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THE EXPONENTIAL RANK OF INDUCTIVE LIMIT
C*-ALGEBRAS

GUIHUA GONG AND HUAXIN LIN

Abstract.

Let A4 be a simple C*-algebra of real rank zero and be an inductive limit of C*-algebras of the form
C(X, M,), where X is a fixed finite CW complex. We prove that the exponential rank of A4 is at most
1 + & We also show that the exponential ranks of the C*-algebras of real rank zero considered by
Goodearl recently are at most 1 + ¢. Other simple C*-algebras are also proved to have exponential
rank at most 1 + e.

0. Introduction.

C*-algebras A that are inductive limits of direct sums of C*-algebras of the form
C(Xx, M,,) have been studied for a long time. The theory has been revived with
the recent successful work of G. A. Elliott’s classification [Ell 2] of the algebras
A that have real rank zero in the case where the base space X have a special form.
We notice that all Elliott’s algebras have stable rank one. It is shown recently in
[DNNP], [BBEK],[BDR] and [G] that both stable rank and real rank of A can
be reduced to one and zero, respectively, even if the base spaces have large (or
even infinite) dimension.

Let A be a unital C*-algebra. It is well known that if u is a unitary in the
connected component of the identity, then u is a product of finitely many
exponentials of self-adjoint elements in A. Is one exponential enough? Is u a limit
of exponentials? Exponential rank of C*-algebras has recently been studied by N.
C. Phillips ([Ph1], [Ph 2] and [Ph 3]),J. R. Ringrose ((PR]) and Zhang ([Zh 2]
and [Zh 3]).

It is shown by N. C. Phillips [Ph 1] that all Elliott’s algebras have exponential
rank (see (2) below) no more than 1 + ¢. It based on the fact proved in [Ph 1] that
cer(C(X) ® M,) < 1 + ¢ if X is acompact metric space of dimension at most 2. N.
C. Phillips shows that the exponential rank of C(X, M,) with high dimensional
base space X can be large, The purpose of this paper is to show that under certain
situations, the exponential rank of 4 can be reduced to at most 1 + ¢. In section
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1 we show that C*-algebras 4 considered in [G] with real rank zero has
exponential rank at most 1 + & Our section 2 deals with general simple
C*-algebras. In section 3 we show that how our results in section 2 work for
inductive limits of C(X, M,), where X is a finite CW complex. In particular, we
show that if X is a finite CW complex, A has exponential rank at most 1 + ¢
provided A is simple and projections of 4 separate the traces on A. Consequently,
all these C*-algebras have weak (FU), i.e. unitaries in the connected component
of the identity can be approximated by unitaries with finite spectra. The follow-
ing are some notations used in this paper.

(1) Let A be a unital C*-algebra. We denote by U(A) the unitary group of
A and Uy(A) the connected component of U(A4) containing the identity.

(2) The exponential rank cer(A) of a unital C*-algebra A4 is the smallest
ke{l,1 +¢2,2 +¢,...,00} such that each ue Uy(A) can be expressed as the
product of at most k exponentials exp (ih) with he A, , , if k is an integer, or u can
be approximated by the product of at most m exponentials, if k = m + ¢, where
m is an integer. For nonunital A, we define cer(A4) = cer(4) (See [Phl, 1.2]).

(3) Suppose that pis an open projection of 4 (in A**). We will denote by Her (p)
the hereditary C*-algebra of A corresponding to p.

Finally, recall that a C*-algebra A is said to have real rank zero if the set of
self-adjoint elements of finite spectra is dense in A, .

This work was done while the first author was a postdoctor fellow at Univer-
sity of Toronto and the second author was visiting the University of Toronto.
Both authors are grateful to George A. Elliott and Man-Deun Choi for their
support and hospitality. They were supported by a grant from the Natural
Sciences and Engineering Research Council of Canada. They benefited from
conversations with George A. Elliott and Man-Deun Choi.

