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BICROSSPRODUCT KAC ALGEBRAS,
BICROSSPRODUCT GROUPS AND VON NEUMANN
ALGEBRAS OF TAKESAKTI'S TYPE

TAKEHIKO YAMANOUCHI

§0. Introduction

A series of Majid’s works [M1, 2, 3] proved that a notion of a matched pair of
groups was important in the theory of Hopf algebras as well as in the theory of
Kacalgebras. In these papers, Majid exhibited a lot of examples of matched pairs
of groups, relating them to the classical Yang-Baxter equations. He then showed
that every matched pair yields two Hopf algebras in the purely algebraic case and
two Hopf-von Neumann algebras in the operator algebraic setting. In each case,
his construction, referred to as bicrossproduct construction, produces non-com-
mutative and non-cocommutative algebras. It should be noted also that, in the
von Neumann algebraic situation, the additional condition that a matched pair is
modular in the sense of Majid guarantees that the bicrossproduct algebras are in
fact Kac algebras. All of these suggest that it would be worth while to carry out
a further detailed investigation of matched pairs and their associated bicross-
product algebras.

When a matched pair (G4, G,, «, f§) is given, one may construct another group
G,><4G, out of it, called the bicrossproduct group. Itis obtained by “taking the
semidirect product simultaneously” of the groups G, and G,. (See §1 for the
details). Majid illuminated in [M1] a connection among the given groups G, G,
and the bicrossproduct group in the Hopf algebraic level, by introducing
a double crossproduct of a matched pair of Hopf algebras. However, no connec-
tion has been given so far among the bicrossproduct Kac algebras and the
bicrossproduct group. The purpose of this paper is to describe one connection
among them in the operator algebraic level. It is phrased in terms of von
Neumann algebras considered by Takesaki in his work [T1].

The organization of the paper is as follows. In § 1, we first recall the notion of
a matched pair and Majid’s construction of the bicrossproduct Kac algebras
associated with it. We then review a certain kind of von Neumann algebras
considered by Takesaki in [T1]. We call such algebras von Neumann algebras of
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Takesaki’s type. Section 2 is devoted to establishing a connection among the
bicrossproduct group. It is shown that every bicrossproduct Kac algebra is a von
Neumann algebra of Takesaki’s type. It is of great interest to determine what
kind of conditions would in general ensure that a von Neumann algebra of
Takesaki’s type is a Kac algebra.

This work was partly done while the author stayed at the following institutes:
Centre de Recherches Mathématiques, Université de Montréal; Department of
Mathematics, University of Toronto. The author would like to thank the staffs at
these institutes for their hospitality extended to him. He also expresses his sincere
gratitude to Professors David Handelman and George Elliott, who gave him an
opportunity to visit those institutes and supported him during the period.

§ 1. Preliminaries.

In this section, we first recall the notion of a matched pair of locally compact
groups and their actions, due to Takeuchi [Ta]. We shall also mention Majid’s
construction -of the bicrossproduct involutive Hofp-von Neumann (or Kac)
algebra associated with a given (modular) matched pair. Secondly, we review
some type of von Neumann algebras considered by Takesaki in [T1].

To explain the concept of a matched pair, let us begin by considering two
locally compact groups G, and G, with their left Haar measures u; and p,,
respectively. We assume that G, acts on, and is at the same time acted on by, the
set G, continuously and nonsingularly. By nonsingularity of a group action, we
mean that the measure class in question of the measure space is preserved by the
action. We denote by a (resp. f) the action of G (resp. G,). We shall keep using
the letters «, B for the induced actions of G, and G, on algebras L*(G,) and
L*(G,), respectively. Namely, we have

o, (k)s) = k(og-1(5),  Bs(f)g) = f(Bs-1(9))

where ke [°(G,),(f € [°(G,)),g € G, and s € G,. By assumption, it makes sense to
consider the Radon-Nikodym derivatives
d o d o Pg
rg.9) =220 ) wisg = HPig) ey se6y)
du, dp,

