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HANKEL OPERATORS ON BERGMAN SPACES WITH
CHANGE OF WEIGHT

SVANTE JANSON

Abstract.

We consider big Hankel operators on a weighted Bergman space and show (under weak hypotheses
on the weights) that boundedness and S ,-properties are preserved if the weight is replaced by another
such that the quotient of the weights is bounded above and below outside a compact set.

This result fails for small Hankel operators.

1. Introduction and result.

Let A4 be the weighted Bergman space of analytic functions in I%(2, u), where Q is
an open subset of C" and y is a suitable measure on Q. The big Hankel operator
with symbol f, where f is a measurable function on £, is then defined by

(L.1) He(g) =(I — P)fg), geA

where P is the orthogonal projection I* — 4. More precisely, the domain of H, is
P(Hy) = {ge A: fge I?}, and we say that H, is a bounded operator if 2(H,) is
dense in A and H,:2(H,) - [*(u) is bounded. H, then extends to a bounded
linear operator A - A* = [*(u), and one may further ask whether this operator
(or,equivalently, H;P: I*(u) — [*(u)) is compact, belongs to the Schatten ideal S,
0 < p < o0), etc.

Boundedness, compactness and S,-properties of big Hankel operators have
been studied by many authors, see for example Axler (1986), Arazy, Fisher and
Peetre (1988) and the book by Zhu (1990), which also contains many further
references.

We will here show that these properties are preserved if we replace the measure
4 with an equivalent measure v such that the Radon-Nikodym derivatives du/dv
and dv/du are bounded. This is perhaps not too surprising, since then
(Qu= [*(Q,v) with equivalent norms, but it is not obvious because the
Hankel operators for the two measures differ, being defined using different
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projections onto A. In fact, the corresponding statement for the small Hankel
operators P(fg) is false, see Section 4.

Our result is actually a little bit more general. First, the bounded equivalence
of u and v is only required close to the boundary; on a compact subset the
measure may be changed arbitrarily (as long as it remains finite there). Note that
such a change of measure preserves the space 4, so that the two Hankel operators
in question are defined on the same space (with two different but equivalent
norms), but the spaces I*(u) and I*(v) may differ so that the situation for the
ranges is more complicated.

Secondly, with an application to the results of Peng, Rochberg and Wu (1991)
in view, see Example 4, we will allow 4 to contain non-analytic functions, and also
allow for the possibility to study the Hankel operators restricted to a subspace of
A. Hence we make the following assumptions for the remainder of this paper.

Qs a set (equipped with a o-field that we will ignore to mention further), u is
a o-finite positive measure on €2, A4 is a closed subspace of L*(£2, p), A, is a closed
subspace of 4, and P = P, is the orthogonal projection onto A. We define the
Hankel operator H; = H} as above, i.e.

(1.2) Hi(g) = (I — P)fg), ge2(H})={geA: fge (W)}

and may regard H% as an operator A, — I*(u) whenever 2(HY)is dense in 4, and
HY is bounded there.

In our first result, v is another measure on Q such that I*(u) = [*(v) (with
equivalent norms). Hence A is also a closed subspace of [*(v), and we may define
the Hankel operator Hj as in (1.2).

We use || |lsp(,,) to denote the norm in S,,(Lz(,u)) when 0 < p < o0, and the
operator norm in B(L*(u)) when p = oo.

THEOREM 1. Suppose that Q, u, A, Ay are as above and that v is a measure on
Q such that v = @u for a positive function ¢ such that both ¢ and ¢~ * are bounded.
Let f be a measurable function on Q. Then H¥ is bounded (compact, S,) on A, if and
only if Hy is, and for 0 < p < o0,

(13) C [ HE s, 0 < 1H} 5,00 < CHHE s,
where C = (Il .=ll9 ™" ,=)/2

For the second result we assume, in addition to the assumptions above, that
Qis a topological space and that the elements of A4 are given as functions defined
everywhere on Q (and not just u-a.e.). A function is locally bounded if it is
bounded on every compact set.