1. Inductive limit C*-algebras considered by Goodearl.

In [G], K. R. Goodearl studied a family of simple C*-algebras of direct sums of
C*-algebras of the form C(X, M,), where X is a nonempty separable compact
Hausdorft space. Following Goodearl’s notations, we give the following list:

1) {xy,x,,...}: elements of X such that {x,, x,+,...} is dense in X for each n;

2) 8,: M (C(X)) » M (C) = M, (C(X)): evaluation at x,;

3) v(1), v(2), ...: positive integers such that v(n)| v(n + 1) for all n;

4) A,: the C*-algebra M, (C(X)),n=1,2....;

5) ¢,: A, = A, .1 unital block diagonal homomorphism of the form

diag(identity, identity,...,d,,...,5,),

ie.
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¢(a) = diag(a,...,a,d,(a),...,,(a)
for ae 4,;
6) a,: the number of identity maps appearing in ¢, and a = 1;
7) B.: the number of 3, appearing in ¢,;
8) ¢s.n:themap ¢y (s 5... P, A, = A for s > n;
9) A: the C*-inductive limit of the sequence

Al $1 Az 2 143 ¢3 Lt

i)

10) n,: A, — A: the natural map induced from the inductive limit;
11) Ineach of the maps ¢,, at least one identity map and at least one §, is used.
In other words,

0<a, <v(n+ 1)/v(n)

12) w;,,: the number a,a, 4 . .. o ;v(n)/v(s).
Goodearl showed in [G] that A is a simple unital C*-algebra with stable rank
one. Moreover, if X is not totally disconnected, then

(1) if
limw, ; =¢>0,
t— oo
then RR(4) = 1;
) if
lim CU,’ 1 = 0,
t— oo

then RR(4) = 0. Notice that if X is totally disconnected, then 4 is AF, therefore
RR(4) =0.

In this section we will show that cer(4) < 1 + ¢, whenever RR(4) = 0.
Let m¥(n < k < s — 1) be the number of u(x,) appearing in ¢, ,(u) and m®) be
the number of u appearing in ¢ , = o,,0%,+1 . . . %s—1. Moreover,
o(s)/o(n) = my + Yk, m
It is clear, by the definition,
(s +1
81 = e, + ity = il S

By induction, one sees easily that

v(s)

mg‘ﬁ, = Oplp+1 ~--ak—1ﬁkm‘

Hence
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u(s) me,
vk + 1) anan+1“'ak-—l.

mg‘i =P
Lemma 1.1. If lim,, , w, , = 0, for any fixed integers0 <n <mand M >0
there is an integer N such that whenever s = N (= n,m)
m(s’f:l g M'anan+l R

wheren £ k< m.

ProOF. Since m¥*) = gy ————— and lim,, , @, , = 0 (see [G]),

v(k + 1)
. m© A ok+1) o .
1 sk — i =—lim w,, =0.
s1>n:o m.‘s‘.k s}»n:) ﬁk AR U(S) ﬂk s-l-’r?ow *

Therefore, for n < k < m, there is N, when s = N,
= M(a,...0 1) m% = Ma,...a
sk- k—1 s, k ne--%s—1
forng k<m
Since
k) __ (k) 1 < (k)
ms,k - ms,n ms n
Oy oo O — 1)
k
mfv,:t g Manan+l cenOlg—y-

LEMMA 1.2. Let ue A, for some n. Suppose that Sp(u) = S* and S* = | Ji_, I,
where each I; has the form {€*®: 0, < 0 < 0,,,} and

0=0,<0,<...<6,=2m

Then for any M > O there is an integer N such that the number of eigenvalues of
¢s. n(4), counting multiplicities, which are in I, is larger than Moo, 41 ... 051, for
i=1,2,...,k, whenever s = N.

ProoF. Let 4, be the center of I, i = 1,2,..., k. Since X is compact, there is
pi€ X such that ;e Sp(u(py)), i = 1,2,...,k Thereis x, € {x;, X,,...} such that x,,
isclose to p; so that thereis 4; € I; and A; € Sp(u(x,,)). Therefore, by Lemma 1.1, the
multiplicity of A; is larger than Ma,...a,_, if s is large enough.

THEOREM 1.3. If A has real rank zero, then
cer(A) <1 +e
Consequently, A has weak (FU) (see [Ph 1]).
ProOF. Fix ue Uy(A) with Sp(u) = S*. There are unitaries
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u= uo,ul,u2,...,uL,uL+1 = 1
along a path connecting u to 1 such that
”ui_ui+1“<8/87 i=0,1,2,---,L~

Without loss of generality, we may assume that ;e U(4,),i =0,1,2,...,L.

