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INTERPOLATION OF NONLINEAR OPERATORS
BETWEEN FAMILIES OF BANACH SPACES

LJUDMILA I. NIKOLOVA and LARS ERIK PERSSON!

0. Introduction.

In the theory and applications of interpolation spaces we usually consider
a Banach couple (4, 4,),1.e. Ap and A, are Banach spaces, which are embedded
in a Hausdorff topological vector space U. There are several studied construc-
tions for obtaining interpolation spaces with respect to the couple (4o, 4,) and
the most well-studied and applied such spaces are the spaces [Aq, 4]y and
(Ao, A1), Obtained by using the complex and the real methods of interpolation,
respectively. See e.g. the books [2], [14] and also the Bibliography of Ma-
ligranda [16] including more than 2000 references.

Parts of the theory concerning interpolation between two Banach spaces can
be generalized to cover also cases where we interpolate between finite many
Banach spaces and even between general families of Banach spaces. Here we
mention the following developments:

1) A theory for complex interpolation between families of Banach spaces was
developed by Coifman-Cwikel-Rochberg-Sagher-Weiss (see [5], [6], [7]) and,
independently, by Krein-Nikolova (see [12], [13]). These spaces are sometimes
called the St. Louis-spaces and Voronez-spaces, respectively. Another complex
interpolation method between n-tuples of Banach spaces was suggested by Lions
[15] and studied in detail by Favini [9]. This method of Favini-Lions was
extented by Cwikel-Janson [8] to cover also complex interpolation between very
general families of spaces.

2 A theory for real interpolation between n-tuples of Banach spaces was
introduced and studied by Sparr [24]. A similar theory for real interpolation
between 2*-tuples of Banach spaces was studied by Fernandez [10]. In this
Connection we also mention early works by Yoshikawa, Kerzman and
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Foias-Lions (cf. the discussion in [ 24, p. 248]). Moreover, Cobos-Peetre [4] have
recently developed a theory for real interpolation between finite many Banach
spaces which, in particular, covers both Sparr’s and Fernandez’ constructions for
the cases n = 3 and n = 4, respectively. The construction of Sparr was extended
by Cwikel-Janson [8] to cover also real interpolation between a fairly general
family A = {A,},cr, Where A4, are Banach spaces and I' is a general probability
measure space (this idea was early suggested by J. Peetre).

Concerning the most important properties of these methods and the relations
between them we refer to the extremely useful paper [8] by Cwikel-Janson.

In the theory of interpolation we usually study linear operators. However, also
some results concerning interpolation of nonlinear operators are known in the
case of interpolation between two spaces (see e.g. [3], [11] and [17] and the
references given in these papers). In this paper we prove and discuss some
theorems about interpolation of nonlinear operators acting on interpolation
spaces constructed by some method for interpolation between families of spaces.
In particular, we generalize and/or complement some previous results of Cobos
[3], Cobos-Peetre [4], Janson [11], Maligranda [17], Nikishin [19] and
Nikolova [21].

We can not give all details about the constructions of the interpolation spaces
we have discussed above. However, complete definitions and related basic facts
can always be found in our main reference [8] and the references given there. This
paper is organized in the following way: In section 1 we present some necessary
theory and notations from [8] and we also include some complementary theory
and results. In section 2 we state a compactness interpolation result, which for the
case with only two different spaces gives a recent of Cobos [3]. In section 3 we
present an interpolation theorem for non-linear operators satisfying a condition,
which may be regarded as a natural generalization of a condition introduced by
Bergh in a similar context (see [1]). For the case with only two different spaces
this theorem coincides with a recent result of Maligranda [17]. For a complex
interpolation method for n spaces a generalization of Bergh’s result was given by
Stan [25]. In section 4 we state a theorem for sublinear operators, which
generalizes another result of Maligranda [17] in a similar way (compare also
with Janson [ 11] and Nikishin [197]). We also prove an estimate for the generaliz-
ed K-functional for C-subadditive operators and point out some applications of
this estimate. In section 5 we discuss a recent construction of Cobos-Peetre [4]
and mention an extension of this method to cover also cases with interpolation
between families of spaces. Section 6 is reserved for some concluding remarks.

