe}{ *Ux N E) = Supxl ..... xpeX \7«* le V...u *Ux,,) N E)
Let Q,, be the intersection of the family {*V:Vet1,,3Z €15, U,, =« Z = V}. Then
*U,, < Q,, c*V,,c*S and Q,eM(?). Now W*U, v...u*U,)nE)<
W(Qx, v ...u Q)N E) and by the following Lemma we obtain as an upper
bound #(Q,,U...uQ, )N A)+eZH*V,, L...u*V, )N A) + e < T(st™(S)
+ ¢ for some Se€ ¥ since & is upward directed and 4 = ns* X and *¥, < *S.
Now let 4, c *X with ns*X < U2, 4, and ¥A4,) < co. Obviously we can
assume that 4, = ns*X and 4, = 4, . By property (i) we have #(st (U %)) =
lim, ., ,, 7(st (U &) N A4,) and we can apply the previous case. The result follows
now immediately.

LEMMA 5.7. Let v: & — *[0, o0] be an internal subadditive set function and let
Ee ¥ and A < E suchthat WE) S WA)+ e < 0. Then ENQ) S (AN Q) +¢
Jor every Q e M(¥).

PROOF. Wehave WE N Q) + WE N Q°) = WE) S WA) + e £ (AN Q) +
HANQ)+eSHANQ)+ HENQY) + e

CoROLLARY 5.8. Let to be a regular base of a topology © on X. Then X is
pre-radon iff ns*X e L(v) for every internal subadditive additive finite setfunction
v: & — *[0, o) with °1y = Z°.

ProoF. Use Theorem 5.6 and repeat the proof of Theorem 3.11 3) = 1).

PROPOSIT!(-)_N_ 5.9. Let u: £ — [0, ) be a finite set function. Then °¥ is con-
tained in M(*y) if and only if for every F;, F,e % with F, c F, the equality
WF;) = w(Fy) + infc o po\r, < L W(L) holds.
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ProoF. For the necessity let F;  F, in #. Since *F, e M(*u) the outer
measurability condition (with A := *F,) yields st(*u(*F, N *F})) + *u(*F,\*F,) =
st(*u(F,)). Hence for every ¢ > 0 there exists Le*% with *F,\*F; < L and
*u(L) < *u(*F,) — *u(*F,) + e. Apply now the Transfer principle and let ¢ be
arbitrary. For the converse let Qe*¥. By (23) it suffices to show that
st*u(F) = st*u(F Q) + *u(F nQ°) for all Fe*¥. Define F,:=F and
F,:= F n Q. Then F,, F, € *# and the Transfer applied to our assumption yields
*(F) = *u(F n Q) + internal inf sy pgecr *u(L). Taking standard parts the
above equation is proved.

A set function u: Z — [0, o] satisfying the condition in Proposition 5.9 is
usually called complementary tight.
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