Foranyn, ¢, ;(u) = diag(ii, w(n)), where i = diag(u,u,...,u) with oy, ... o,y
repeating u’s on the diagonal and w(n) is a constant block diagonal unitary matrix
with each block having size (1) x v(1). Let ‘

0=0;<0,<...<0,=2n
be a partition of the interval [0, 2], where s = [167/¢] + 1, such that
[6k+1 — Oill <e/8,

and let [, = {e"® 0, < 0 < 0, ,}. Denote by M(n, k) the number of eigenvalues of
w(n), counting multiplicities, which arein I,k = 1,2,,,,,[16n/¢] + 1. By Lemma
1.2, there is n, such that for any n = n,,

16
M(n, k) = 4Loyay ... ([Tﬂ + 1>u(1).
Set wo = diag(vy,vy,...,01) € Mapy1)a,ay...a, ,(C(X)) With @y, ... &,y many
vy’s, where

v, = diag(uf,uy, uf, us,...,uf,uy)

(notice that the size of vy is 2Lv(1) x 2L1(1)). The element w, can be regarded as
an element in a corner of A, since 2Lv(1)a;0; ... %, —; < v(n). And let p,,, = wow}
which is a projection of A4, of size 2Lv(1)a ;... a,—;. Furthermore, we may
regard p,, as a projection in 4 and w, as an element in the corresponding corner
of A by identifying #,(p,,) and pe,, (o) and w,, respectively.

By [Ph 2, Corollary 5], there is he A4, such that

llwo — €"po, |l < €/8.

Since A has real rank zero, there are mutually orthogonal projections
P1,P2,--.,Ps, in A such that

S
Wo — Z AxDx

k=1

< g/4,

where |4| = 1, k = 1,2,...,s,. Without loss of generality, we may assume that
px€ A, for some n = n,, and we may further assume that A e I, k = 1,2,..., sy,
167 . 16n
and s; £| — |+ 1. Since M(n,k) = 4Loj0,... 00— — +1)uv(1), for
€

n = n, we may write
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s M(n, k) .
o) = ¥ ( » aweik),
k=1 i=1

where e, are mutually orthogonal, rank one constant projections (in 4,), A’ e I,
and [Y M5 e4] 2 [Po,] 2 [p;.5 = 1,2,...,5.

Set
s M(n, k)
(l-)= Z A’k( Z e“().
k=1 i

i=1

(For k > s,, let A, be one of A{".)
Then ||w(n) — @| < &/8. Let V = diag(i, @), then

Ins(@) — VIl < &/8.
We may write
V = diag(i, 0o, '),
where Do = Y 3oy Age, @ = Y3y QMG ik — q) + Y+ QMG en)
and [q,] = [pi]. Therefore there is a unitary Wsuch that
W*PW = diag <a, 5 llkpk,a)').
k=1
So
|W*VW — diag (i3, o, @')|| < &/4.
There is a unitary W, such that
W diag(i1, wo, )W, = diag(s, i}, iy, uf, d,, ..., 4f, i, '),
where 4; = diag(u;, u;,...,u;) with a0, ... a,_, many u;’s. Set
V = diag(a, a*, iy, a¥, iy, a%,...,4f_, 1, 0.
Then
| W diag (i, wo, )W, — V|| < ¢/8.
By [Ph 1, Corollary 5], there is an element a €(A4,); .. such that
|V — explia)l| < &/2.
Hence

ldn, 1(4) — exp(WW1aWFW*)|| < ¢/8 + /4 + /8 + &/2 =&
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2. Simple C*-algebras.
A version of the following lemma first appeared in [Cu].

LEMMA 2.1. Let A be aunital C*-algebra and ue U(A). Then for any ¢ > 0, there
is 6 > 0 satisfying the following condition:

If Ay, Azy..., Ay€S! are finitely many points and I, = {{ € Sp(u):|{ — 4| < 8¢}
(k = 1,2,...,n) are finitely many subsets of S' with the properties é, £ 6 and
I, I, = @ when k £ k', furthermore, if q, are the spectral projections of u corre-
sponding to I, and if projections p,e€Her(q,), then there exists a unitary

ve(l — Yo p)A(l — Y-, p) such that

u—<v+ Z/Ikpk> <e

k=1

PROOF. Since piqx = qiPx = P and uq, = q,u, we have

() (&) 2

Z (qxuqxpx — Axpi)

< #.