2. Preliminaries.

Let Z be a probability measure on a g-algebra of subsets of an abstract set I'. We
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consider a family 4 = {4, },.r of Banach spaces. We shall define the “inequality”
B < Cbetween two Banach spaces Band C to mean that B & Cie., |alc < lallg
for all ae B. We also require that 4 is a bounded family on I', i.e., that there exists
a Banach space U such that 4, < U for all teI'. In this paper we consider the
“lower” spaces Ly (A4, Z) and the “upper” spaces Uy(A4, Z) by Cwikel-Janson [8].
Here M stands for any of the interpolation methods FL (Favini-Lions’ method),
St.L. (the St. Louis school method), J, (Peetre-Sparr’s J-method) or
K ,(Peetre-Sparr’s K-method). If M = St.L, then we use the convention that I' is
a rectifiable simple closed curve constituting the boundary of a domain D in the
complex plane and that Z = P, is the harmonic measure on I at some fixed point
zeD. We remark that if A = {4}, is of stepfunction type (i.e. I' is divided into
n + 1 disjoints parts E, of positive measure and A, is “constant” = A4, on E,,
k=0,1,...,n), then we get a corresponding interpolation method for interpola-
tion between a n + 1-tuple of Banach-spaces.

We introduce the following generalizations of the classical definitions:

1. Theintersection AA, of Ais the set of all elements a belonging to all spaces 4,
for which

llall 44, = sup llall 4, < 0.
tell
2. The sum Y A, is defined to be the set of all elements a in U which can be
represented in the form

a=>y a,aeA,where) |lall 4 < 0.

Weput ||a|y 4, = inf ), ||a,|| 4, where infimum is taken over all representations of
a of the form above. Let us also note that there are only countably many
summands different from zero and, thus, that we can use a representation of the
typea = Za,j, a,€A,, where )’ la, I, < oo.

The spaces 44, and )’ A, are Banach spaces. If y is a subset of I' and 4 = (4 ),
then we use the notations 4,4, and ¥, 4,.

Let ||a|| ,, be a measurable function for every ae () A.. Moreover, let h(f) be an
tel

arbitrary bounded (by positive constants) and Z-measurable function on T,
which is constant on the measurable sets of constancy of 4,,
3. For ae) A, we define the generalized K-functional K(h(t), a; A) as
K(h(t), a; A) = inf ) h(t) llay ]| 4,,
where inf is taken over all representations a = Y d,, &€ A,, where Y llaill 4, < o©.
4. For ae AA, we define the generalized J-functional J(h(t),a; A) as

J(h(r), a; A) = sup h(t) l|all 4,-

tel
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5. The Banach space E is of the class K(4,Z)if E £ ) A, and, for all aeE,
K(h(t), a; 4) < Cexp (Jlog h(t) dZ(t)) lallg.
r
6. The Banach space E is of the class J(A,Z) if AA, £ E and, for all ae 44,,

lalg = Cexp (f —logh(t) dZ(t)) J(h(t), a; A).

r

ExaMPLE 1.1. Let 4,=A, on a subset y with 0<Z(y)=0<1
(Z(y) = [,dZ(t), let A, = A, on I'\y and let h(z) = 1 on y and h(t) = u on y. Then
the definitions in 1-6 coincide with the classical definitions of the intersection
Ao A,, the sum Ay + Ay, the (Peetre) K-functional K(u, a; Ay, A,), the (Peetre)
J-functional J(u,a; Ay, A,), the class Cg(0; Ay, 4,) and the class C,(8; Ay, A,),
respectively (see [2]).

