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COMPLETE DUALS OF C*(X)

S. KUNDU* and A. OKUYAMA

Abstract.

This is a study of several spaces of continuous linear functionals on various function spaces with
anatural norm inherited from a larger Banach space. The completeness and lattice structure of these
dual spaces have been studied. Since these duals are inherently related to spaces of measures, their
measure-theoretic counterparts are also studied.

1. Introduction.

Let C(X) denote the set of all continuous real-valued functions on a completely
regular Hausdorff space X. Let Ci(X) denote C(X) with the compact-open
topology k. It is a locally convex space. We note C*(X), the collection of all
bounded functions in C(X), is dense in Cy(X). Let A4,(X) be the set of all
continuous linear functionals over C(X). Since C*(X) is dense in C(X), Ax(X)
can also be considered as the set of all continuous linear functionals over C}(X).

The supremum norm on C*(X) generates a Banach space denoted by C: (X)
which has topology finer than the compact-open topology. Let A,(X) be the
conjugate space of C?,(X), that is, the Banach space of continuous linear fun-
ctionals on C? (X) with the norm given by [A[, = Sup{|A(f)|: fe C*X) and
[flo <1} where AeA,(X) and |f|., = Sup{|f(x)|:xeX}. As shown in
[KMO], the natural map L:A,(X)— A,(X) is a linear injection where L is
defined by (1) = 4°ji and where A€ A,(X), j: Ci(X) = Ci(X) is the inclusion
map and i: C} (X) — Cy(X) is the identity map. Thus we may consider 4,(X) as
a linear subspace of the Banach space A, (X). Under this identification, 4,(X) is
a normed linear space with the norm given by [|4]l, = [|L(A)],.

An element Ae A,(X) is positive provided that A(f) = 0 for all f e C(X) with
J 20.Let A (X) = {1 A(X): Ais positive} and it is called the positive cone of
Ay(X). Af (X)is a metric space with metric d, defined by d,(4, u) = || A — ul, where
A ue Al (X).
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In [KMOY], it has been shown that 4,(X) is a Banach space ifand only if A4," (X)
is complete with respect to the metric d,. In that paper the following two theorems
on the completeness of 4, (X) are given.

(KMO1) If A} (X)is complete, then the closure of each countable subset of X is
compact.

(KMO2) If X is sham compact, then A, (X) is complete. (A space X is called
sham compact if every g-compact subset of X has compact closure.)

In view of the above results, the following questions have been raised in
[KMO]

QUESTION 1.1. Is the converse of either (KMO1) or (KMO?2) true?
QUESTION 1.2. Is there any single condition which is necessary as well as
sufficient for the completeness of A, (X)?

After the publication of [KMO], there have been at least three more works to
answer the above questions, but their approaches and directions are different. In
[Ku], Kundu has pointed out that it is essentially a problem of finding a suitable
topology on C*(X). Here we note that a necessary condition for the completeness
of A, (X) is that C(X) = C*(X). So from now onwards, we consider only linear
functionals over C*(X). In [O], Okuyama has discussed two Banach subspaces
Ay(X) and A,(X) of A (X) containing 4,(X). In [MT], a complete answer to the
Question 1.2 has been found. As for the Question 1.1, it has been shown in [MT]
that the converse of (K MO2)is not true while the converse of (KMO1) is not true
if the continuum hypothesis is assumed. But in the above works, the completion
of 4,(X) in A, (X) as such has not been studied. In this paper, our first concern is
to find this completion and to note that the necessary and sufficient condition
given in [MT] is precisely the one when the equality 4,(X) = A,/(X) holds. Also
in this context, we answer an interesting question which has remained unan-
swered for a long time in negative. It has been shown that A,(X) = 4,(X) may
hold while their corresponding topologies on C*(X) may be different. The second
concern is to study in detail the space A,(X) together with a new dual space 4,(X)
and discuss Gulick’s conjecture made in [Gu]. To make our works self-con-
tained, we divide it into several sections. In Section 2, we recall briefly the lattice
structure of 4,(X) and some basic concepts from measure theory. In Section 3,
we study the space 4,(X) as well as the completion of 4,(X). In Section 4, we
pursue our second concern.