Z qi(u — A)qicDx

k=1

Similarly,

M“éﬂ%hé@ﬂﬁ-iﬂ

(£)e(-£)

Hence

< 20.

%Fé@%béﬁ%éM)

So, if & is small enough (depends on ¢ only), then the unitary part of the polar

decomposition of
<1 -2 Pk)“(l -2 Pk) +(Z lkPk)
k=1 k=1 k=1

has the form v + Y5 ; Axpx and
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u— (v + Y lkpk)
k=1
Recall that an ideal J of an ordered group G is a subgroup of G satisfying:
J=J"—-J*(J*=JnG*)and 0 £ a < beJ implies ae J.
Notice that if A is stably finite, then (Ko(A), Ko(A4)+ ) is an ordered group ([BI,
6.33]).

<eé&.

PROPOSITION 2.2. Let A be a C*-algebra of real rank zero and stable rank one.
Then A is simple if and only if K o(A) is simple.

ProOOF. Assume that Ky(A) is simple. Let I be a (closed) ideal of 4. Let p, q be
two projections in I with [p] = [q] in Ky(A). Since A has stable rank one,p ~ gin
A, i.e. there is a partial isometry u € 4 such that u*u = p and uu* = q. Therefore
uel. Consequently, p ~ g in I. This implies that Ky(I) is an ordered subgroup of
Ko(A). If[p] £ [q], q€1, thereis u € A such that u*u = p,uu* < q, Henceuel, so
pel. Consequently, [pleKo(I). So Ko() is an ideal of K,(A4). Hence
Ko(A) = Ko(I). By the above argument, each projection of 4 is in I. Since A has
real rank zero, this implies that A = I.

If A is simple, it follows from [BI 6.3.6] that Ky(A) is simple.

The following is a known result in measure theory.

LEMMA 2.3. Let u be a positive Borel measure on interval 1. For any ¢ > 0, and
any 6 > 0, there are finitely many disjoint open intervals I,..., I, on I such that

ml; < 6
and

wI\Ui- 1) < e
(where m is the Lebesque measure)

In [Ell 4], Elliott extends the notion of unperforated ordered groups to
ordered groups with torsion.

DEFINITION 2.4. An ordered group G is said to be unperforated (in the sense of
Elliott) if

(i) G/G,, is unperforated (see [EHS]);
(ii) ifge G* and te G, then g + t = 0 if and only if t belongs to the ideal of
G generated by g;
(iii) any ideal of G is a relatively divisible subgroup (H < G is said to be
relatively divisible if an element of H is divisible by n in H if it is divisible by n in
G)
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It is shown in [G] that C*-algebra A considered in section 1 has Ky(A)
unperforated (in the sense of Elliott). All the C*-algebras with real rank zero
classified in [Ell 1] and [Ell 2] have K o(A) unperforated. We notice that if K(A4)
is simple, this notion of unperforated ordered groups coincides with the notion of
weakly unperforarted ordered groups (see [BI, 6.7.1]).

LEMMA 2.5.(see [P, 1.2]). Let A be a unital simple C*-algebra and p a projection
in A. Suppose that vis aunitary in pAp. If [v + (1 — p)] = 0in K (A), then[v] =0
in K,(pAp).

2.6. Let A be a separable unital simple C*-algebra with real rank zero and
stable rank one. Suppose that K ,(A4) is unperforated (in the sense of Elliott) and of
finite rank. It follows from 2.2 and 2.4 that Ky(A)/Ko(A)r = G is a simple
ordered group with finite rank. By [Zh 1,1.3] and [EHS], G is a simple
dimension group. Let 4 = {teS: 1(1) = 1}, where S is the set of positive
homomorphisms from G into R (See [Eff. Chapter 4]). Then the map

0: G- A=Aff4
determines the order on G in the sense that
G* ={aeG: 6(a) >> 0} L {0}.