EXAMPLE 1.2. A Banach space E is of the class K(4, Z)iff E < )" A, and for an
arbitrary Banach space B and any linear operator T ) A, — B for which
| Tallp < M(2) l|all 4,, a€ A, (M(t) denotes a bounded (by positive constants) func-
tion, which is measurable with respect to dZ(t)), it holds that

IT/Ellg-p = Cexp (Jlog M() dZ(t)>-

r

ExaMmpLE 1.3. Let D be an arbitrary Banach space and assume that 44, < E.
E is of the class J(B,Z) if for any linear operator T: D — A4, with
| Tall 4, £ M(t) |lall 5, (M(t) denotes a bounded (by positive constants) function,

which is measurable with respect to dZ(t)), it holds that

ITlp-e < Cexp ( j log M(z) dZ(t)>
r
Cdenotes a constant in these examples and in the sequel. Proofs of the statements

in the examples 1.2-1.3 can be found in [20]. By using these examples and
Theorem 2.21 in [8] we obtain in particular the following useful information:

ExampLE 1.4. The Cwikel-Janson interpolation spaces Ly(U,Z) and
Upn(A, Z) are both of the classes K(A, Z) and J(A, Z).
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2. A compactness result for Lipschitz operators,

First we present the following generalization of a recent result of Cobos [3,
Theorem 2.1]) concerning interpolation of compact non-linear operators:

THEOREM 1. Assume that y is a subset of I' of positive Z-measure, B is a Banach
space and A = {A, }cr is a family of Banach spaces.

(@) If T: Y. A, ~ B is a Lipschitz operator, T:), A, — B is compact and the
Banach space E is of the class K(A, Z), then T: E — B is compact.

(b) If T: B— A, is a Lipschitz operator for every teI with the Lipschitz
constants M(t) £ Mo, T: B> 4,A, is compact and the Banach space E is of the
class J(A,Z), then T: B — E is compact.

We consider the special case when 4 = {4,} is “constant” = A, on y, where
0 < Z(y) = 0 < 1 and “constant” = 4, on I'\y and obtain the following result of
Cobos [3]:

COROLLARY 2. Let (A, A,) be a Banach couple and let B be a Banach space.
Assume that T is a nonlinear operator.

(@) If ' Ay - Bisacompact Lipschitz operator, T: A, — Bis Lipschitz and the
Banach space E is a space of the class Cx(6, Ao, A1) with Ao N A, dense in E, then
T. E — B is compact.

(b) If T: B — Ay is acompact Lipschitz operator, T: E — A is Lipschitz and the
Banach space E is a space of the class C,(0; Ay, A;), then T: B — E is compact.

PROOF OF THEOREM 1. (a) Choose arbitrary m > 0 and ¢ > 0 and let M(t)
denote the Lipschitz constant of the operator T A4,—B. We put
M;(t) = max(m, M(t)) and

Ml(t) ’ te Vs

h(t) =1 2sup M(t)
—, tel\y.

Let D be a bounded subset of E, let ae D and choose a representation a = Z a,
such that

@ S hit;) i, s, < 2K(h(t) ; A).
tjel
We denote a° = Ztm a, and a' = them a,.
Now, according to (2.1), the triangle inequality and the assumption
EeK(4,2), we find that
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1 2

22 el e £ X llaylla, < — X bt llay )4, < —K(h(t),a; 4) <
! tjey ! m tjey ’ m

2C

<=
“m

exp (Ilog h(?) dZ(t)) lallg-
r
If Dy denotes the set of all a® such that a e D, then this estimate implies that Dy is

bounded in ), 4,. Therefore, by our assumptions, there exists a finite subset
by,b,,...,b,€ B such that

T(D,) < O b, + Ug(e/2) (be Ug(e) means that ||b| 5 < ).
k=1

Now we fix by such that || Ta® — b, |5 < & Then, by (2.1), (2.2) and the triangle
inequality, we obtain that