THEOREM 2. Suppose that Q, u, A, Ay are as above and that v is another measure
on Q such that
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(i) u and v are finite on compact subsets of Q.
(ii) there exists a compact set Ko = Q such that v = ou on Q\K, where ¢ and
¢~ ! are bounded on Q\K;
(ii) for every compact K < Q, there exists acompact K ; = , a positive function
Y in *(K, u + v) and a constant C < oo such that

1/2

(1.4) sup [g(x)|/¥(x) < C< J lg(x)I? du) , geA
xeK K{\K

Then A is a closed subspace of I*(v), and if f is a locally bounded, measurable

function on Q, then H} is bounded (compact, S,) on A, if and only if H} is.

REMARK 1. There is no norm estimate similar to (1.3) for Theorem 2. In fact,
taking f with compact support, f may be 0 v-a.e.,and thus H} = 0, while H %+ # 0.
The proof below leads to an estimate

(1.5) IH? s, < CillHflls v + Casuplf]
K
(and the same with u and v interchanged) for some constants C; and C,

(depending on p) and a fixed compact K, = Q.

REMARK 2. The proofs can also be used to obtain estimates for the singular
numbers individually. For Theorem 1 we obtain

(1.6) sa(Hf) < Cs,(Hj)

and for Theorem 2 for example
(1.7 s2n(Hf) < Cysu(Hy) + sup|fla,, n 20,
K

for a fixed sequence (a,)§ € N ,>of”. (The sequence (a,) is obtained as a constant
times the singular numbers for the restriction operator g — xx,g acting on 4. In
typical cases these decrease exponentially.)

REMARK 3. Theorem 2 has really nothing to do with topology and compact
sets; we may let Q be any set such that some subsets of Q are defined to be
‘bounded’, assuming only that the union of two bounded sets is bounded, and
replace ‘compact’ with ‘bounded’.

REMARK 4. We assumed that the functions in 4 are defined everywhere so that
they are well-defined as elements of L2(v). It actually suffices that they are defined
(1 + v)-a.e. and that (1.4) holds with the left hand side replaced by [|g/¥/ || .= &,u+v)-

REMARK 5. When A is the set of analytic functions in I*(2,u) and f is
conjugate analytic, it is shown by Arazy, Fisher, Janson and Peetre (1990) (under
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much more general conditions on y and v than here) that the Hilbert-Schmidt
norms ||H} || s, and || Hy | 5, actually are equal. One step of that proof (Lemma
5.2) uses the same methods as this paper.

ACKNOWLEDGEMENT. This research was done at the Mittag-Leffler institute.
I thank Richard Rochberg for inspiring questions and comments.

2. Proofs.
PROOF OF THEOREM 1: Since I2(p) = I2(v),
DHY) = {ge A: fge (w)} = 2(Hy);

in particular, if one of the operators is densely defined, so is the other. Further-
more, P, and P, are two projections on the same subspace A of [*(u) = L*(v).
Hence P,P, = P,, and if ge 2(HY),

2.1 (I — P)Hf(g) = (I — PXI — P,)Xfg) = (I — P,)(fg) = H}(9).

Thus H} = (I — P,)H}, which shows that H} is bounded, compact or in S, when
Hf is, and that then

(2.2) ”H; ||s,,(v) = "H;”s,(v) =< ”I"B(Lz(u),Lz(v))”Hj’"‘ ||s,,(n) IlI”B(Lz(v).Lz(n))
= C”H}‘ "s,,(u)-

The proof of Theorem 2 is a little bit more involved and we start with a couple
of lemmas. We assume that Q, u, A are as in Theorem 2; in particular u is finite on
compact sets and (1.4) holds, with some K ;, y € [*(K, p) and C, for every compact
KcQ

If E is a subset of Q, we define A(E, u) to be the closed subspace of [*(E, y)
spanned by the restrictions of functions in A. Thus A(Q,u) = A4, and if
EcE,cQ, the restricion map extends to a contradiction
R:A(E,,Q) - A(E, Q).

