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FIBRATIONS AND HOMOLOGY SPHERE BORDISM

BJORN JAN DUNDAS

Introduction.

In this article we discuss the homology sphere bordism groups, @4°(—), of
J.-C. Hausmann, with special emphasis on the properties of these groups in
relation to fibrations. The interest in these groups derives from a strong relation
to algebraic K-theory, and as a good realization of what P. Vogel called the
homological Hurewicz theorem. The main point demonstrated here, is that these
groups are quite accessible from ordinary obstruction theory, and that, if the
action of a particular part of the fundamental group is not too wild, they behave
quite well.

We work in the category of pointed spaces homotopy equivalent to connected
CW-complexes. In [4] Hausmann and Vogel defines the homology sphere
bordism groups of a (pointed) space X, QM(X), n = 2, as the abelian group of
H,-cobordism classes of maps from oriented PL n-homology spheres to X. The
H,-cobordisms are equipped with base arcs connecting the base points of the
spheres, and addition is induced by the connected sum. They define the relative
homology sphere groups similarly. The relative groups are abelian in dimensions
> 2, and we get the obvious long exact sequence

o QR XA - GRA) > QP 5 QF(X, )~
o QX A) - Q55(4) > Q88 (X)
- QX 4) - 1y (4) - 7y (X) > 71(X, 4) >0

QY5(—)clearly defines a functor, and we have a natural map r,(—) — Q4°(—) by
sending representatives onto representatives of a possibly larger class.
The main result on homology sphere bordism given in [4] is:

THEOREM ([4, THEOREM 4.1]). Let A — X — X * be the plus sequence associated
with LPn,(X) (see next section for definition). Then

(1) 28X, 4) S n,(XY), and

(2) QE5(4) =0 for q + 3.
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This result is obtained through homological surgery techniques. While this is
seemingly intrinsic to (2) (one may also prove (2) directly by the methods
developed in [7]), a motivation for this paper is to show that this is not the case
for (1). A further motivation is to obtain tools for manipulating the homology
sphere groups. One sees easily that Q%(—) is not stable, and a natural property
to seek for is an exact sequence for fibrations. One way to do this is to use
Berrick’s, [2], characterization of “plus constructiveness” and the above theorem
to obtain sharp results in high dimensions. However, this has the drawback of
giving only partial results in dimensions < 5, so we will follow a more direct (and
admittedly less powerfull) route avoiding the use of (2) (except in two examples),
and giving (1) as an easy consequence.

The main results are:

THEOREM 5. Let F — E 25 B be a fiber sequence of connected spaces with
LPn,(E) < ker {p4 :n,(E) - n,(B)}. Then n,(B) <~ n,(E,F) = Q%(E,F)

THEOREM 9. Let F — E 25 B be a fiber sequence of connected spaces with

LPn(E)— Autm,(F) 1<q=<n

LPr,(B) - Outn,(F)
trivial. Then QS(E, F) 2> Q¥S(B, +) is an epimorphismfor ¢ < n + 1. Ifin addition
LP,(F) = 1 then Q¥S(E, F) 2> QS(B, ») is an isomorphism for q < n.

After a short chapter displaying some basic facts about QH5(—) we give the
proof of theorem 5 together with (1) of [4], along with an example of a fibration
F —» E — B not having Q¥5(E, F) = Q4(B, *). In the next chapter we give the-
orem 9 and a simple result about nilpotent fibrations followed by a more subtle
example of QYS(E, F) & Q'5(B, x). A technical lemma used in theorem 9 is def-
fered until the last chapter.

ACKNOWLEDGEMENT. I wish to thank Dr. B. Jahren but for whose kind help
and advice this article would not have coming into being.
Basic results.

LEMMA 1. If f:(W,2) - (X, *) represents an element of QES(X,*) with fy:
(W) - n,(X) trivial, then f is equivalent to a representative (E",S" ') - (X, *)
via an H,-cobordism

(W xI,Z x Iu(W - D) x {1}) > (X,*)
where D is a smalt open disk imbedded in W.

PROOF. Let V' = (W x I) — D x {1}. Let f':¥V — X be f on W x {0} and
elsewhere constant. If we can extend f' to W x I we are done. Clearly, the only
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problem is with the 2-skeleton, but this problem is equivalent to the problem
of finding a homomorphism 6: 7, (W x I) — ny(X) extending 0 = f; : 7, (V) »
nl(X ).