ITa — bells < | Ta — Ta®llp + | Ta® ~ bells < Co lla — a®llzs, + 1T6° — bills <

SCO
SCo Y layla, +eS o ¥ ht)lalla, +e <
otjg;w 11l Ay 2sup M(r) t,-ez;\v 7y
8C0

eC, ,
= ; = < C,eZ®
= S MO K(h(t),a;A) + ¢ < exp (Jlog h(t) dZ(z)) + & < C,e®?,

sup M(z)

r

Thus T: E — B is compact.
(b) First we note that the operator T: B — 4 A, is a Lipschitz operator because

(2.3) ITx — Tyllaq, = sup | Tx — Ty 4, < sup M(1) [|x — ylip = Mo [ x — yl5-

tel’ tel

Let ¢ > 0 and choose h(t) = 1, tey, and h(t) = ¢, te I'\y. Then the condition
Ee J(A, Z) implies that

(2.4 lallg = Cexp ( j — log h(r) dZ(t)) J(h(t), a; A) =
T
= CeZ"~ ! max {sup lall 4, sup ¢llall At} '
tey tel'\y

Let now D be any bounded set in B with the diameter L and let ae D. The
condition that T: B— 4,4, is compact means that there exists a finite set
by, b,,...,b,e D such that

T(D) < jL:)l {Th; + Uy, 4,e)}
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and, for some b, k=1,2,...,n, ||[Ta — Th| 4,4, < & Therefore, in view of

(2.3)2.4),

ITa — Thyllg < Ce?™~* max {Sup ITa — Thy| 4, sup &| Ta — TkaIA,} =

tey tel'\y
< Ce®Y ' max {e,eM,2L} = C&?™.
Hence T B — E is compact and the proof is complete.

RemMARK. By analyzing our proof above we find that Theorem 1 (and thus
Corollary 2) holds also if we consider Holder operators instead of Lipschitz
operators.

3. Interpolation of operators endowed with a generalized Bergh-condition.

In this section we restrict ourselves to the case when I' is the boundary of the unit
disc D and consider the Voronez-spaces spaces 4., z€ D (seee.g. [13]), and the St.
Louis-spaces A[z],ze D (see e.g. [7]). We need the following basic definitions
from the foundations of these spaces:

1. Let F°(}) be the set of functions with valuesin y, = 3 4,, te I', holomor-
phicin D and weakly continuous in D. Let F(4) be the set of strongly continuous
functions on D (with values in 44,) and

F*= {feFVZ): fOed,t=€%0=<s<2n | fllpe = sup [f(®)ll4 < 00}-
0Ls<2n

Let F, = F,(A) denote the closure of F(4) in the norm of F°.
2. Let A= {A,}, teT, be a St. Louis interpolation family and let

p= {ae NA,: Jlog* llall 4, dP.(t) < oo}.

r

2n
Here jf (6)dP,(t) = % J f(e®)P(z, 5)ds, where P(z, s) denotes the Poisson ker-
n
r 0

nel. Let G denote the set of all functions of the form a(z) = Y. ¥/(z)a; (finite sum),
where a;€ B and each ¥ ;€ N*(D) (the positive Nevanlinna class) such that

lallg = esssup [lg(®)]l 4, < o
tel’

Let F(4, I') denote the completion of G in this norm.
Now we consider the interpolation families 4 = {4,} and B = {B,} of some of



54 LJUDMILA 1. NIKOLOVA AND LARS ERIK PERSSON

the forms described above. Inspired by an idea by Bergh [1] we introduce the
following condition:

*) ue H(A) = Tue H(B), where H(A) = F,(A) or H(A) = F(A4,T).
We state the following generalization of a result of Maligranda [17]:

THEOREM 3. Assume that T is a non-linear operator and that there exists
ameasurable function M = M(t),te I',such that | Tallp, £ M(t) ||a| 4, for allac A,,
tel.

(@) If (*) holds with H(A) = F°(A), then T maps A, into B, and

(1) I Talls, < exp ( j log M(t) sz(t)> lalla,-
r

~ (b) If (*) holds with H(A) = F(A, T'), then T maps A[z] into B[z] and (3.1) holds
with A, and B, replaced by A[z] and B[z], respectively.

