MATH. SCAND. 72 (1993), 5-19

BIFURCATIONS OF GENERIC ONE PARAMETER
FAMILIES OF FUNCTIONS ON FOLIATED MANIFOLDS

SOLANGE MANCINI* and MARIA APARECIDA SOARES RUAS**

Introduction.

Let N, P, Q differentiable manifolds and ¢: N — Q a fixed differentiable map-
ping. The mappings f,g: N — P are gp-equivalent if there exist diffeomorphisms
h, k and | commuting the diagram

NY2pxo-2s90

hl lk ll
N2, pxg-L50

where 7 is the projection on the second factor.

This equivalence relation gives qualitative information on the mapping f, by
leaving invariant the “foliation” in N defined by the level sets ¢ = constant. The
@-stability of mappings f: N — P was studied by L. Favaro and C. Mendes in
[6].

Allowing ¢ to vary in the above definition, we obtain an auxiliary equivalence
relation, that we call Z-equivalence. Both equivalence relations can be consider-
ed as special cases of the equivalence of convergent diagrams, as defined by
Dufour in [2].

In the present paper, we study the concept of ¢-versal unfolding and its
relationship with the corresponding concept for Z-equivalence. We classify one
parameter ¢-versal unfoldings of germs and multigerms f: (R", S) — (R, 0), where
¢: (R",S) - (R, 0) is infinitesimally stable, n = 2 (Propositions 3.1, 3.2). The
generic bifurcations in this classification are associated to the 9-orbits of pairs
(f,9): N>R x R of 2-codimension <1, with one exception: the transversal
intersection of three transverse folds. This singularity presents modality. In
Proposition 3.3, we show that its topological ¢-codimension is one.
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Our main result, Theorem 4.2, shows that given two ¢-stable functions
f,g: N - R, the transition from the pair (f, @) to the pair (g, ) can be realized by
a generic path that preserves the foliation in N defined by the level sets of a fixed
Morse function ¢: N — R.

1. Notations and basic definitions.

Let C(n, p) be the space of smooth map-germs f: (R",0) — (R?,0).
For a fixed map-germ ¢: (R",0) — (R% 0), we define an equivalence relation on
C(n, p), called @-equivalence, as follows.

DEerINITION 1.1. Two map-germs f, g: (R",0) - (R?, 0) are @-equivalent if there
exist germs of diffecomorphisms h of (R",0), k of (R x R%0) and [ of (R% 0)
commuting the following diagram

(R",0) L2, (R” x R%,0) - (R%,0)
hl lk le
(R",0) £, (R? x R%,0) -2 (R%,0)

where 7, is the usual projection.

The group associated to this equivalence relation is the subgroup G, of the
group & = Diff(R",0) x Diff(R? x R9 0)consisting of pairs (h, k) such that there
exists e Diff(R%,0) satisfying the relations lcgp°h™! = ¢ and myok =l°n,. G
acts on C(n,p) by (h, k) f = m,°(k°(f, @)°h™ "), where n,: (R? x R%0) - (R?,0)
is the usual projection.

Allowing the germ ¢ to vary in the above diagram, we obtain an equivalence
relation on C(n, p + g), called 2-equivalence:

DErFINITION 1.2. Two map-germs (f, ¢), (g, ¥) are Z-equivalent if there exist
germs of diffeomorphisms h of (R",0), k of (R? x R%,0), and ! of (R%0), with
k(y,z) = (ky(y, 2), 2)), such that (g,y) = k°(f,@)°h™".

ReMARK 1.3. These equivalence relations can be considered as special cases of
the equivalence of convergent diagrams, as defined by Dufour in [2]. More
precisely: £, g (resp. (f; ), (g, ¥)) are p-equivalent (resp. Z-equivalent) if and only

if the convergent diagrams (£, @), n,), (g, ), 7,) (resp. (£, @), 7,), (g, ¥), 7y)) are
equivalent.

We need some notation to describe the tangent spaces to the G, and Z-orbits.

For any integer m, let C,, be the local ring of function-germs at the origin in R™,
and .#,, the corresponding maximal ideal. Given a map-germ f e C(m, k), let 6,
denote the C -module of vector fields of f, and set 6,, = Oygm, o).