Though our main interest lies in the completeness of the duals of C*(X), we
would like to make occasional brief observations on their density. The density
d(X) of a space X is the smallest infinite cardinal number m such that X has
a dense subset which has cardinality less than or equal to m. Now a space X is

separable if and only if d(X) = R,. If X is a subspace of a metrizable space Y, then
d(X) < d(Y).
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Throughout the rest of this paper, we use the following conventions. All spaces
are completely regular and Hausdorff. If X and Yare two topological spaces with
the same underlying set, then we use X = ¥, X < Y, X < Y to indicate, respec-
tively that X and Y have the same topology, that the topology on Y is finer than
or equal to the topology on X and that the topology on Y is strictly finer than the
topology on X. The symbols X, R and N denote respectively the Stone-Cech
compactification of a space X, the space of real numbers and the space of natural
numbers. A space is called almost g-compact if it contains a dense o-compact
subset. Similarly an almost Lindelof space is defined. As usual, 4 denotes the
closure of A4, but sometimes to make a distinction of spaces we use the notation
clyA, instead of 4, to mean the closure of 4 in X. Finally, the constant zero
function defined on X is denoted by 0.

2. Basic concepts and properties.

We study the lattice structure of 4,(X) beginning with a vector lattice. A vector
lattice X is an ordered vector space which is also a lattice. The set
X* = {xeX:0 < x} is called the positive cone of X and its members are called
the positive elements of X. The positive part x*, the negative part x~ and the
absolute value |x| of an element x € X are defined by

x* = Sup{x,0}, x~ = Sup{—x, 0} and |x| = Sup{x, —x}.

The remaining notions related to vector lattice/normed vector lattice are found
in [AB].

Itis easy to see that a normed vector lattice is complete, that is, a Banach lattice
ifand only ifits positive cone is complete with respect to the metric induced by the
norm. Also its density is equal to that of its positive cone. So a normed vector
lattice is separable if and only if its positive cone is separable.

A linear functional 4 on a vector lattice X is order bounded provided that for
every ye X with y 2 0, there exists an M > 0 such that |A(x)] < M holds for all
xe X with |x| £ y. Let X be the set of all order bounded linear functionals on
X and it is called the order dual of X. For each 4, pe X~ define A < y provided
that A(x) < u(x) for all xe X with x = 0. Then X~ becomes a partially ordered
vector space, which is in fact a vector lattice by the Riesz Theorem (see [AB]).
Moreover, for each Ac X~ and xe X with x = 0, 1¥(x) = Sup{A()):0 < y < x},
A7(x) = Sup{—AMy):0 < y < x} and |2|(x) = Sup{A(y):[y| £ x}. Extend %, 1~
and || to all of X in the usual way. For example,define A* (x) = A*(x*) — A7 (x ™)
for any xe X.

The function space C*(X) (or C(X)) is a vector lattice under the ordinary
partial order defined by: f < g provided that f(x) < g(x) for all xe X. Here
f*(x) = max{f(x),0} and f~(x) = max{ — f(x),0} for each xe X.
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Itis clear that C} (X)is a Banach lattice and A ,(X), being its norm dual is also
a Banach lattice. It is easy to see that every A€ A (X) is order bounded. Now
suppose 7 is a topology on C*(X) weaker than the supremem topology and
consequently any continuous linear functional A over C;(X) belongs to A, (X).
Hence A = u* — 1~. The question is whether 4* and 4~ are also continuous over
Cy(X). It is obviously true for C? (X) since any positive linear functional over it is
continuous. It is also true in case of other duals of C*(X) which we consider in this
paper. Here we explain it for 4,(X) and other cases will be disucussed in Sections
3 and 4. But we need to introduce the following key idea. If e A ,(X) and if
A € X, then Ais said to be supported on 4 provided that whenever f € C*(X) is
such that f], = 0, then necessarily A(f) = 0. If A€ A,(X), then A has a minimal
compact support which is called the support of A. Also any positive linear
functional over C*(X) having a compact support belongs to A,(X) (see [KMO]).
This immediately gives the following result: if A€ A (X), then the following are
equivalent (i) A is k-continuous (ii) |4| is k-continuous (iii) A* and A~ are
k-continuous.

From the above result it follows that A,(X) is an (order) ideal of the Banach
lattice A,(X) and in particular A4,(X) is a normed vector lattice. Here we also
note that since every order bounded linear functional on C% (X) is continuous,
A4 (X) is also its order dual.

Now we recall some basic concepts from the measure theory.