Moreover, ker 0 = the set of infinitesimal elements. As in [Eff. 4.7],if G + Z, 6(G)
is order isomorphic to a dense subgroup of R" for some integer r, provided with
the relative strict order. Since ker 8 = the set of infinitesimal elements and K y(A4)
is simple, by (ii) of 2.4, a < b in Ko(A) if and only if n(a) < n(b), where = is the
composition map:
Ko(A4) = Ko(A)/Ko(A)or = 8(G).
Furthermore, by [Bl, 6.9.2], if [p] <[gq], then p <gq. If acKy(A4), then
m(a) = (ay,a,,...,qa,). Set
m(a) = a, k=12,...,r

THEOREM 2.7. Let A be a separable unital simple C*-algebra with real rank zero
and stable rank one. If

(1) Ko(A) is unperforated (in the sense of Elliott) and of rank n,

(2) there is aninteger K > 0 such that for any finitely many mutually orthogonal

projections py,p,,. .., Pm€ A and € > 0, there are projections q,qa,...,qm€ A such
that q; < p; and m(q;) > me(p;) — e/m,i=1,2,....mk =1,2,...,r,and

ef(i-E)el- o))

then cer(A) £ 1 + &. Moreover, A has weak (FU).
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PrOOF. Since A has real rank zero and stable rank one, by [Zh 1, 1.6], K(4)
has the Riesz interpolation property. If Ko(A)/Ko(A)or = G = Z, then, by the
Riesz interpolation property, Ko(4) = Z. It follows from [Li 1, 2.9] that 4 has
aminimal projection p. Since A has real rank zero, we obtain that p4Ap = C. Since
A is simple, unital and separable, by [Bn], 4 =~ M, for some n. It is well known
that cer(M,) = 1. Therefore, without loss of gnerality, we may assume that
G+Z

Step one. For any 1>¢e>0, let L=(K + l)([g—:] + 1>. For any

ve Uy(pAp), where p is a projection in A, if cer(pAp) < K, there are unitaries
Vo = U,U1,V2,...,0p,0p4+1 = 1,
in A such that
lv;i — vis 1]l < &/8, i=12,...,L.
In fact, there are h;e (pAp);.,i = 1,2,...,k such that
v = exp(ih,) exp(ih;)...exp(ih). (k= K)

Since A4 has real rank zero, so does pAp (see [BP, 2.8]). Therefore, there are

hi€ A, ,. with finite spectra, i = 1,2,...,k, such that

< g/16.

k
v — [] exp(ik))
ji=1

Since Sp () is finite, Sp (exp (ih})) is finite. Hence there are a;€ 4,0 < a; < 2nsuch
that
exp(ih}) = exp(iay), j=12,.. k.

So |lv — [ 4= exp(ia))ll < &/16.
There is a, +; € A with 0 £ g, ; < 27 such that
k+1
v =[] exp(ia)).

ji=1

Thus there are unitaries
Vo = 0U,04,032,...,0,0p 41 = 1,
such that
lvi = vi4 Il < &/8, i=12,..,L

Step two. Fix ue Uy(A) with Sp(u) = S*. We will construct mutually orthog-
onal projections {p;} and {p{"} such that
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m

!
u—v— 3 hp— y, ap
=1

k i=1

< g/8,

where v is a unitary in (1 — Y-, p — Y1y p)A(L — Y4 o — Y™, V) and
A, and a; are on the unit circle. Furthermore,

] m
ZL[I - X P X Pﬁ“] <[pd
k=1 i=1

fork=1,2,...,1

For each open subset Q2 of S*, let pg, be the spectral projection corresponding to
Q. Then pg is an open projection in A**. Let {p,} be an approximate identity for
Her(pg,) consisting of projections ([BP, 2.6 (iii)]). -

Define y,(Q) = lim,_, , m,(p,); and if Q = @, u,(2) = 0. Clearly,

(i) m(2) 2 0;

(i) if {Q;};>, is a sequence of mutually disjoint open sets, then
#k(U}i 192)) = z;'; 1 W(R2)).