Given (R%,0) & (R", 0) ER (R?, 0), the tangent spaces (respectively the extended
tangent spaces) to the G, and 2-orbits are defined as follows:
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(i) T,;G,(resp. T,G3)is the set of all o € .#,0, (resp. o € 0;) such that there exist
¢eM,0,(resp. £€0,),nE My b, (resp. neb, ) and pe A0, (resp. u € 6,) satisty-
ing

{0 =df(&) + n°(f,0)
0=do@) +uce

(i) Tiy,o2 (resp. Ti;, ,2°)is the set of all 0 € A, 0, ,) (resp. o € G4, ) such that
there exist £ € 4,0, (resp. £€6,), (€ M, ,0,.,(resp. {€0,,,)and pe 4,0, (resp.
ueb,) satisfying

{o =d(f,o)(&) + {°(f,9)
0=dn/l) +ucmn,

The @°-codimension of f and the 2°-codimension of (f, ¢) are defined by
Cod¢¢f = dimR Of/TfG;,
codg.(f, ¢) = dimgbys, )/ Ty, 2"

REMARK 1.4. The definitions of this section extend to multigerms.

2. Unfolding theory for ¢-equivalence and Z-equivalence.

In this section, we consider the concepts of versality of unfoldings for 2 and
¢-equivalence. When ¢ is infinitesimally stable, Proposition 2.4 below gives
a useful relationship between these two concepts.

Let F: (R" x R",0) - (R? x R",0), F(x,u) = (f(x,u), u), be an r-parameter un-
folding of f(x) = f(x,0).

Writing u,,...,u, for the standard coordinates in R", we define 0;,F €6, by

o
aiF B aui u=0
{04F,...,0,F)} will be denoted by {0,F,...,0,F)p.

Given a map-germ h: (R®, 0) = (R", 0), the unfolding induced from F by h, h*F,
is the s-parameter unfolding of f defined by h*F(x,v) = (f(x, h(v)), v).

Let (R%,0) & (R".0) ER (R?,0). We denote by (F,r) an r-parameter unfolding
F(x,u) = (f(x,u),u) of f, and by (G,r) an r-parameter unfolding G(x,u) =
(F(c,u), @(x,u),u) of the pair (f,). When &(x,u)= @(x), the unfolding
(¢, ) > (f(x, u), p(x), u) will be denoted by F,. With these notations:

, i=1,...,r. The real vector subspace of 0, spanned by

DEFINITION 2.1. (i) (F,7)is g-transversal if T;G2 + <0,F,...,0,F)g = 0.

(i) (F,r) is p-versal if for any unfolding (F,s) of f there exist a map-germ
h: (R%,0) - (R",0) and unfoldings (H,s), (K,s), (L,s) of the identities Ign o)
Ige x s, 0> I na, 0y, TESPECtively, such that:
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Ko(h*F,)°H ' =F,
Lo(ﬂq X I(Rl,o))oK_l = ﬂq X I(R',O)’

DEFINITION 2.2. (i) (G, r)is @-transversalif Ty ,,2° + €0,G,...,0,G>q = b1, )-

(ii) (G,r)is D-versal if for any unfolding (G, s) of (f; @) there exist a map-germ
h: (R%,0) - (R",0) and unfoldings (H,s), (K,s), (L,s) of the identities Ign o),
Lips x re, 0y, Iira, 0), TESPECtively, such that:

{KO(h*G)OH"‘ =G
L°(7Iq X I(R.‘o))oK"l =Ty X I(R’,O)'

The standard result establishing the equivalence between versality and trans-
versality also holds in this context:

PROPOSITION 2.3. (a) Anunfolding (G,r) of (f, o) is D-versal if and only if (G,r)
is @-transversal.

(b) Let ¢ be infinitesimally stable. Then, an unfolding (F,r) of fis @-versal if and
only if (F,r)is @-transversal.

PrROOF. As we saw in Remark 1.3, 2-equivalence and ¢-equivalence can be
considered as special cases of equivalence of convergent diagrams. Thus, the
statements (a) and (b) follow from Theorem 2 of Dufour [2], on the equivalence
between the concepts of versality and transversality for convergent diagrams.

To each 9-versal unfolding of (f, ¢), with ¢ infinitesimally stable, we can
associate a @-versal unfolding of f, and vice-versa.