REMARK. By dividing the unit circle into two disjoint parts y; and y, where

7175 J P(z,t)dt = 0, by letting M(t) = M; on y;, A(t) = A; and B(t) = B; on y,,

Y1
i= 0,1, we get Theorem 3 by Maligranda [17]. See also Bergh [1].

PrOOF OF THEOREM 3. Let ae€ A,, ze D, and consider an arbitrary ¢ > 0. We can
find ue Fy(A) such that |lullp < llall4, + ¢ and u(z) = a. Therefore, by (¥),

Tu(w) e Fy(B). Now we use Lemma 3 by Krein-Nikolova [13] to conclude that
there exists a scalar function b(w) which is continuous on D and holomorphic on
D, b(z) = 1 and such that if h = h(w) = b(w)T(u(w)), then

log |hllr,@ = flog IT@@)li5, dP(2) + & = flog M(t) dP(t) +

r r

+ logsup ||u(t)ll 4, + & = Jlog M(t)dP,(t) + log ||ullpeqy + &
tel’
r

Therefore, since also h(z) = Tu(z) = Ta, we obtain that

| Talls, < bl re@) < exp (J-IOS M(t) dP,(t) + 8) lullpecay £
T

<exp <Jlog M(t) dP,(t) + 3) (llall 4, + ©).

r
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The proof of part (a) follows by letting ¢ = 0+ . The proof of part (b) is similar so
we omit the details.

4. Interpolation of C-subadditive operators.

The operator T: Ao — L(u), is said to be C-subadditive if T(a + b) is defined
whenever T(a) and T(b) are defined and | T(a + b)(t)] < C(|T(a)(t)| + |T(b)(t)]) a.e.
(C is a positive constant independent of a and b). T is called C-sublinear if, in
addition, | T(Aa)(t)] = |A||Ta(t)| a.e. and for all Ae R ... First we state the following
result for sublinear (= 1-sublinear) operators:

THEOREM 4. Let A = {A,}, te I, be a bounded family of Banach spaces and let
B = {B,},teT, be afamily of Banach lattices in L°(u1). Assume that T: U — L°(u) is
sublinear and that the following holds: if ae A,, then Tae B, and ||Tallp, <
M(t) ||a]l o, for some bounded function M(t), which is measurable with respect to
dZ(t)onI. Let F(A)denote any of the Cwikel-Janson interpolation spaces Ly(A, Z)
or Uy(A, Z). Then the following holds: if ae F(A), then Tae F(B) and

[ Tallf@y < exp (JIOQ M(z) dZU)) llall peay-

r

REMARK. For the case with only two spaces (see the remark after Theorem 1)
we obtain a result which is completely analogous to Theorem 7 in [17].

PROOF OF THEOREM 4. The main idea here is to observe that, for any ae Z A,,
there exists a linear map L;:Y. A, — L°(u) such that |L,(b)| < |Tb| a.e. for any
bey A, and L,(a) = Ta a.e. The proof of this statement can be carried out in
aquite similar way asin [17, proof of Theorem 7] so we omit the details (the main
argument is to use Hahn-Banach theorem in an appropriate way). Hence, since

B, is a Banach lattice,
ILi®)lls, < I Thlls, < M(t) |bls, forall beA,.

Therefore by using the interpolation theorem 2.21 in [8] we obtain that

1 Tallr) = I Lo(@lrm) < exp (flog M) dZ(t)) lalee

r
where F = Ly (A4, Z) or F = Uy(A, Z) and the proof is complete.

The following estimate of the generalized K-functional implies at once interpo-
lation results for C-subadditive operators T from the family {4, } into L°(u), namely
for operators T satisfying T} a,) £ CY.|Tay).