DEerFINITION. We say that a group G is locally perfect if any element in G is
contained in a finitely generated perfect subgroup (H,(—) = 0). If G is a group,
then the union of all locally perfect subgroups is again a locally perfect sub-
groups, naturally called the maximal locally perfect subgroup, LP(G). Dropping
the finiteness condition we get the classical maximal perfect subgroup, denoted by
P(G).

The homomorphic image of a locally perfect group is locally perfect and
LP(G/LPG) = 1. Some further properties are given in [7]. The fundamental
groups of the representatives of the Q45(—) are locally perfect, hence we have:

COROLLARY 2. Let X be a space with LP7,(X) = 1. Then n,(X) — Q¥5(X, %) is
an isomorphism.

Proor. Surjectivity follows from the lemma. If f:S" — X is extendable to
W — X, where W is an acyclic manifold with border S", then H,(f) = 0. As
7y (W) is locally perfect, W — X lifts to the universal covering space of X, and by
an application of the Whitehead theorem, f is nullhomotopic.

LEMMA 3. Q55(X) = QUS(X, «) @ QS(x). Q55(x) = 0if q + 3.

Proor. The last statement first: Let 2 be any PL homology g + 3 sphere. By
Kervaire, [6], 2 bounds a contractible ¢ + 1 PL manifold C. Cutting out a small
open disk in the interior of C and choosing a base arc gives the desired cobordism
to 87 — *. Likewise Q55(X, x) — Q4S() is trivial as any representative (W*, 23) —
(X, ) yields an H,-cobordism from X — * to $* — «. Finally sending representa-
tives (W3, §2) — (X, *) to W/S? — X clearly gives a section to Q55(X) —» Q5(X,, »).

LEMMA 4. Let X be a space and let Xy — X be the covering of X associated with
N,LPn,(X) = N < 7, (X). Then Q5(Xy) - QUS(X) is an isomorphism.

ProoF. Let Z — X be a representative of an element of Q':S(X ). im {n(2) -
7;(X)} € LPx,(X) < N, so we have a unique pointed lifting. If 2’ — X is another
representative of the same element, let W — X be the H,-cobordism between
them. Again this may be lifted, and the base arc, being connected, ensures that the
lifting restricted to X and 2, equals the pointed liftings. This clearly defines an
inverse to Q5(Xy) — Q¥S(X).

Fibrations annihilating the perfect radical.

It is now easy to show:
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THEOREM 5. Let F — E 25 B be a fiber sequence of connected spaces with
LPr, (E) < ker {py:n;(E) - n,(B)}. Then n,(B) < n,(E,F) => Q™(E, F)

Proor. We may assume that Bis simply connected. To see this, take pullback
F —E — B — En,(B)
[
F —E — B — Bny(B)

Now, 7,(B) = my(B)for g = 2,and as LPx, (E) < ker {n(E) - n,(B)}, LP7,(E) =
n,(E) and so Q¥S(E) ~ QUS(E). Hence, for our purpose, we may substitute
F—E - B for F > E — B. Assuming this done, injectivity is guaranteed by
naturality:

n(E,F) — Q5(E,F)
me(B) = Q(B, %)

The only thing we need to show is that n,(E, F) > Q¥5(E, F) is an epimorphism.
Now, let f: (W, 2) — (E, F) denote a representative of an element in Q!S(E, F). By
lemma 1 there is an H,-cobordism (W x I, x I U(W — int(E") x {1}) - (B, *)
from po fto a ¢:(E",S" ') — (B,*). But as p is a fibration this lifts, so f is
H,-cobordant to the lifting ¢: (E", S" ') — (E, F), and f represents an element in
the image of #,(E, F).

COROLLARY 6. Let F — E %> B be a fiber sequence of connected spaces with
LPn,(B) = 1. Then

Py 2B(E, F) > QF (B, %)
(= ny(B) = n,(E, F)) is an isomorphism.

COROLLARY 7. Let X be a connected space and N a normal perfect subgroup of
71(X), containing LPn,(X). Let X5 be plus with respect to N, Xy the covering
space associated with N, and A the acyclic functor of E. Dror. Then

QB(X, AXy) - n,(Xy)
is an isomorphism.
By this we have reached our first goal, that is, to show that corollary 7 is not

a result of intricate nature. However, theorem 5 has a wider reach than that,
among other things, it provides us with our first example.
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ExaMpPLE 8. From the above theorem we get an example of a fibration
F — E — B where QS(E, F) + Q%5(B, »). Let

15R->F-StZ-1

be a free presentation of StZ. As F is free, 1 = LP(F) = LP(R), and so
QS(BF,BR) = n,(BStZ), that is, zero in the relevant dimensions. But, as we see
from the last corollary, Q45(BStZ, %) surjects onto n3(BStZ*) = H5(StZ) % 0,
(55 (ABStZ) = 0).