Given an unfolding (G, r) of (£, ¢), G(x,u) = (f(x,u), #(x,u),u), let (F,r) and
(9,r) be the unfoldings of f and ¢ defined by F(x,u) = (f(x,u),u) and
D(x,u) = (@(x, u), u), respectively. Since ¢ is infinitesimally stable, there exist
unfoldings (H,r) of I, o) and (L,7) of I ze, o) such that

L™ o®oH = ¢ X Ig o)
Define (F,7) to be the unfolding of f given by F = Fo H. Then,
PROPOSITION 2.4. (G, r) is @-versal if and only if (F,r) is p-versal.
To prove this, we need the following

LEMMA. Let (F,r) be an unfolding of f. Then, the unfolding (F,,r) of (f, o) is
D-versal if and only if (F,r) is @-versal.
PROOF. Necessity is clear.

To prove the sufficiency, let (G, s) be an arbitrary unfolding of (£, ¢). Then, we
can write
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(2.3.1) G = (Ips,0) X L)° F,oH™ .

where (F, s) is an unfolding of f,and (H, s), (L, s) are unfoldings of Iian, 0y and g, o),
respectively, such that L™ ' o @ o H = ¢ X I o).

Since (F, r) is ¢-versal, there exist a map-germ h: (R*,0) — (R", 0) and unfoldings
(H,5), (K, s), (L, s) of Iign,0y, Line x e, 0)» I(ra, 0) T€SPeCtively, such that:

{Ko(h*F,,,)oH" _F,

2.3.2 - __
( ) L°(7tq X I(Rs,o))oK 1= Ty X I(R',O)'

From (2.3.1) and (2.3.2), we get the result.

PROOF OF PROPOSITION 2.4. As above, G = (Is,0) X L)OFq,OH ~1, Then,
given h: (R®,0) — (R", 0), we have

h*G = Ko (h*F,)° H1
where (H, 5), (K, 5) are, respectively, the unfoldings of Ian, 0y and I gy x pe, o) defined

by H=h*H and K = Ige,0) X h*L. The result follows from the precedent
lemma.

As a consequence of Propositions 2.4 and 2.3, we have:

COROLLARY 2.5. cod,. f = codgs(f, ¢).

3. Classification of germs and multigerms of ¢°-codimension <1
In this section, we classify germs and multigerms with cod,. f < 1, in the case

(R,0)
st
(R",S)
o)
(R,0)

where n > 2 and ¢ is infinitesimally stable.

In what follows, a singular point of (f, ¢) will receive the adjective transverse or
tangent whether ¢ is regular or singular.

The following propositions summarize the results:

PROPOSITION 3.1. Let (R,0) & (R",0) 5 (R,0), where n=2 and ¢ is infini-
tesimally stable. Then

(i) codgef = 0 if and only if the pair (f, @) is of one of the types: submersion,
transverse fold, tangent fold, transverse cusp.

(i) cod,.f = 1 if and only if the pair (f, @) is of one of the types: tangent cusp,
transverse lips, transverse beak to beak, transverse swallowtail.
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The normal forms of these singularities, and their versal unfoldings are shown

in Table 1.
TABLE 1.

Type (f, ) 2-Normal Form codg.f | 2-versal unfolding
1 submersion (x,y) 0
2 transverse fold % + q(2), y) 0
2' tangent fold (x,x% £ y* + q(2)) 0
3 transverse cusp x* + xy + q(2),y) 0
3’ tangent cusp (¥ + xy + Ax) + q(2)), A(0) = 0 1, x + uy, y* + xy + Ax) + q(2))
47 transverse lips 3 + xy? + q(2), ) 1 (3 + xy* + q(z) + ux, y)
47 transverse beak to beak | (x* — xy? + q(2), y) 1 (x3 — xy* + q(z) + ux,y)
5 transverse swallowtail x* + xy + x%y + q(2), ) 1 (x* + xy + x%y + q(z) + ux?,y)

where z = (zy,...,2,-5) and q(z) = ) /27 + z}.

PROPOSITION 3.2. Let (R,0)< (R",8) 5 (R, 0), n = 2, card(S) = 2. If ¢ is o -in-
finitesimally stable and (f, @) is a singular multigerm, i.e., S = 2 (f, ), the singular
set of (f, @), then

(i) cod,ef = Oifand onlyif card(S) = 2 and (f, @) is a transversal intersection of
two transverse folds.

(ii) codyef =1 if and only if card(S) =2 and (f, ) is of one of the types:
intersection of a transverse fold and a tangent fold, intersection of two transverse
folds with second order contact, transversal intersection of a transverse fold and
a transverse cusp (see Table 2).