The algebra generated by the closed subsets of X is denoted by </, while the
g-algebra they generate is denoted by %, called the Borel sets. For us, a finitely
additive measure (also called finitely additive signed measure) on &7 is
a real-valued finitely additive set function defined on 7. A finitely additive

measure u is called a measure if u( U A,,) = Y u(A,) holds for all pairwise

n=1 n=1

disjoint sequences (4,)7%, such that 4,€ .« and ) A,€ .
n=1

When a measure p is defined on &, we call it a Borel measure. A measure
u defined on £ (or on 7,) has suppport A, where 4 € X and Ae % (ore
respectively)if |uj(X — A) = 0. A finitely additive measure u defined on &/, or £ is
closed regular or simply regular whenever A is in the domain of the definition of
uand ¢ > 0, there are closed and open sets C and U in X suchthat Cc A = U
and |u)(U — C) < &. Such a closed regular measure is called compact regular or
tight if the closed set C can be replaced by a compact subset of X.

A Borel measure has finite total variation. Also a finitely additive measure
defined on «/,, if bounded, has finite total variation.

Now we fix some notations.
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Let M,(X) be the set of all closed regular Borel measures on X and
M(X) = {ue My(X): u is compact-regular}. Let M (X) be the set of all bounded
finitely additive closed regular measures defined on & and M, (X)=
{ue M(X): p has a support B < X where B = Aand Ais g-compact}.

Let M," (X), M," (X), M," (X) and M,,(X) denote the corresponding positive
cones of M,(X), M,(X), M.(X) and M, ,(X) respectively. Also note while each of
My(X), M,(X), M(X) and M, ,(X) equipped with their corresponding total
variation norm ||| is a normed linear space (rather a normed vector lattice), the
positive cone of each of these is a metric space equipped with the metric induced
by the total variation norm.

3. Tight Functionals over C*(X).

Let Bo(X) be the set of all real-valued bounded functions on X vanishing at
infinity. A functions vanishes at infinity if for any ¢ > 0, there exists a compact set
K < X such that |f(x)| < ¢ for x ¢ K. Corresponding to each function ¢ in By(X),
we define a seminorm p,(f) = Sup{|¢(x)f(x)|:xe X}. The collection of
seminorms {p, : ¢ € By(X)} generates a locally convex topology on C*(X) and is
called the strict toplogy. This topology is denoted by 8 and C*(X) equipped with
B by Cy(X). For details see [VR], [Gi], [Gu], and [S]. Here we note that Sentilles
in [S] calls this topology substrict and denotes by .

A real linear functional 4 on C*(X) is said to be tight if for any net f, € C*(X)
with 1 > || £, ||, such that f, — 0 uniformly on compacta in X, one has A(f,) — 0.
The tight functionals are precisely those which are continuous over Cj(X). For
the proof of this result, see [VR]. Also in [S], see Theorems 4.2 and 4.3 and
Varadarajan’s well-known result which says that for a A € A4, (X), the conditions
of its tightness are equivalent to the same for (1) |4| or (2) A* and A~.

If Ae A,(X), then it can be proved that its tightness is equivalent to: for every
& > 0, there exists a compact subset K of X such that |A(f)| < e whenever | f ||, < 1
and f|x = 0. For one direction of the proof of this result, see [Gu] and the proof of
other direction is easy and straightforward. From this result, it follows that
Okuyama’s A,,(X) in [O] is precisely the collection of all f-continuous or tight
functionals over C*(X). To be consistent with the notations of other duals, we
replace A4,(X) by A4(X). On A,(X) = 44(X), Okuyama assigns the conjugate
norm obtained from A, (X) as we do in case of 4,(X). In [S], Sentilles shows that
A4(X) is a Banach space. From the discussions of the previous paragraph, it
follows that Ap(X) is a Banach sublattice of the Banach lattice 4(X). In [S],
Sentilles denotes A4(X) by M,; but by M,(X) we mean it to be the collection of all
tight Borel measures on X. The justification is given by the following theorem.

THEOREM 3.1. For a space X, the Banach lattices (M,(X), ||-||) and (A4(X), |IIl.)
are isomorphic while M,*(X) is identified with A,;' (X) under this isomorphism.
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PrOOF. Define F: M,(X) — Ap(X) by F(uXf) = [fdu for each pe M,(X) and
f € Cy(X)) Since u is compact-regular, for given ¢ > o, there exists a compact set
K such that |y|(X — K) <ée. Now suppose |fll, =1 and flx=0. Then
[F(u)) = |[x-xfdpul < ul(X — K) > &. So F(u) is f-continuous.