THEOREM S. Let T denote a C-subadditive operator from the family {A.} into
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L%(u) and let A = {A,} and B = {B,}, te T, denote families of Banach spaces and
families of Banach lattices, respectively. Moreover we assume that if a€ A,, then
TaeB,and || Ta| s, < M(t) | all 4,,t e I', where M(t) is bounded by positive constants.
Then

K(h(t), Ta; B) < CK(h(t)M(t), a; A).

ProoF. Choose arbitrary ¢ > 0. According to the definition of the generalized
K-functional we can find a representationa = ) a, , such that a, € 4, and

Y htIM(E) llay, L, < (1 + K(R(OM(2), a, A).

Let b, = —z(l—z,:l,—f% |Ta, | on the support of of Z |Ta, | and b,, = O elsewhere. Since
t

T is C-subadditive we have the estimate

T
b = L&)\ 7 | < 174,

v XiTay
and, thus, because B, are Banach lattices,
b ls,, = CllTa, lls,, = CM(t)) lla, |4, -
We conclude that
K(h(t), Ta, B) £ ¥ h(t;) by, 5, < C ¥ h(t))M(t)) o, lLo,, <
< C(1 + e)K(h(t)M(t), a, A)
and the proof follows by letting ¢ — 0+.

Now we consider the usual Peetre-Sparr spaces ‘Zﬂq;K, where
0 = (0o,04,...,6,), Y0,=1 6,20, 1Sgq=<o0 for an (n+ 1)-tuple
A= (A, Ay,...,A,) of Banach spaces (see [24] or [8]) and state the following
interpolation result:

COROLLARY 6. Let A; and B;, i =0,1,...,n, be Banach spaces and Banach
lattices in L°(u), respectively, let T denote a C-subadditive operator from
Ao+ Ay + ...+ A, into L°(u) and assume that ifac A;, then TaeB; and
I Talls, < M; llall 4 i = O, 1,...,n. Then T maps Ay, g into Byyx and

I Tallg, « < CMoMY ... ME» llall Z,, «-

Proor. Divide I’ into n + 1 disjoint parts with positivc measure and let
A= A; B=B;, M =M, and h(t) = ¢; on part j, j=0,1,...,n In this (finite
family) case Theorem 5 lmphes that K(t Ta, B) = CK(tM a, A) Therefore, by
using Lemma 3.1 in [24], we obtain that
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Bo,(K(5, Ta; B) < COpo(K(t M, a; A) = CMPM?: ... M¥®, (K (1, a; A))
where

dt;  dt,\'1
L)

Boo(f) = ( j tr® 5% 670 (L g, )8
R,

The proof is complete.

Now we introduce the following generalization of the Peetre-Sparr spaces
Ap. o:x: We say that ae Ay .x if a = a(t), a(t)e A, te T, and

Ialla, o« = sUPp ([—log h(t) dZ()K (h(2), a; A:)) < oo,
r

where supremum is taken over all functions h(t) which are bounded by positive
constants, measurable with respect to dZ(t) and constant on the measurable sets
of constancy of A4,.

CoroLLARY 7. Let T, A = {A,}, B = {B,} and M = M(t), te T, be defined as in
Theorem 5 and assume that M = M(t) is bounded by positive constants and
measurable with respect to dZ(t), Then T maps A, ,.x into B, .x and

[ Talp, ;. = Cexp <f10g M(t) dZ(t)> lalla,, o;x

r

5. On a construction of Cobos-Peetre.

We consider the n + 1-tuple A= (g, Ay, ..., A,) of Banach spaces and the three
parameter interpolation spaces Z(,,, p.a:k(1 = g < o) recently introduced by
Cobos-Peetre [4]. Here each space 4 ;should be thought of as sitting in the vertex
(x5 9,j = 0,1,...,n, of aconvex polygon IT and let (2, §) be a point in the interior
of IT. For definitions and basic properties we only refer to [4]. We state the
following slight generalization of a result in [4]:

THEOREM 8. Let A = (Ag,Ay,...,A,) and B= (Bo, By,...,B,) denote
(n + 1)-tuples of Banach spaces and Banach lattices in L°(u), respectively. Assume
that the operator T is C-subadditive from Y, A, into L(u) and assume that if ae A,
then TaeB; and [ Tals, < M;llall4) = 0,1,...,n. Then

” Ta"i’(a.ﬁ),q‘x é ClDa, ﬂ(MO’ Mla [RES} Mn) "a”Z(u_p);q;K’

Where Cl = max(c’ C") and
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D, s(Mo,My,...,M,) = inf {max {t*f—“sz-ﬂMj}}.

t>0,s>0 L0Sjsn

ProoF. According to our definition of the generalized K-functional, the sub-
additivity of T and the assumption || Ta| s, = M; |a| 4, we obtain that, for all
Au >0,

K(t,5|Tal; B) K(t, 5,4,C, Y| Taj, B) <
(1]

n n
< inf{Zt"fs”Cl I Ta;ll5: a = Zaj,a,-eAj} <
0 0

n

=G inf{z A Mt/ A (s/pp’ llajlla;a = Y a5, ajEAj} =<
0 0

< C; max {AMpM;}K(t/2,s/u, a; A).

1=j=N

Thus, by arguing asin [4],i.e. by integrating and changing variables, we find that

q
nTan@,m.q;K.g( f f(z *s7Cy max {Z MK/, S/u,aA)> < ds) -
00

1sjsN

=C; max {A¥ 7w "M} |lall, )0k
1SjsN

0‘——38

1<jsN

f(t 5s=8C, max {A% % PMIK(t, s, a; A)) t ‘ZS> =
1]

The proof follows by taking infimum over 4 > 0, u > 0.

We finish this section by mention the following possible generalization of the
construction of Cobos-Peetre to the case with interpolation between a family
A = {A.u}, te[0,2n), of Banach spaces (cf. [22]): First we define generalized two
parameter K-functionals and J-functionals as

K(u,s,a;K) = inf {Y us||a;|l 40, a = Y, a), a;€ Apig},

t;¢€[0, 27)

Ju,s,a;A) = sup {u*'s*"" |la| 4,66 NAeu,0 St < 2},
te[0, 27)
respectively. Thenfor 1 £ z < 00,|z| < 1,a = Re z, b = Im z, we define the space
A, . x = Ag, p), o x s the completion of all elements a€ ) A, having finite norm
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@

lall, , <= (J‘ (uRezs~ImzK(y, s, a,A))
00

The spaces A, g7 = A, p.qs and the classes K (4) and J,(A) are defined in

similar suitable ways. We shall not develop this idea further in this paper but only

remark that it is possible to prove that the spaces 4, ,x and A, ,, have

appropriate interpolation properties and that they are of the classes K,(4) and

J,(A), respectively.

u s

1 dy _d_s_)”"

6. Concluding remarks.

1. We suggest that Theorem 4 do not hold in general if T is only a C-sublinear
operator (C > 1). We remark that even for the classical case with complex
interpolation between two spaces it is not known if there exists a C-sublinear
operator T satisfying the condition “ae A;= TaeB; and | Tallp, < M; [a| 4p
i=0,1,” such that T do not map (4,, 4,) into (By, B;), (4; and B; are Banach
spaces and Banach lattices in L%(u), respectively). However, Maligranda [17, p.
268] has presented an example of such an operator for the case when the
C-subadditivity assumption holds only for functions a and b satisfying
la + b| = |a| + |b| a.e.

2. In connection to our Theorem 1 we remark that for the classical case with
interpolation between only two Banach spaces there exists several results con-
cerning interpolation of various kinds of geometrical properties. See e.g. the
review article [18] (including more then 100 references). For the case with
interpolation between families of spaces only some such results are known.

3. In order to be able to apply or illustrate our results it is important to have
some concrete descriptions of interpolation spaces between families of Banach
spaces. However, such descriptions can easily be obtained by using reiteration
and well-known descriptions of interpolation spaces between couples of Banach
Spaces; see [23].
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