To obtain the above results, we classify the Z-orbits contained in the «/-orbits
of germs and multigerms of codimension <1 ([5], [10]).

The main distinction between our classification and the «/-classification
appearsin the 7-orbit of the intersection of 3-folds. More precisely, this singular-
ity has «/°-codimension equal to one, but its 2°-codimension is two. However,
we have the following result:

PROPOSITION 3.3. The topological 2°-codimension of the intersection of 3-folds
is one (see Table 2).

3.4. Classification of @-orbits of germs f: (R",0) — (R, 0).

The proof of Proposition 3.1 will follow from the Lemmas 3.4.1 to 3.4.5. below.
In Lemmas 3.4.1 and 3.4.2, (f; @) is a fold or a cusp singularity.

LemMaA 3.4.1. cod,.f = 0 if and only if the pair (f, ) is of one of the types:
transverse fold, tangent fold and transverse cusp.
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TABLE 2.
Type (£, ¢) 9-Normal Form cod,.f | 2-versal unfolding
transversal intersection of (£% + 4(2),9) 0
two transverse folds W+ x% + ¢(2),y)
intersection of a transverse { (£X2 + &(2),5) 1 (%2433 + u,p)
fold and a tangent fold (x, +x2 + y* + q(2)) (x, £x* + ¥* + q(2))
intersection of two trans- ==\

+ X 5
verse folds with second or- { * +4@),5) 1 { (£ +40) +u.7)
der contact +x2+y* +q(2). y) (£x* + y* + q(2),y)
transversal intersection of a Py

+
transverse fold and a trans- { (£% + 42,9 1 { T a@ +u)
verse cups O+ xy +y + ql2),») (e + xy +y + q(2), )

(2 + 92), 9 (X% + 92,9
intersection of 3-folds 7+ 7 + 42,5 2 ¥ + %% + 4@,y
(ay £ x* + g(2), y)a % 0,1 (ay £ x* + q(2) + ury + uz,y)

PrOOF. See [6].

LemMMA 3.4.2. If (f, @) is a tangent cusp, then
(i) the normal form with respect to 9-equivalence is

(%, 9,2) L2 (x, 3 + xy + Ax) + g(2)), X(0) =

wherez = (24,...,2,-2) and q(z) = +22 + 22 + ... £ z2_,.

(i) codgef = 1.
ProoF. The normal form in (i) is essentially obtained in [13]. Routine calcula-
tions with this normal form show that 6, = T, G, @ {y>rand, hence,cod,.f = 1.

In the following lemmas, we classify the 2-orbits obtained by refinement of the
s -orbits of germs (£, @) of o °-codimension one. These are: lips, beak to beak and
swallowtail ([5],[10]).

When ¢ is regular, the pair (f, ¢) is 2-equivalent to a germ of the form:

k
(Z a;x;y * xf“ ... XZ_l + P(xlauu,xk,}’),Y),

i=1

peMy ((4])
And we have:

LemMA 3.4.3. Ifcodyef = 1, thenk = 1.

Proor. Let g(x,,...,
Then

,xk’y)’ pe"”}?+1'
9xk) = g(xl.’"

=Yl axy + p(xy,...
Now, let go(xy,...

Xks .V)

cod,ef = cod,.g. Xk, 0) =
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p(x4,..., Xk, 0). We can think of (g, ¢) as a 1-parameter unfolding of g,. Now, it is
not hard to see that codg.go <cod,g+ 1. Since goe.#7, we have
cod 4. go = (k* + k)/2. From these two inegualities, it follows that cod,.g = 1

implies k = 1.

As a consequence of the above lemma, we can reduce the analysis to a germ
f(x,y)e M2, with cod,.f < o0.
A normal form for (f, @) is

(£ )% 9) = (" + xQ1(9) + ... + X720, _5(9), y)

where Q;(y) (i = 1,...,r — 2) is a polynomial in y without constant term ([3,
Proposition (4.8)]).
Furthermore, if cod,.f = 1 then r = 3,4.

LEMMA 3.4.4. If cod,f = 1 and r = 3, then f is @-equivalent to
(i) x* + xy>-transverse lips, or

(i) x* — xy?-transverse beak to beak.
PrOOF. After some coordinate changes, we may assume that f has the form:
x* + xy* + 0(4).
Now, computing the ¢-tangent space for such f, we obtain:
M30; < T,G, + M50, Vs=5.