Also [|F()l, = Sup{|tl)I fllo: feC*X), I flloo < 1} = |pl(X) = [| .

To prove the reverse inequality, that is, [|u|| < ||F(u)|., we note that since u is
compact regular, the technic applied in the proof of Theorem 4.3 in [Ku] can be
employed here. Consequently, ||u| = ||F(u)l., that is F is an isometry.

Now we need to show that F is onto. It has been shown by Gulick in [Gu]. The
proof of Gulick shows that given a positive linear functional, the corresponding
measure in M,(X) is also positive. Our definition of F shows that a positive
element in M,(X) is mapped to a positive linear functional. This also shows that

F is a lattice isometry.

From this theorem, it immediately follows that (i) A4(X) is complete and (ii)
d(Ag(X) = d(M,(X)). So As(X) is separable if and only if X is countable since
M,(X) is separable if and only if X is countable.

Now we are going to show that the completion of 4,(X)in A ,(X) is precisely
Ap(X).

THEOREM 3.2. For any space X, A4(X) is the completion of A(X) in A, (X).

Proor. All we need to show that 4,(X) is dense in A44(X). Let 4 € A4(X). Since
every element of A4(X) can be decomposed in positive and negative parts, we can
assume A = 0. So there exists a positive compact regular Borel measure u on
X such that A(f) = [ fdu for all f e C*(X) (see [Gu]). Since u is compact regular,
there exist compact subsets K, of X such that K, = K, for n=m and

y( U K,.) = u(X). For every ¢ > 0, there exists a positive integer m such that
n=1

WX — K,) < efor all n = m. Now for each n define a positive linear functional 4,
on C*(X)as follows. Define 1,(f) = ,fx,, fduforall f e C*(X). Since 4, is supported
on K,, AyeAf(X). Now |(A— )N = lfx-x,lfldl < IS lolu(X — K,) =
WX —K,)<eforallnzm.

COROLLARY 3.3. For any space X, A(X) is complete if and only if
AlX) = Ap(X ).

CoRrOLLARY 3.4. For any space X, A(X) is separable if and only if Ag(X) is
separable.

Here we note that in [KMOY], it has been shown that 4,(X) is separable if and
only if X is countable. So 4,4(X)is separable if and only if X is countable —a result
which has already been noted.
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In [KMO] and [MT], the completeness of 4,(X) has been studied. So the
Corollary 3.3. is related to the studies done in these two papers. In [MT], there
has been found a condition which is both necessary and sufficient for the
completeness of 4,(X). Note A4,(X) is a Banach lattice if and only if its positive
cone A, (X) (equipped with the metric induced by the norm ||-||,) is complete. But
to understand the aforesaid condition for completeness, we need to bring the
support sets into focus. We define a subset of X to be a support set in X if it is the
support of some Ain A, (X). Then we say that X is a support space if it is a support
set in itself. It is straightforward to check that a subspace of X (with subspace
topology) is a support space if and only if it is a support set in X. By definition,
a support set is compact; but a compact set may not be a support set. Another
way to characterise this concept is given by the result (see [J]): A space X is
a support space if and only if X is compact on which there exists a regular positive
Borel measure which is strictly positive on each non-empty open subset of X.

Kelley gives a purely topological condition in [Ke] which characterises those
compact spaces having such a measure given in the above result. Using Kelley’s
characterisation, it has been shown in [MT] that every compact separable space
isa support space and every support space is compact having the countable chain
condition (i.e., every family of pairwise disjoint nonempty open subsets is count-
able). We abbreviate the countable chain condition by ccc.

Now the following condition which is both necessary and sufficient for the
completeness of A, (X) can be found in [MT].

THEOREM 3.5. The space A,} (X) is complete if and only if every countable union
of support sets in X has compact closure in X.

Now in view of the Corollary 3.3 and Theorem 3.5, we concentrate on the
following problem. A,(X)and A 4(X) are the duals of C;(X) and Cy(X) respective-
ly. If k = B, obviously the duals are equal. Note k = B if and only if X is sham
compact (see [Gu]). Also this is precisely the sufficient condition given by
Wheeler in [W] for the equality of these duals. But our question is in the reverse
direction, that is, whether the equality of duals 4,(X) and A4(X)) implies that
k = B.In [Gu], Gulick answers this kind of question for some other duals. Also
see p-126 in [W]. But apparently neither Gulick nor Wheeler does have any
answer for our question. Now we answer this question in negative by finding
a counter-example. For this we need to talk abut P,-point and P-point.
A P.-point is a point that is not in the closure of any countable union of compact
cce subsets not containing the point. A P-point is a point such that every G;-set
containing it is a neighbourhood of it. Then in a compact space, a P-point is
a point that is not in the closure of any g-compact subset which does not contain
the point.