Fibrations with nice actions.

Given a group G, let Aut G be its group of automorphisms. The inner automo-
rphisms given by conjugation by elements in G form a normal subgroup Inn G,
and we will denote the quotient Aut G/Inn G, the “outer automorphisms” by
Out G. Given a pointed space X let aut X denote the topological monoid of self
equivalences of X. There is a map aut X - X by sending w eaut X to w(*)e X.
Call the fiber aut® X. This clearly is also a topological monoid, and the inclusion
aut’® X — aut X is a monoid homomorphism. Taking classifying spaces we ob-
tain by [3] section 4, the universal fibration

X ->Baut®X - BautX

for Hurewicz fibrations with fiber X.
We are now ready for:

THEOREM 9. Let F — E -5 B be a fiber sequence of connected spaces with

LPn(E)—> Autny(F) 1<q=<n
LP =,(B) —» Outn,(F)

trivial. Then QBS(E, F) 2> QBS(B, %) is an epimorphismfor ¢ < n + 1.If in addition
LPn;(F) = 1 then QS(E, F) 2> Q¥(B, ) is an isomorphism for q < n.

PrOOF. Let (X, X) — (B, *) be a representative of an element in Q5(B, ). Lift
the base point of X to the basepoint of F. Apply lemma 12 to the universal
fibration

B n,(F) » Baut’ Bn,(F) —» Baut Bn,(F)

(see [3]) with f': X — B — Baut F — Baut Bn,(F) and W = «. Letting Z=,(F)
be the center of n,(F) recall by [5], that the exact homotopy sequence of the
universal fibration with fiber B, (F) is the obvious

0> Zn,(F)> n,(F) —» Aut n, (F) -» Out n, (F) — 1.

As X isacyclicand 7, (W) = 1, the conditions of the lemma is met, and we may lift
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the 2-skeleton of X to the first Postnikov stage B' = BTl g, ) Baut® Bx, (F).
But as F = fiber (E — B') is simply connected, there is no obstruction to lifting
the 2-skeleton of X to E. This lifting induces an action of 7, (X) on =, (F), but asit
factors through LPx, (E) it is trivial. As X is acyclic, H**'(X, x n,(F)) = 0 for
1 < g £ n, and we may lift all of X to E. Hence surjectivity is clear.

Now, assume LP=, (F) = 1. Let (W, 2,) 4, (E,F) Ju (W,, Z,) be represen-
Ptatives of elements in Q5(E, F) being mapped to the same element of QH5(B, «).
Let (X, U) - (B, *) be the cobordism between po f; and pe f,. As all maps are
pointed, we may lift the base arc of X to xe F. Let W be the union of W, W, and
the base arc. We are again in the situation of lemma 12. As LPx,(F) = 1, and
7, (W) is locally perfect, any n, (W) — n,(F) is trivial, and so the zero section will
do again. The action of n,(X) on rcq(F) is trivial as above, and so H'* (X, W,
n,(F)) = 0, and there is no obstruction to lifting the cobordism in accordance
with f; and f,. Thus f; and f; represented the same element in Q#5(E, F),and p,, is
in injective as well.

COROLLARY 10. Let F — E %> B be a nilpotent fibration. Then Q2S(E, F) 2
Q¥S(B, ) is an isomorphism.

Proor. For any action of a perfect group on a nilpotent group, one sees by
induction that nilpotence is equivalent to triviality. Now, p nilpotent implies that
F, and in particular 7, (F), is nilpotent. Thus LP =, (F) < P =y (F) = 1, and futher-
more the action of P x,(E) on =, (F) is trivial. But, as p is nilpotent, Pr,(B) =
p#(Pm,(E)) by [2], and so LP n,(B) < P ry(B) —» Out(xn,(F)) is trivial.

The major problem with theorem 9 is the condition on the actions of LP 7, (E)
which may seem restrictive. One would be glad to dispense with the condition
altogether. However, this is impossible. Indeed, a natural (and weaker) question
is whether the problem is restricted to the low degrees, that is, given a fibration
behaving nice in low degrees (e.g. preserving perfect radicals and inducing nice
actions on the first few r,(F)), may we hope that this will automatically prevail in
some higher degrees? That no such theorem exists is demonstrated by the next
example:

EXAMPLE 11. A fibration with abitrary given connectivity, but with Q45(E, F) +
Q5(B, »). Let E be a space with 1 & Een (E). Let V=E v S"and letk: §" » V
represent (1,2 — &)en, (V) = n,(E) ® Z[n,(E)], and form pushout '

s Ly
N N
En+ 1 —> B

The Hurewicz homomorphism p: 7 (V)—> H, (V) = H,(E) ® H,(S") maps
(1,2 — &)~ (0,1), and so the composition f: E = V < B induces isomorphism
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inhomology. Thus, if , (B) is locally perfect,0 = Q¥S(B, E) by corollary 7 (at least
for high dimensions, or better, if n = 3 in all dimensions from [4, Theorem 4.6]).
On the other hand we get that

f# :nq(E) ﬁ" nq(B)a q <n,
and
fr T(E) 225 n,(E) @ Z[n,(E))/2 — &) Z[n,(E)] ~ m,(B).

Let F = fiber (f). n,(F) = Ofor g < n — 1,50 m,_; (F) = 255 (F, %). All in all we
get that Q8S(B, E) = 0 + Z[n, (E))/2 — &)-Z[n,(E)] = Q5 ,(F, »), and so

QI(E,F) + QI5(B, ).
Lemma 12.

We end with a lemma that has already been used. A retracking of theorem 9 will
show that due to particular circumstances this lemma, as stated, is somewhat an
overkill. However, as 2-skeletons are always troublesome the lemma has some
independent interest, and we will list the entire result.

LEMMA 12. Let F — E — B be a fiber sequence of connected spaces, and let
f':X — B be a map such that

(1) Ext(H;(X),m,B) =0,

@) n f' = 1:7(X) > my(B),

(3) Hyf" = 0:Hy(X) » Hy(B,Z[n(B)]) (= m2(B)).
Let P= XIIgzE. Then 1 - n,(F) 25 n,(P) ¥ n,(X) - 1 is a split exact se-
quence with a splitting o : 1, (X) — C, p)(n,(F)), and hence we have an isomorphism
. (X) x 7y (F) =2 n,(P). Let W < X have a partial lifting f': W — E, and let
Y : W — P be the induced map. Then we may lift the 2-skeleton of X relative to f" if
and only if there exists a homomorphism 0: 7, (X) — n,(F) extending

(W) % 1, (P) 2 7,(X) x ny(F) 22 7, (F)

lincl#

n1(X)

PrOOF. By (2) f” lifts to the universal covering space of B, f:X — B. Let
@ = Fiber (f). As X is connected and B is simply connected, ® is connected, and
by (3), the Hurewicz theorem and the lower term sequence of the Leray-Serre
spectral sequence, we get

C = (X) 2 1B D oy (@) — m(X) — 1

I

. — Hy(X) 2% Hy(B) — Hy(®) — H,(X) — 1
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As Ext (H,(X), H,(B)) = 0 the lower sequence is a split exact sequence of abelian
groups. Furthermore f; = 0:7,(X) —» n,(B), and as 7, (B) — H,(B)is an isomor-
phism and 0 central, the upper sequence inherits the splitting, so 1 — 7,(B) —
7, (@) —» m(X) — 1 is a split central extension, with splitting, say ¢’. Perform
pullback

As {13(X) D my(F)} = {my(X) &5 m,(B) S n,y(F)) = 1,
15y (F) 2 m,(P) 25 my(X) > 1
is exact. Let o: 7, (X) = n, (P) be the composition 7,(X) > () RN 7y (P).
7y (F) = ny(F) —» Inn 7, (F)
N
1(®) 2 7,(P) & ny(E) > Autn,(F)
[ |
(D) < n,(X) — 1 — Outn,(F)
—
J#
This is obviously a section to pg, and as
n(P)— Autny(F), ar> h,=(p 5 "(aix(@)-a™t)

factors through 7,(P) —#— n,(E) —— Autm,(F), we get that h,,) = Tjo@ =
Thjo'@) = Ty = 1,and so the image of ¢ lies in C,, p)(7,(F)), the centralizer of ,(F)
in ,(P). i

This last point ensures that =, (X) x n,(F) —2> =,(P) is an isomorphism
with inverse

= ~ Yo Bela— 1
nl(P) ab> (P (a),ix ~ HaPrl@ 1)) ﬂl(X) x 7[1(F).

Now, if (X, W) — (B,E) is as in the lemma, we have by the criterion for
extendability of 2-skeletons [1], that the lemma is true if both i, : 7, (F) — 7, (P)
is a monomorphism, and there is a section 8 to p,:m(X) with Y, =
b’ incly : my (W) - m,(X) - n,(P). But as ¥, must be of the form (incl,,y):
7 (W) — n, (W) x n,(F), this is equivalent to y factoring through incl 4.
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