Hence from measure theory, y,, defined by

w(S) = inf{(Q): S = Q, Qisopen}  foranyS < S,

gives a (positive) Borel measure on S*. Since p < 1 for every projection p e 4, we
may assume that u,(S') = 1. For &/8, choose 6 > 0 as in lemma 2.1 with addi-
tional restriction that 6 < ¢/16. Let

0=90<01<...<0,<9,+1=27t

2n 2n

such that |6;,, — 6| <l—_;—1—, 1 < /2. Put A, =¢€ k=1,2,...,] and

Q. = {AeS"|A — 4| < &}, where §, < 6/4 and QN Q; = 0 if k % i. For any
n > 0, take nonzero projections p, in Her (p,, ) (Notice that Her (p, ) has real rank
zero) such that

nj(pk) > (1 - n)ﬂj(Qk), j= L2,...,r,

where pg,_is the spectral projection of u corresponding to 4. (So pg, is an open
projection in A**). Set

o; = min{m;(p): k = 1,2,...,1}.
Then g; > 0 for each j (Since S' = Sp(u), pg, F 0). We may assume that

9i

nj(pk) > (l - 4L>ﬂj(gk), .]= 1’ 29'--ar-

Set J, = S\ Ji- @ by applying Lemma 2.3 repeatedly, one obtain a finitely
many disjoint open subsegments ", j = 1,2,...,m such that
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w0 <54, U, &) > wh) — 5 o)

foralll £j<d
Take projections p{!) in Her (pq(1) such that

MMW><1 M);MQW

fori=1,2,...,mandj=12,...,r
Put

Q= (Uk=y @) o (Ure, o).

Then p;(2) > 1 —&forj= L2,...,r

Sete=Yi_,p+ Z L, piY, then

o0 2 Do (1= )i + 5 (1= 2wt

9
= 2L
Therefore,
1
ni(l —e) SL° j=12,..,r
Thus by 2.6,
1 m
ub~2m—2‘ﬂ<@]
k=1 i=1
fork=1,2,...,1

By Lemma 2.1, we have

1
u—v— 3 hp— ) aup
k=1

i=1

< ¢/8,

where o; is the center of @V, i = 1,2,...,m and v is a unitary in (1 — e)A(1 — e).
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Step three. Let ue Uy(A). We will show that u is close to an exponential. We
may assume that Sp(u) = S*. By condition (2) and the construction of e in step
two, it is eady to see that one may choose e with

cer[(1 — e)A(1 — e)] £ K.

Since A is simple, by Lemma 2.5, [v] = 0in K,((1 — e)A(1 — ¢)). By [Rff, 2.10],
ve Uo((1 — e)A(1 — e)). There are mutually orthogonal projections qy,q5,...,q2L
in eAe such that

G~1—e in A, k=1,2,...,2L,
Let w, be the partial isometry such that
ooy =1-—e¢, OO = G,
k=1,2,...,2L. Let p =1 — e as in step one. Define
(*) ) = otof, i, = 00,03, U3 = w3vi03, ..., Uiy = WL VL0F].

Then Y 2%, 5, is a unitary in ) 2%, 0)AQ 2%, qi). By [Ph 2, Corollary 5], there
exists he (Y 2% | g)AQ 2L | gi)s.a. such that

2L

Y o, — exp(ih)|| < &/32.
k=1

Since (3 2%, qi)A(Y 2L, qi) has real rank zero (see [BP, 2.8]), there are By, . ., B;in
S! and mutually orthogonal projections e;,...,e, in (2%, )AL, ) such
that

< ¢/8.

s
- Z Bie;
j=1

We may assume that f;el; = {€% 0, <0 <0,,,}ands < L.
Since e; < Y2, g, and [Y.2%, q.] = 2L[1 — €] < [pi], there are ¢; < p; such
that

So

1 m s s
v+ Z lkpk + Z a,-p}” =v+ Z lje} + Z A-_, i — 1) + Z )“Jpj + Z alpfl)

k=1 i=1 j=1 j=1 =s+1

Therefore, there is a unitary W e U(A) such that

1 2L
W*(v + Y A+ Z oc,pf”)W ——(v + Y B+ vo)
i= k=1

< ¢/4,
k=1
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where
s 1 m
vo=W* X A4lp;—e€)+ X Api+ X “iP‘il)> W
j=1 j=s+1 i=1
Let 0, = wo*w¥, 0, = 05, 03 = wiviw%, 04 = 04, ..., 02y = ¢21. (See (*)) Then

2L 2L
<v+ Zﬁk+v0>—(v+ Zﬂk+vo>

k=1 k=1

< &/8.