COUNTER-EXAMPLE 3.6. Let N* = BN — N. Then there exists a P,-point p in
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N* which is not a P-point. For details on these types of points see [Kn], [vM]
and [MT]. Let X = N* — {p}. Since p is a P,-point, the closure of each countable
union of compact ccc subsets of X is compact. Since every support set is compact
cce, every countable union of support sets in X has compact closure in X.
Consequently A,(X) = A4(3)® But since p is not a P-point, there exists
a g-compact subset of X with non-compact closure in X. Consequently k + S.

4. A,(X)and A (X): The duals of C;(X) and C}(X).

Before talking about 4,(X), we would like to mention a few things about the
o-compact-open topology on C*(X). In [Gu], Gulick introduced this topology
on C*(X) in terms of the convergence of nets. But we do it in terms of basis. In
[KM], Kundu and McCoy have introduced two topologies on C(X) namely the
o-compact-open topology and the topology of uniform convergence on o-com-
pact subsets of X. For the o-compact-open topology, we take as subbase, the
family {[4, B]: A€ a(X), Be B0} where o(X) is the collection of all g-compact
subsets of X, #0 is the collection of all bounded open intervals in R and
[4,B] = {f e C(X): f(A) < B}. We denote this space by C,(X). Note that the
same topology is obtained by using [ 4, B] where 4 € 6(X) and B e #0. It can be
shown that C,(X) is a Tychonoff space.

For each fe C(X), Aeo(X) and ¢ > 0, let {f; 4,&)> = {ge C(X):|f(x) — g(x)| < &
for all x e A}. Then for each f e C(X), the collection {{f; 4,¢): A€ a(X),e > 0}
forms a neighbourhood base at f for a topology on C(X). This topology is called
the topology of uniform convergence on g-compact subsets of X and we denote
this space by C, ,(X). Again we note that C, ,(X) is a Tychonoff space and as in
case of C,(X), one can replace 4 in {f, 4,&) by 4 where A e a(X). In general, the
o-compact-open topology is weaker than or equal to the topology of uniform
convergence on g-compact subsets of X. But it has been shown in [KM] that on
C*(X), these two topologies coincide and C,(X) = C, ,(X) if and only if X is
pseudocompact. Also C;, ,(X) = C},(X)if and only if X is almost g-compact. For
more details on these topologies see [KM].

For each Aeo(X), define a seminorm p, on C*X) by p.(f)=
Sup{|f(x)|: xe A}. Then the s-compact-open topology on C*(X) can be gener-
ated by the collection of seminorms {p,: 4 € 6(X)}. So C3(X) is a locally convex
space.

Now let 4,(X) be the collection of all continuous linear functionals over C%(X).
As before, on A,(X) we assign the conjugate norm of A,(X), that is, for each
Ae A, (X), let [All, = Sup{lA(f)l: feC*(X) and |f|l, £ 1}. Then A (X) is
a normed linear space and its positive cone is denoted by A (X). But A4,(X) is
actually a Banach lattice. To show this, we need the following lemmas.

LemMA 4.1. For each A€ A,(X), there exists an A € o(X) such that A is supported
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on A. Conversely, if A is a positive linear functional on C*(X) which is supported on
some A€ a(X), then 1€ A} (X).

Proor. If e A,(X), then since 4: C;(X) — R is continuous at 0, there exist an
Aea(X)and ad > Osuch that (<0, 4,6)) < (—1,1). Let f e C*(X) with f|, = 0.
1 L L
Now for every ¢ > 0, /1(; f) €(—1,1) which in turn implies |A(f)| < &.
For the converse, let A be a positive linear functional on C*(X) which is
supported on some A € o(X). It suffices to check the continuity of 4 at 0; so let

¢ > 0.Defined = and let f € 0, 4, 6). Let f be the unique extension of

€
2M1) + 1
f to BX. It is clear that f maps clzx A into [ — 9, 8]. Consequently f lclpx 4 has an
extension § € C($X) which maps into [ —d,0]. Let §|y = g. Note on 4,g = f, that
is, g—fNla=0 and so Ag— f)=0 implying Ag) = A(f). Therefore
AN =149 = AMg" —g NS Mg+ Mg S AUg™) + Mg™) S Ad) + AJ)
=20M(1) <e.