The Infinitesimal Criterium for ¢-determinacy ([9]) and Mather’s Lemma ([11,
Lemma 3.1]) imply that f is 3-p-determined, hence @-equivalent to x* + xy2.
Furthermore, 0, = T;G;, @ {x)j.

LEMMA 3.4.5. If cod,.f = 1 andr = 4,thenfis @-equivalent to x* + xy + x?y-
transverse swallowtail.

Proor. After some simple coordinate changes, we may assume that f has the
form

x* + xy + ax?y + xQ1(n)y* + x*Q, (N>
Making the change of coordinates in the target

U=u-—
{ “ qu,(v)’ we obtain:
V=v

x* + xy + ax?y + xPy(y)y* + x2P,(y)y* + x*Py(y)y.

Again, with coordinate changes of the above type, we can eliminate the terms x)*,
k = 2, up to terms of high order, to get:
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x* + xy + ax®y + x2R,(»)y* + x*R,(»)y.
Making the coordinate change in the source

x =X — X*R,(Y)Y — X*R,(Y)
y=Y ’

we get
x* + xy + ax?y + x3L3(y)y* + 0(6).

And, repeating change of coordinate of this type, we obtain

(3.4.6) x* + xy + ax?y + 0(6).
A direct computation shows that for any f of the form (3.4.6)
0 0
dimg——7_——>1and dimp—rL—— =1 0.
lm"TfG;+./{§0f_ an lmR’I}G;+./{§0f <>az

Now, we can see easily that x* + xy + ax?y + 0(6), a + 0, is p-equivalent to
x* + xy + x%y + 0(6).

Asin the previous lemma, we show (after very tedious calculations) that for any
such f

M50, < T;G, + M50, Vr2T.
Thus, f is 5-¢-determined. Furthermore,
0]‘ = ’I}G; @ <x2>R.

Proposition 3.1 now follows from the above lemmas and from the fact that
cod,.f > 1 for all pairs (f; @) such that cod 4.(f; ») 2 1 and ¢ is singular.

3.5. Classification of @-orbits of multigerms f: (R", S) — (R, 0).
In this section, we classify multigerms

f: (R%S) - (R,0),

with ge-codimension <1, where ¢ is /-infinitesimally stable and § is a finite
subset of X (f, p).

It will be useful to consider in the sequel the multigerm fon § = {x,,...,x,} as
a convergent diagram of map-germs f; = f|(R" x;):(R%, x;)) » (R,0)(i=1,...,5).
This allow us to consider x; = 0eR"for all i = 1,...,s.

We consider two cases:

1) codya(f;0) = 0

In this case, card(S) = 2 and the singular points in S are fold points with
transversal intersection ([5], [10]).

With respect to 2-equivalence, we have two possibilities:
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(I1) two transverse folds intercepting transversally. In this case,
codg.(f, ¢) = 0 and the normal form is:

{(f,ﬁ,f) - (£x* + 4(2),5)
(x,5,2) > £ x* + q(z),)

(I2) a transverse fold and a tangent fold, with codg.(f, ¢) = 1.
Normal form:

{(f,y',z‘) = (%2 + 4(2),y)
(%, 9,2) = (x, £x% + y* + ¢(2))

(D cody-(f,0)=1

In this case, card(S) = 2 or 3 and the corresponding /-orbits are: two folds
with non transversal intersection, transversal intersection of fold and cusp and
intersection of three fold lines ([5], [10]).

Refining the above classification, we find that only the following bigerms have
cod,. = 1.

(I11) two transverse folds with second order contact

{(mz‘)—»(ifz + 4.y
(x,y,2) = (£x% £ y* + q(2),y)

(I12) transversal intersection of a transverse fold and a transverse cusp

{(f, 7,2) = (£%% + 4(2), §)
(x,9,2) > (x> + xy + y + q(2),)

The above classification proves Proposition 3.2.

The classification of the 9-orbits inside the orbit corresponding to the inter-
section of three fold lines presents modality. In fact, the cross-ratio of the set of
fold lines and the horizontal axis in the target is an invariant of 2-equivalence.
Next, we show that the topological 2°-codimension of such singularity is one.