Lemma 1. IfK and K, are compact subsets of Q satisfying (1.4) for some C < o0
and K = K, then R: A(Ky, 1u) - A(K, p) is Hilbert-Schmidt.

Proor. By assumption, R can be regarded as a map of A(K,, u) into the
Banach space of measurable functions on K bounded by a constant times . If
fi»--., [, is an orthonormal set in A(K,,u), then for any xe K and complex
Atsenns iy

n n n 1/2
2.3 I; ARf(x)Y(x) = C|| ;lifi g,y = C (le IMZ)

and thus
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n 1/2
(2:4) (Xll IRﬁ(x)lz) = CY(x).
Hence
(2.5) ; IRf N Gk = I Ki IRfi(x)|? du(x) < C? L W1? du.

Since the right hand side of (2.5) is independent of the orthonormal set (f;), this
shows that R is Hilbert-Schmidt.

LeMMA 2. If K is a compact subset of Q, then the restriction mapping
A - A(K, p) belongs to S, for every p > 0.

ProoF. By repeated applications of and Lemmal, there exists a sequence
K =K, < K; c K; < ... such that each restriction mapping R,: A(K,,u) -
A(K,_,,u) belongs to S,. By the Schatten-Holder inequality, the mapping
R =R,R,...R,: A(K,, n) = A(K,, 1) belongs to S,,,. Hence R: 4 — A(K, p) be-
longs to S, for every n = 1.

PROOF OF THEOREM 2. By the assumptions, for some compacts K, and K ; and
some ,C,C; < o0, and every ge A,

(2.6) lgllZze) = f lg* dv +J lg|* dv
Ko 2\K,

< J CZJ lgy)|> du(yW(x)* dv(x) + C, j lg|* dp
Ko K1\Ko

N\K,o
2 (C* Wiz + C1) gl i

A similar argument gives an inequality in the opposite direction. Thus || ||z,
and | |2, are equivalent norms on 4, and A is a closed subspace of I*(v) too.

We also observe that if K = Q is compact, an application of (iii) to K U K,
yields a compact K, a function y € [*(K U K, + v) and a C < oo such that

1/2
(2.7 suplg(x)/(x) < sup |gx)l/p(x) = C (L ok )lg(x)lzdu)

xeK xeKuKo
1/2
éC'(I lg(x)lde> , geA.
K \K

Hence assumption (iii) holds for v too, so the assumptions are really symmetric in
iand v,

Define the operators R, and R, by Roh = xx,hand Ry = (I — Ro)h = gk h,
for any function h on €, and note that Ryhe [*(u) <> Ryhe [*(v).

Hence, if g € 9(HY), then fge L*(1) and Ry(fg) € L*(v). Moreover, ge A < L*(v)
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and R,f is by assumption bounded, whence also Ry(fg) = (Rof)g € IZ(v), and
thus fge [*(v). Thus ge 2(Hy), and it follows by symmetry that 2(H}) = 2(H}).
Assume now that H} € S (4o, [*(v)) for some p > 0. (The cases of boundedness
and compactness are proved by the same argument.)
Since Ry is a bounded operator from L2(v) into I2(u),

(2.8) RGH} = Ry(I — P )M €S, (Ao, L2(1)).

Let K; o K, be a compact set such that (1.4) holds with K = K, and let R,
denote the restriction to K, : Ryh = y, h. Then, by (2.8),

(2.9 Ry Ry(I — P)My€S,(Ao, ().
By Lemma 2, R, € S,(A4o, *(1), and because R; Mg = (R, f)(R,g)and R, f € L™,
(210) RleESP(Ao,Lz(ﬂ))‘

Combining (2.9) and (2.10) we find

(211)  RRoP,M, = RoR;M; — R, Ry(I — P)M;€ S, (Ao, (1))

Since (1.4) implies that |[RoP,Mg| 124y < C'|R{RGP,M gl L2 for every g in
(2H}), thereis a bounded operator T on L*(u) such that R,P,M; = TR, R, P,M,.
Hence (2.11) implies

(2.12) RoP,M €S (Ao, *(w).