LEMMA 4.2. If A€ A (X), then the following are equivalent.
i) AeA,(X).

ii) Both A* and A~ are in A,(X).

iii) |A] € A4(X).

PROOF. (i) = (ii). Since A€ A,(X), there exists an 4 € 6(X) such that 4 is sup-
ported on A. Now for each f e C*(X) with f = 0; A*(f) = Sup{A(9):0 =g < f}.
Clearly A* is also supported on A and consequently by the previous lemma
A* € A,(X). The proof is similar for ™.

(ii) = (iii) is obvious since [4] = A* + A™.

(iii) = (i) For feC*(X) with f 2 0,[2(f) = Sup{A(g):lgl < f}. If |4] is sup-
ported on some A4eqa(X), then both A* and A~ are also supported on A.
Consequently both A* and A~ are continuous over C%(X). Since A =47 — 47,
Aisin A,(X).

From the above lemmas, it is clear that A,(X) as mentioned in [O] is same as
the present one.

Now if ALueAd,(X), then Avu=4A+p+[A—p) and AAp=
A+ pu — 1|4 — g)). So from the Lemma 4.2, it is clear that 4,(X) is a normed
vector lattice and so 4. (X) is closed in 4,(X). Furthermore if 4, ue A (X) then
1A% —p* | <A —pl. and A~ —p | A~ pl..  Consequently
(45(X), |I-]l.) is complete if and only if the metric space (A, (X),d,) is complete
whered,(4, ) = |4 — u|l,. Now suppose {4,} is a Cauchy sequence in A; (X) and
each J, is supported on some 4, eo(X). Since {A,} is Cauchy in A;(X), there
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exists a A€ A} (X) such that 4, — 1. It is easy to see that 4 is supported on ) 4,
n=1

which is in ¢(X). Consequently by Lemma 4.1, Ae A (X) and so A} (X) is

complete. Thus finally we have established that A,(X) is a Banach lattice.

A, (X) is separable if and only if X is countable, compact and metrizable. In
fact, a countable compact space is always metrizable. If X is countable and
compact, then 4,(X) = A,(X) is separable. Conversely, if 4,(X) is separable,
then C; (X) is separable which in turn implies that X is compact and metrizable
(see [MN]). But the separability of A, (X) implies that of A4,(X)and consequently
X is countable. Now we have the following resut on the separability of 4,(X).

THEOREM 4.3. For any space X, A,(X) is separable if and only if X is compact
and countable.

Proor. If A,(X) is separable, then A4,(X) is separable and so X is countable.
But X being countable, C;(X) = C: (X) which means 4, (X) = A4,(X). But then,
as argued previously, X is compact. If X is compact and countable, then
A,(X) = A,(X) is separable.

Now we would like to concentrate on measure-theoretic counterpart of A,(X).
In [Gu], Gulick does it in terms of measures on fX. His precise result is as
follows.

THEOREM 4.4. For all X, A,(X) = UM,(clgx A) where the union is taken over all
a-compact A (in X).

In view of the above result, a natural question can be asked if it is possible to
find a measure-theoretic counterpart of A,(X) in terms of measures on X. The
answer is yes if X is normal and if we do not insist on countable additivity of the
measures. To have this, we need the following theorem which can be found either
in [BNS] or in [Ku].

THEOREM 4.5. If X is a normal Hausdorff space, then the Banach lattices
(MAX), |IIl) and (A (X), || ||.) are isomorphic while M,* (X) is identified with A} (X)
under this isomorphism.

The isometry in the above theorem is given by the map F: M, (X) — A,(X)
where F(u)( f) = j fdu for each pe M (X) and f e C*(X). The fact that F is onto
can be proved in the following way. Since each A € A (X) can be decomposed into
positive and negative parts, we can assume A = 0. Define a real-valued set
function u on the class of all subsets of X, that is, on #(X) as follows. If U is an
open subset of X, we define u(U) = Sup{A(f): fe C*(X);0 £ f < xy} where xyis
the characteristic function of U. If A is an arbitrary subset of X, we define
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u(A) = Inf{u(U): Uisopenin X and A = U}. This set function when restricted to
o, is closed regular, finitely additive and A(f) = {fdu for all fe C*(X).