Since v, has finite spectrum, by [Ph 2, Corollary 5], there is hy € A, ,. such that

2L
<v + Y o+ v0> — exp(iho)|| < &/2.
k=1
And
2L
|W*uW—<v+ Z vk+vo)
k=1
1 m
< [[W*uW — w* (U + 3 Ahp+ Y Bipgl)) w
k=1 i=1
1 m 2L
+ w* (U + lkpk + Z ﬂipgl)) W — (U + z 0 + UO)
k=1 i=1 k=1
<¢&/8 + /4 + ¢/8 = ¢/2.
Hence

lu — exp(iWho W*)| <.

COROLLARY 2.8. Let A be a separable simple C*-algebra with real rank zero and
stable rank one. If

(1) Sup{cer(pAp): p is a projection in A} < K for some integer K > 0; and

(2) Ko(A) is unperforated (in the sense of Elliott) and of finite rank, then
cer(A) £ 1 + &. Moreover, A has weak (FU).

3. Inductive Limits of C(X, M,) with X being a Finite CW Complex.

In this section we will give examples of C*-algebras satisfying the conditions in
2.7. Other related results will also be given.

THEOREM 3.1. Let A = lim_, (A,,¢,) be the C*-algebraic inductive limit of
C*-algebras A, of the form C(X, My,,), where ¢, are unital homomorphisms and
X is a finite dimensional, connected, compact metric space. If A is simple and of real
rank zero, then K o(A) is unperforated (in the sense of Elliott).
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PROOF. Suppose that x € X, define a map g,: C(X, My,)) = My by
ou(f)=f(x),  feC(X, Myy)).

Let¢in = ¢poPp-1°...°¢, and 6 = 6,° ¢,,. Then ¢ is a homomorphism from
C(X, Mk(n)) into Mk(n)'
Define 1: Mk(n) g C(X, Mk(n)) by

(a)(x) = a, for all xeX.

Then the composition map Y = o °1: M4y > M, is unital. Hence k(1) | k(n).

It follows from [DNNP] that A4 has stable rank one. Since 4 has real rank zero.
A has cancellation of projections (See [BI, 6.5.1]). By proposition 2.2, Ko(A) is
simple. Therefore, it suffices to show that K(A4) is weakly unperforated (see B,
6.7.1]). So we only need to show that if p, q are projections in M (A4) with
mp <mq for some integer m =2, then p<gq. We may assume that
p,q € My(C(X, My(1))). The relation mp < mq implies dim(p) < dim(g). Since A4 is
simple, k(n) — oo, unless A = M, for some integer r. Therefore, we may assume
that k(n)/k(1) > dim X. Set Q = {x e X, dim(p(x)) = 1}. So

dim ¢,(q(x)) — dim @,(p(x)) > dim X
for xe Q. By [BDR, Lemma D, (iii)], p < g.

We believe that the following Lemma is a known result in algebra. We provide
a proof since we failed to find a reference in literature.

LEMMA 3.2. Let G be an inductive limit of finitely generated abelian groups
Gl —>Gz—?G3—’...

and rank(G;) < n for some integer n (i.e. for any i, there is an injective homomor-
phism @, from G;/tor G, into Z"). Then G/tor G is a subgroup of Q" (Q is the set of all
rational numbers).

PROOF. We say that kelements x4, x5, ..., X, in G are linearly independent if for
any k integers I, 1,, ..., L, ixy + Ixs + ...+ hx, =0 implies I, =, = ... =
I,=0.

From the condition rank(G;) < n, one can prove that any n + 1 elements in
G are not linearly independent as follows. If x;, x,,..., X, + 1 € G, then there exist
a G; and n+1 elements y;,y5,...,Yn+1€G; such that m(y;) = x;
(j=1,2,...,n + 1), where n;: G; > G is the map induced by the inductive limit.
Since rank (G;) < n, there exist Iy, I, . .., I, + 1 (at least one of them is nonzero) such
that

Liyi + Ly, + ..o+ Ls1ynsr1 =0.

Hence
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llxl + lzXz +...+ l,,+1x,,+1 =0.

There is a maximum set {x;, X,,...,x;} of linearly independent elements of
G (k £ n). Define a map y: G — Q* as the follows.