PROOF OF PROPOSITION 3.3. ¢ is a trigerm of submersion and we represented it
by the normal form [7, 7, y]. We denote by f, the family

=[x +4D, 7+ 2+ 4@, ty + x> +4q(2)], t+0,1

To show that this is topologically ¢-trivial we proceed as in [8], [12], [13] by
constructing continuous vector fields V in the source and W in the target as
follows:

0

V:(R"xR,S x R)—»(R" xR, S x R), nRoV=3t—,
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fgn° V(0,8) =0, oV =0 (here 7, denotes the projection on the directions

2.22)
oy’ ay’ oy 1)

W: (R? x R,0) > (R? x R,0), W= W(ub,0), nR°W=—a?, Ttgz© W(0,t) = 0,

0
n,oW=0 (nz denotes the projection on the %-direction).

To show that ¥ and W are integrable, we construct a control function p in the
target as in [8], [12] such that

VIl Scpo(f,0) and [W] Scp

for some constants ¢ and ¢'.

By integrating these vector fields, we get homeomorphisms in the source and
target given the desired p-equivalence.

The construction of ¥ and W will follow from the following lemma:

LEMMA. There exist: (i) a weighted homogeneous trigerm of vector fields
[f, £ &lin(R" x R, S x R), of thetype(1,2,1,...,1;5), with zero components in the

directions i i _8_ andi
oy’ 0y’ dy ot’

(i) a germ of vector field n in (R? x R, 0 x R), homogeneous of degree 3, with

d 0
zero components in the directions % and FTE such that the following equality holds:

(35.1) (423 PRI

where p(u, v) = u? + v%, and (u, v) denotes the coordinates in the target.

PrOOF. Let F = (f,,t). The right-hand side of (3.5.1) contains the set of
trigerms [, 5, o] given by:

3%, 9,2, = +22&0(%, 7, 2,1)

0
FRI L8 5,50 + (28 + 4500
i
0'-()2, .}7, Z-, t) = iszo(f, .)-).a fa t) +
352 ]
o SIZE L85 5,50 + 17 + 5 + 6B
i

G'(JC, Y, 2, t) = i 2xéo(x, Y52, t) +
d
Yizt —ag &ix,9,2,0) + 1ty £ x* + q(2),y,1)
i
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where all the germs &;s, &'s, and &;s in the source, as well the germ 7 in the target,
are zero in their base points.
Notice that (3.5.2) contains all elements [, , 6] where

(3.5.3) §,6,0e M#2C,., and (0, 9,0,t) = 6(0,7,0,t) = (0, ,0,t) = 0.

Thus, for t 40,1, we can take the germ of the vector field n(u,v,t) =
1+
22—t
trigerm of vector fields [ = (&), € = (&), & = (&;)] in the source to be able to write
[0,0,(t? + 1)y*] satisfying the system of equations (3.5.2). From this expression
and using remark (3.5.3) again, we get the equation (3.5.1). It is not hard to see
that the defined vector fields are weighted homogeneous with the specified
degrees.

-(u?v — u3) in the target, and from the above remark, define convenient

4. Genericity Theorems.

Let N be a compact, smooth manifold of dimension n = 2, and let ¢: N - R be
a fixed Morse function. The subset S, = {f: N> R; f is a ¢-stable Morse
function} is open and dense in C*(N, R) ([6]).

The main result of this section, Theorem 4.2, shows that given f and gin S, the
transition from the pair (f, ¢) to the pair (g, ¢) can be realized by a generic path
that preserves the foliation in N defined by the level set ¢ = constant. (One such
path will be called ¢-adequate).

THEOREM 4.2. Let f, g be in S,. Then, there exists a @-adequate path F in
C®(N x [0,1],R) such that Fy = f and F, = g. Moreover, the set C, of all
@-adequate paths is apen and dense in C*(N x [0,1], R).

4.1. An auxiliary lemma. Let A(x,t) = (F(x,t), ®(x,t)) denote a path in
C>(N x [0,1],R%) = C*(N x [0,1],R) x C*(N x [0,1],R).

We want to define a subset € in C®(N x [0, 1], R?) of 1-parameter families
A = (F, P) that are generic with respect to the auxiliary equivalence relation 2,
and also have the property that the projection on the second factor gives a versal
family (This last assumption says that the transition from the foliation defined by
@, to the one defined by &, has only singularities of codimension <1 ([7])).