Now suppose ueM,,(X) with a support A where Aeo(X).
FXf) = I fdul < fIf1dlul < ul(D)p(f) and so Fw)is in A,(X). Conversely, let
Ae A} (X) with a support 4 in o(X). Because of Theorem 4.5, we get a pe M,* (X)
such that A(f) = [fdu for feC*(X). Now u(X — A) = Sup{A(f): fe C*(X);
0L f<yxx-1}=0sincefor0 < f < xx-1, Af) = 0.S0 pe M (X). This estab-
lishes our desired result.

THEOREM 4.6. Suppose X is a normal Hausdor[f space. Then the Banach lattices
(M, o(X), I'l) and (A4(X), ||:ll.) are isomorphic while MCTG(X) is identified with
AF (X) under this isormorphism.

Itisclear that A4(X) € A,(X) & A,(X). Itisinteresting to know when they are
equal. In [Gu], Gulick shows that 4,(X) = 4,(X)ifand onlyif C3(X) = C(X). If
C,(X) = C(X) then clearly A4,(X) = A,(X). But its converse is not necessarily
true. In [Gu], Gulick shows that the converse is also true if X is locally compact
and paracompact (Theorem 5.5 in [Gu]). By citing a counter-example, Gulick
shows that if the local compactness is dropped, the converse may, no longer, hold.
His counter-example is as follows.

COUNTER-EXAMPLE 4.7. Let X = the ordinals less than or equal to the first
uncountable ordinal w, less the non-discrete ordinals. X is Lindel6f, normal and
not locally compact. The compact subsets of X are finite. Since X is not almost
g-compact, C;(X) < C% (X). To show that 4,(X) = A ,(X) Gulick uses Theorem
4.4 and so he needs to move to fX. But since X is normal, without moving to fX
we can prove it by using Theorem 4.6. Note that any subset of X — {w, } is closed
ifand only if it is countable. Since each pin M,(X) s closed regular, there exists an
F,-subset A4 of X — {w,} such that |u(X — {®,}) = |ul(A). Note 4 is a closed
countable set and so u has a closed countable support. In particular, u has
a closed g-compact support. Consequently M,(X) = M. ,(X) and hence
A:(X) = A,(X).

It is interesting to know that Gulick’s example is a particular case of a more
general type of space. Let X be an uncountable space in which all points are
isolated except for a distinguished point p, a neighbourhood of p being any set
containing p whose complement is countable. X is a P-space which is Lindeldf
and normal. X is not locally compact. In fact, a P-space is locally compact only
when it is discrete. See 4N in [GJ] for the details on this space. Note even for this
P-space, we can use Theorem 4.6 while we may not be able to use Gulick’s result
Theorem 4.4 because the Stone-Cech compactification of such a space may be
quite difficult to tackle with.

But Gulick conjectures that the paracompactness may be dropped from his
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result, that is, he believes that for a locally compact space X, the statement
A4X) = A(X) if and only if C(X) = C} (X) is true. But we suspect otherwise,
that is, his conjecture may be false. In view of Theorems 4.4 and 4.6 it will be so if
we can have one of the following problems solved in affirmative.

ProBLEM 4.8. Find out a normal space X which is locally compact, not almost
og-compact, not paracompact and which satisfies the following condition: there
exists a g-compact subset A of X such that every closed subset of X — A is of the
form B where B is o-compact.

ProBLEM 4.9. Find out a Tychonoff space which is locally compact, not
almost o-compact, not paracompact and which satisfies the following condition:
there exists a Borel subset 4 of SX such that fX — A = X and there exists
a g-compact subset B of X such that 4 < clgyB.

Even though we are yet to solve these problems, we can still improve a little on
Gulick’s result. In fact, we can obtain his result as a corollary to a more general
result. For this we need to introduce a new subspace of A,(X). Let
A(X)={AeA,(X): i is supported on a Lindel6f subset of X} and
AF(X) = {Ae A (X): A = 0}. Again, as in case of 4,(X), it can be shown that
A (X) is precisely the set of all continuous linear functionals over C;(X) where

t(X) is the function space equipped with the topology of uniform convergence
on Lindelof subsets of X. This topology can be generated by the collection of
seminorms {p, : & is a Lindelof subset of X} where p (f) = Sup{|f(x)|: x e L} for
feC*(X).