The functions y and ¥ are cocycles on Gy x G,, and are assumed to be jointly
continuous. We further assume that the actions « and f satisfy the following
compatibility conditions:

(L1) { 7,(e) = e Bile)=e
' 0,(51) = 0,090 Bolgh) = Bar@Bslh),
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where g,he G, and s,t€ G,. In this case, we say that the system (G,, G,, a, B) is
a matched pair. We refer readers to Lemma 2.2 of [M3] for the properties that
x and ¥ enjoy in case of (G,,G,,a, f) being a matched pair. A matched pair
(G4, Gy, a, p) is said to be modular [M3] if

X(g’ S) = l[/(s, g) - 52(‘19(3)) — 61(53(9))
Ag.e)  Pise) 7 09 91(9)

for all ge G, and se G,, where §; (i = 1, 2) indicates the modular functions of G;.
In [M3], Majid gave abundunt examples of (modular) matched pairs of Lie
groups and their actions. He also showed that, if (G, G,, «, §) is a matched pair,
the crossed products L*(G,) x ,G, and [*(G,) x 4G, can be equipped with
a structure of an involutive Hopf-von Neumann algebra (see [E&S] for the
definition of an involutive Hopf-von Neumann algebra). He called the crossed
products the bicrossproduct Hopf-von Neumann algebras. In particular, with
the additional condition that the matched pair is modular, the crossed products
become Kac algebras (see [E&S]), dual to each other. He then called the algebras
the bicrossproduct Kac algebras. We remark that these involutive Hopf-von
Neumann algebras are not commutative or cocommutative except in the trivial
case.

Next we briefly review a certain type of von Neumann algebras considered by
Takesaki in [T1]. These algebras were investigated to study commutation
relation for the regular representation of a locally compact group. Now let G be
a locally compact group. Denote by A (resp. p) the left (resp. right) regular
representation of G. Suppose that H is a closed subgroup of G. Then we consider
the following von Neumann subalgebras of L°(G):

L*(G)n AMH), L*(G)n p(H).

These are the fixed point subalgebras of [*(G) with respect to the automorphism
groups {AdA(h):he H} and {Adp(h):he H}. We denote them by L°(H\G) and
I[*(G/H), respectively, since théy can be naturally identified with the set of all
essentially bounded functions on the coset spaces H\G and H/G, respectively,
with appropriate measures. Following [T1], we set

M(H\G, p(H)) = L*(H\G) v p(H)",
M(G/H, (H)) = L*(G/H) v A(H)".

By Theorem 3 of [T1], they are commutant to each other. We say that a von
Neumann algebra 2 is of Takesaki’s type if 2 is *-isomorphic to one of the
algebras introduced above.
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§2. Main results.

This section is devoted to proving the main theorem in the paper which states
that the bicrossproduct Kac algebras associated with a matched pair can be
realized as von Neumann algebras of Takesaki’s type. To attain this goal, we
need to find a group that serves as G in the preceding section. Such a group can be
obtained as a bicrossproduct group [M1,2,3].

Let (G4, G,,a, f) be a modular matched pair. It will be fixed throughout this
section. We shall retain notations introduced in the previous section. We now
turn the set G; x G, into a group by defining group operations as follows:

(45): (B, 1) = (Bi-1(g)h,50,(t™1)™1), (9,9, (h, )Gy X Gy),
(995)_1 = (Bs(g_l)sag"'(s)_l)-

It is easily verified, using the compatibility condition (1.1), that the above
operations indeed make G, x G, a group. Moreover, under the product topol-
ogy, the product and inverse operations are clearly continuous. Thus G; x G,
becomes a locally compact group. We denote it by G,5<,G,, or simply by
G, ><1G, if there is no danger of confusion. It is called the bicrossproduct group
associated with the matched pair (G,, G,, , §). We put

G, ={(9,0)€G,<G,:geG,}, G, ={(e,5)€G,<xG,:5€G,}.
Since
(g.€) (he) =(gh,e), (g.€) " =(g9 ' e),
(e’ S)'(e’ t) = (es St)a (e’s)_l = (e,s_ l)a

it follows that G, and G, are closed subgroups of G, ><1G,. Moreover, G, (resp.
G,) is topologically isomorphic to G, (resp. G,).