Combining (2.8), (2.10) and (2.12) we get, using Ry = RyR,,

(2.13) (I — P)M; = Ro(I — P)M; + RoRyM; — RoP,M €S (Ao, [*(n))

and finally, as in the proof of Theorem 1,

(2.14) #=(I — P)M; = (I — PXI — P)MeS, (Ao, C’(u)).

The converse follows by symmetry.

3. Examples.

ExampPLE 1. Let Q be the unit circle, u the Lebesgue measure, 4 = 4, the Hardy
space H? and v = @u with 0 < infp < supg < co. Theorem 1 shows that the
Hankel operator Hy has the same properties as the classical Hankel operator Hf.

ExAMPLE 2. Let Q be an open setin C" and 4 = ¢ m, v = @, m, where m is the
Lebesgue measure on 2 and ¢,, ¢, are continuous non-negative functions on
Q such that ¢; {0} and ¢; *{0} are compact (possibly empty) subsets of 2 and
@1(x) » 1as x — 6. Let A = A, be the set of all analytic functions in I*(, p). It
follows easily from the maximum principle and the mean value property that A4 is
a closed subspace of I?(u) and that condition (i) in Theorem 2 holds with y = 1.
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The other conditions hold too and thus Hf is bounded (compact, S,) if and only if
Hy is, for every locally bounded f.

EXAMPLE 3. Let Q be a bounded domain in C" and ¢:Q — Q' a conformal
mapping of Q onto another bounded domain such that ®eC!(Q) and
& 1eCl(Q)

Let A and A’ be the sets of analytic functions in I*(Q,m) and I*(Q',m),
respectively, where m is the Lebesgue measure. If f is a measurable function on
', then H,: A" - [*(Q,m) is unitarily equivalent to Hj,o: A — [2(Q,v), where
dv/dm = Jg, the Jacobian of @. Theorem 1 thus yields that H, is bounded
(compact, S,)in I*(2', m) if and only if H,,q is bounded (compact, S,) in L*(, m).

ExAMPLE 4. Peng, Rochberg and Wu (1991), Section 6, consider the space

k
A= {% (loglzly f{z)e L(Q, n): fie (9)},
where  is the unit disc and u = (—1log|z|)*m, and also the corresponding space
for the measure v = (1 — |z|?)*m, where k = Ois a fixed integer and o > — 1. They
define their Hankel operators on A4, the analytic functions in A.

Condition (ii) in Theorem 2 holds with, for example, Ko = {z:|z| £ 1/2}. In
order to show that (iii) holds, let K be a compact set in €2, let ry = supk|z|, choose
r. and r, with ro<r,<r,<1 and define K;={z:ri <|z| Sr,}. If
f=>"%(loglzlyfi(z) e A, then, for some ¢,¢’ > 0,

ra (*2n
[ wpaze][
K, ry JO

- zncrz

reon

2
dodr

Z (log rY fy(myr" &

Z (logr)! fi(myr"|* dr

J

k

Y (logr)ifin)

i=0

r2

2
dr

;ch%"J
n

r

k

¢3S 1fmR
n=0 j

j=0

v

where the last inequality follows because (log r),j = 0, ..., k, are linearly indepen-
dent in I*((r,,r,)). In particular, |f(n)| < Cr{"([k,|f1*dw)"'?, and (1.4) follows
with y(r) = (1 + |logr|)*. (We redefine all functions in A4 to be 0 at the origin, or
use Remark 4.) These estimates also imply that A is a closed subspace of (),
and that A, is closed in 4.

Theorem 2 now implies that the results of Peng, Rochberg and Wu for the
measures (—log |z[)*m and (1 — |z|*)*m are equivalent.
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4. Small Hankel operators.

We will here show that the results above fail for the small Hankel operator
defined by

4.1) H,(9) = P(fy),

where P is the orthogonal projection of I(u) onto A. We take A4 to be the set of
analytic functions in [*(Q, u).