Let € be the subset of C*(N x [0, 1], R?) consisting of paths A = (F, ®) such
that

(Ao) @ = &(—,0) and &, = &(—, 1) are stable, and F, is P,-stable and F, is
@, -stable.

(A;) There exists a finite subset B, < (0, 1) such that, for all t¢ B,, &, is stable.

(Az) There exists a finite subset B, = (0, 1), B, n B; = ¢, such that, for all
t¢B,, F, is @,-stable.
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(As) For each te B,, only one of the following non-stable singularities may
occur for @,
germ: birth-death singularity (normal form: x> + y? + ¢(2)).
multigerm: two critical points of same height.

(A4) Foreachte B,, F, may have only one non @,-stable singularity of one of
the types:
germs: ®,~tangent cusp; P,-transverse lips, beak to beak and swallowtail (cf.
Prop. 3.1 (ii)).
multigerms: intersection of a @,-transverse fold and a &,-tangent fold, intersection
of two @,-transverse folds with second order contact, transversal intersection of
a @,-transverse fold and a @,-transverse cusp, transversal intersection of three
&,-transverse folds (cf. Prop. 3.2 (ii)).

LEMMA. The set € is open and dense in C*(N x [0,1], R?).

ProoF. That the set S of paths & satisfying conditions 4; and A4; of the
definition of € is open and dense in C*(N x [0, 1], R), follows from Theorem 8.12
of Looijenga [7]. Furthermore, let S’ be the set of paths A = (F,®) in
C*(N x [0, 1], R?)such that there exists a finite subset B = (0, 1) such that, for all
t¢ B, A, is o/ -stable and, for all ¢ € B, only one of the singularities of .o«/-codimen-
sion one occurs:

germs: lips, beak to beak, swallowtail.
multigerms: transversal intersection of a fold and a cusp, non-transversal intersec-
tion of two folds, transversal intersection of three folds.

S'is just the set of paths transverse to the stratification of J(N, R?) (r = 1,2,3)
where the strata are the .o«*-orbits of codimension <1, and its complement. Thus
§"is open and dense ([5], [10]). The set % consists of paths in 7~ *(S) N S’ that are
transverse to a refinement of the above stratification. More precisely, each
stratum of the new stratification is obtained as follows:

(1) 2-orbits of (f, p) of codg. < 1, with ¢ stable.

(2) 2-orbits of codg. = 1, corresponding to tangent fold singularity (f, ),
with ¢ non stable. There are two types of pairs (f, ¢), according to the bifurca-
tions of @: ‘
germ: third order contact with the horizontal line.
multigerm: double tangency with the horizontal line.

(3) the union of 2-orbits of the moduli family corresponding to the intersec-
tion of three transverse folds.

(4) the complement of the union of the above strata. This set is a finite union of
algebraic sets of cod = 2.
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4.2. Proof of Theorem. Let @: N — R be a fixed Morse function.
DerFINITION 4.1.1. A path F: N x [0, 1] — R is ¢-adequate if

(i) Fo = f and F; = g, with f,ge§,,.

(ii) F embeds in € by F — F,, where F,(x,t) = (F(x, t), (x)).

We denote by C, the set of p-adequate paths.

Notice that if FeC, then F, is ¢-stable for all t€[0,1] except for a finite
number of bifurcation points corresponding to maps (F;, ) presenting singular-
ities of the following types:
germs: tangent cusp; transverse lips, beak to beak and swallowtail.
multigerms: intersection of a transverse fold and a tangent fold, intersection of
two transverse folds with second order contact, transversal intersection of
a transverse fold and a transverse cusp, transversal intersection of three trans-
verse folds.

PRrOOF OF THEOREM. Let f, g be in S,,. Since % is dense, we can choose a path
A = (G, ®) in € joining (f; ) to (g, @), with @ arbitrary close to the constant path
. Since ¢ is a Morse function, there exist paths sufficiently close to the identities,
HeC®(N x [0,1], N) and Le C*(R x [0, 1], R), such that:

Hy=H =1Iy,Lo=L; = I, Lt_l°¢z°H¢=(P (1

The path F = Ge He C®(N x [0, 1], R), where H(x, t) = (H(x, t), t), joins f to g;
moreover, F is p-adequate, i.e., F, = (F, )€ %. This last assertion follows from
Proposition 2.4 which establish a relationship between 2-versal unfoldings of
(f, ) and ¢-versal unfoldings of f.

That C, is open follows easily from the openess of €.
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