Let #(X) be the collection of all Lindel6f subsets of X. Then for each
f € C*(X), the collection {< f, L,e): Le #(X), ¢ > 0} forms a neighbourhood base
at f for the topology of uniform convergence on Lindelof subsets of X where
{f, &,e) =[ge C*(X):|f(x) — g(x)| < ¢ for all xe #}. In view of this, we note
that the Lemmas 4.1 and 4.2 remain valid if one replaces 4,(X) by 4,(X) and the
g-compact subsets by Lindelof subsets. Since the union of a countable family of
Lindelof subsets of X is again Lindel6f, it follows that A, (X) is also a Banach
lattice.

Itisclear that C;(X) < Ci(X) = Ci,(X)and so 4,(X) € 4,(X) € 4,(X). Note
that C;(X) = C{(X)if and only if given any Lindel6f subset of 4 of X, there exists
a g-compact subset B of X such that A < B. On the other hand, C}(X) = C* (X)if
and only if X is almost Lindelof. If X is almost o-compact, then

1(X) = Ci(X) = C'(X) and consequently A, (X) = A,(X) = A,(X). Again if
X is paracompact and locally compact, then Ci(X) = C;(X). This follows from
the following fact. If 4 is a Lindel6f subset of a locally compact paracompact
space, then 4 is o-compact. See p-382in [E]. So for a locally compact paracom-
pact space, 4, (X) = 4,(X). But the local compactness is not necessary in order to
have 4,(X) = A, (X). The Counter-example 4.7 may be used here again to note
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that 4,(X) = A (X) = A(X). But this counter-example also shows that we may
have 4,(X)= A(X) without having C;(X) = C{(X). Note for this example
Ci(X) < Ci(X) = C',(X). These facts motivate us to study 4,(X) in a little more
detail. Let X be a non-compact space and pe X — X. For each fe C*(X), let
A,(f) = f(p) where f is the unique continuous extension of f to BX. Then
Ap€ A(X). Let Ag(X) = {A,€ A,(X):pe BX — X}. Now we have the following
results.

THEOREM 4.10. Let X be a paracompact Hausdorff space. If X is not Lindelof
then there exists a Ae Ay(X) — A (X).

PrOOF. By the assumption, there exists a discrete collection {Z,:a < w,} of
zero-sets in X. Put o/ = {4 < w,: cardinality of w; — A £ w,} and for each
Ae o, let Z(A) = U{Z,:ae A}. Then {Z(A): A € o} forms a filter base. Let # be
a z-ultrafilter on X containing {Z(4): A€ .o/} and let p be a point of fX — X
corresponding to #. Then 4, is a desired one. Because, if possible, suppose 4, is
supported on a Lindel6f subset S of X. Then we have peclgyS. Since X is
paracompact and S is Lindeldf, {« < w;:clySNZ, # ¢} is a countable set.
Hence, there exists Ae.s/ such that clySnZ(4)=¢. This implies
clgxS N clgxZ(A) = ¢. This contradicts the fact that pe clgy Z(4) and p eclgyS, as
well. This completes the proof.

COROLLARY 4.11. Let X be a paracompact Hausdorff space. If A5(X) < A (X),
then X is Lindeldf.

COROLLARY 4.12. Let X be a paracompact Hausdorff space. Then
A(X) = A(X) if and only if X is Lindeldf.

Now Gulick’s result Theorem 5.5 in [Gu] immediately follows from the
Corollary 4.12.

CoROLLARY 4.13 (Gulick). Let X be a locally compact, paracompact Hausdorff
space. Then A (X) = A, (X) if and only if C,(X) = Ci,(X).

PROOF. A,(X) = A,,(X) implies A4, (X) = A,(X) and consequently X is Lin-
deldf. But a Lindelof locally compact space is a-compact and so C(X) = Ct(X).

Now we make two observations on the measure-theoretic counterpart and the
separability of A (X). Let m, (X) = {ue M,(X): u has a support BS X where
B = Aand Ais Lindeléf} and M, (X) = {u€ M, ((X): p 2 0}. Now the proofs of
the Theorems 4.3 and 4.6 can be modified to obtain the following results
respectively.

THEOREM 4.14. For any space X, A (X) is separable if and only if X is compact
and countable,
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THEOREM 4.15. Suppose X is a normal Hausdorff space. Then the Banach
lattices (M, (X), ||| and (A (X), ||-||,) are isomorphic while M_}\ (X) is identified with
AL (X) under this isomorphism.

We conclude this work by citing the following problem.

PrROBLEM 4.16. What are the necessary conditions in order to have
A4(X) = A(X) and A4 (X) = A4,(X)?
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