EXAMPLE 5. Let Q be the unit disc and p the normalized Lebesgue measure on
Q; we will find a measure v on Q such that dv = @du with 1 £ ¢ £2, and
a function f such that ﬁ}‘ and H} are densely defined, H* = 0 (and thus }7‘,‘ is
bounded, compact and in every S,) but ﬁ} is unbounded.

We construct these as follows. Letr, = 1 — 275 k = 1,2,..., let D, be the disc
wth centre r, and radius 27*~? and define dv = (1 + Y, xp,)du. Furthermore,
let f(z) = z(1 — z)~* for som a with 0 < « < 1. Then f € I?(u) = I*(v) and conse-
quently 1-7}‘ and ﬁ} are both defined on the dense subset of bounded functions in
A.1f g belongs to P(H%),i.e. ge A and fge [*(u), and he 4, then fghis an analytic
function in L'(x) and thus

“.2) CHig.hy, = {fo.h>, = ffgﬁ dp = fgh(0) = 0.

Consequently H%g = 0for every g e 2(H"). Similarly,ifg € A, fge [*(v)and he 4,
then

(H}g,hy, = Jfgﬁ dv = Lfgh' du+ ) | fohdu

k=1dJ Dy

4.3 ©
=0+ kZ1 #(Dy) fahiry).

In particular, choosing g;=h;= (1 — )1 — r;2) 2, l1g;ll L2y = 1hjll L2y =

V215l L2 = /2, but
“.4) Higphyy= 3 27 *r(1 —r) ™21 = r})*(1 —ryr)~*
k=1

22754l —r) (1 =172
é 2—21'—7(1 _ rj)—a~2

= 2aj—7

Hence H} is unbounded.
The reader may well object that this example is cheating, because we employ an
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analytic symbol, whereas it is well-known that for small Hankel operators, the
case of main interest is when the symbol is conjugate analytic. We accordingly
also give an example with such a symbol.

ExXAMPLE 6. Let Qand u be as in the previous example and let f be a conjugate
analytic function in the disc such that f is unbounded but belongs to the Bloch
space. Then H # is bounded, see for example Janson, Peetre and Rochberg (1987)
or Zhu (1990). (We may further choose f such that f belongs to the Besov space
B, for any p > 1, for example f(z) = log(1 — log(1 — 2)), and then H* is compact
and belongs to S,,p > 1.)

Let, for g € L*(), T, be the bilinear form T,(g,h) = [ fghe dp, defined for
bounded functions g and h in A.

Assume that T, extends to a bounded bilinear form on 4 for every ¢ with
0 < ¢ = 1. By linearity, T, then is a bounded bilinear form for every ¢ € L*, and
the mapping ¢ — T, is a linear operator mapping L* into the space of bounded
bilinear forms on A. By the closed graph theorem, || T, || < C|¢||.~ for some
C < oo, l.e.

(4.5) Ufghwdul =T, h)] = Clioli> gl allhll e

forall pe L, ge H*, he H®. Choosing @ = sign(fgh), we find, for gand he H®,

(4.6) Jlfl lgl 1hldp < Cliglla 1]l 4-

In particular, g = h = (1 — |zo|*)(1 — Zoz) 2 gives
(4.7) J If@I(1 = |zol?)?|1 — Zoz| "*du(z) £ Clgl% = C, lzol < 1.
Q2

On the other hand, if D is the disc {z:|z — zo| < (1 — |zol)},

(4.8) f If@IA = |201?) 11 — Zoz| ~* dpu(2) Z (1 — |z0]) ™ L 1/ (@)l du(z)
D

2 S 1fzoll
Since z, is arbitrary and f was assumed to be unbounded, this is a contradiction.
(Alternatively, we may argue that (4.6) implies that f belongs to the Banach
algebra of pointwise multipliers on A. Since point evaluations are multiplicative
linear functionals, they have norm 1 and this implies f e H*.)

Consequently, there exists ¢, with 0 < ¢ =< 1, such that T, is unbounded. We

let dv = (1 + ¢)du and obtain
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4.9) <Hyg, by, = J Joghdv = J fghdp + Jfg’w dp

= (Hg, ), + T,(9,h),

whence ﬁ}' is unbounded.
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