For any element y € G, there exists a set of integers (g, l1,15,..., L) with [, £ 0
such that

(1) loy + llxl + lzXz +...+ l,,x,, =0.
Define

bo) = (== i) ear
I I

lo
If (15, 1. ..., ) (I + 0) is another set of integers such that
2 oy +lixy + bx, + ...+ [ix, = 0.
Combining (1) and (2), we have
(Ily — lo)xy + (ady — 1518)x, + ... + (hly — Lklo)x, = 0.

By linear independence of {x, X,,..., X;}, one gets

- b —h\_(=h b —k
lo 9 lo gy lO -_ 16 . llo 9y 16 .

So  is well defined. It is obvious that keryy = tor G.

THEOREM 3.3 Let A =lim_, (A,, $,) be the C*-algebraic inductive limit of
C*-algebras A, of the form C(X, My (), where ¢,, are unital homomorphisms and
X is a finite CW complex. If A is simple and of real rank zero, then

cer(A)< 1 +e
Moreover, A has weak (FU).

Proor. Itfollows from 2.7 that it is enough to show that A satisfies conditions
(1)and (2)in Theorem 2.7. By [DNNP], 4 has stable rank one. It follows from 3.1
and 3.2, A satisfies the condition (1) in 2.7. We then show that A satisfies the
condition (2) with K = 4 in 2.7.

We will keep the notations in 2.6. For any ¢ > 0, since 6(G) is dense in R’, there
is a projection e € A such that

m(e) < g/2, k=1,2,...,r.

We may assume that ee 4, = C(X, My,) for some n. Asin 3.1, dim ¢, ,(€) =
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as m — 0. Therefore we may assume that in A4,, dim(e) > 2d, where d is the
dimension of X. Hence, for any projection € € A with dim(e’) < id, we have

dim(e) — dim(e’) = d.
It follows from [BDR, Lemma D (iii)] that ¢’ is equivalent to a subprojection of e.
Therefore,
m(e) < myle) < ¢/2, k=12,...,r

Now let py, ps,...,pm€ A be mutually orthogonal projections. We may assume
that pye A4,,k = 1,2,...,m. By [BDR, Lemma D (i)], there are trivial subprojec-
tions g, of p, in A4, such that

dim(qy) 2 dim(py) — 3d.

Hence

dim(p, — q) = %d~

By what has been established above, we obtain

Tl qi) > m(pi) — &

Set e =Y r_,qi. Then 1 —e is a trivial projection in A4,. For any unitary
ue(l — e)A(1 — e), we may assume that ue(1 — e)4,(1 — e) for some integer L.
Since 1 — e is trivial in A,, there are integers i and j such that i[1 — e] = j[1] in
Ko(A,);s0i[1 — e] = j[1]in K¢(A). Therefore, 1 — eis also trivial in A when Lis
large enough. So (1 —e)A (1 —e)=~ C(X,My) for some N. Since
dim ¢, (1 — e) - oo, as we see in 3.1, we may assume that N is as large as we
wish. Therefore, by [Ph 3, 3.4], we may assume that cer(C(X, My)) < 4. This
implies that there are hy, h,, hy,hye(l — e)AL(1 — e)s,. such that

= exp(ih,)- exp(ih,) - exp(ihs) - exp(ihy).
Thus we conclude that A satisfies the condition (2) in 2.7. This completes the

proof.

REMARK 3.4. Itisshownin [Li3] thatif A is a o-unital simple C*-algebra with
stable rank one, real rank zero and satisfies the condition (1) in 2.8, then A has
trivial K,-flow; i.e. K;(B) = O for every hereditary C*-algebra B of M(A) which
contains A properly. If B is a (non-unital) hereditary C*-subalgebra of the
C*-algebra A in section 1 or the inductive limit

A = lim (4,, ¢,)
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in 3.3, then, by [Li 3], cer(B) £ 1 + ¢, and B has trivial K,-flow. It then follows
from [Li 2] that M(B)/B has real rank zero. If we further assume that K,(B) = 0,
then M(B) has real rank zero.

ADDED IN PROOF. After this note was revised, we noticed that we could use
Theorem 4.7 in the new revision of [Ph 3] instead of Theorem 3.4 in [Ph 3] to
simplify the proof of 3.3.
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