REMARK 2.1. In this paper, we adopted Definition 2.1 of [M3] for a matched
pair of groups and their actions. However, Majid employed another (but “equiv-
alent”) formulation for a matched pair in [M1, 2] (see also [Ta]), where actions
& and B of G, and G,, respectively, satisfy the following conditions:

&g(e) =e Bs(e) =e, (g9 he Ghs’ te GZ)’
&g(St) = &g(s)&ﬁs_l(g‘l)“(t)a /?s(gh) = gs(g)ﬁa?g_l(s"‘)“(h)~

For such a “matched pair”, Majid constructed the bicrossproduct group (see
Theorem 2.3 of [M1]). For & and f as above, we can obtain a matched pair in our
sense by defining « and f§ to be

a,5) = G, Blg)=Bg™) " (9eG1,5€Gy).
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Thus, through this correspondence, we may identify the above mentioned defini-
tion of a matched pair with ours. Under the identification (a, f) < (&, B), the
bicrossproduct group constructed in Theorem 2.3 of [M1] corresponds to our
group defined above.

We denote by X (G,><1G,) the set of all continuous functions on G,<1G,
with compact support. Since we equipped G, ><1G, with the product topology, the
measure y = y; X U, isa Borel measure on G, ><1G,. Our first aim is to locate a left
Haar measure on the bicrossproduct group.

LEMMA 2.2. The Borel measure x(-,")” 'd(u, x u,) is a left Haar measure on
G ><1G,. Moreover, the function

5(9’ S) = (51(g)52(S)X(g, e) ! lI/(s, e)_ ! ((g9 S) € Gl B> GZ)
is the modular function with respect to the above left Haar measure.

Proor. First we note that, by modularity of the matched pair, the cocycles y and
Y satisfy

x9,5) = xg.e), ¥(s,9) = ¥(s,e)

forall g e G, and se G,. Thus cocycle identity implies that they are group homomor-
phisms in the first argument.
Let F be in A#(G,><G,). Then, thanks to Fubini’s theorem, we have

(2.3) J F((g,sXh, )x(h,e) " 'd(uy x pyXh,1)

rp

= | | FBi-1(@)h, soy(t ™) "th, @) dps (W) (0)

= | | F(h,say(t ™)™ x(Bi-1(g) " h €)™ *dpy (R)dp,(2)

= | | Flh,s0,()")x(Bilg) ™ h €)™ 02(8) " dpo(dps ().

J J

From homomorphism property of y and the second identity of Lemma 2.2 in [M3],
it follows that

1BL9) ™ he)! = xBg). e e)”"
= 0,(1)0(0,, (1)~ ' 103, e)x(h, €) .

Thus we may continue calculation (2.3) as follows:
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rr

(2.3) = | | Flh,saty(t) ™ ")32(05(8) ™" (1, €)™~ dptz o ot Xt)pt1 (h)

J J

rr

= | | Flhst™1)3,(0)" ' x(h,e) ™ duy(t)dpy (h)

rr

= | | F(h,st)x(h, ) *du,(t)dp, (h)

rr

= | | Fth,tyx(h, &)™  dp()dpss ()

J J

This computation shows that the measure x(-,-)~*d(u; x u,) defines a left invariant
functional on ¥ (G, ><1G,). Therefore it is a left Haar measure on G, ><1G,. To find
the modular function, we compute the following with F as above.

24) J JF (B:-1(@)h, syt ™)™ )xlg, €)™ s (9)dpus(s)

r

= | | F(B:-1(9)h, )x(g,€) " 6(0,(t ™ )2 (s)dp1(9)

rpr

= | | F(gh,s)x(B.9), €)™ '2(atp,)(t ~ "Nt ° BeXg)dpia(s)

rr

= | | Flgh,s)x(Bg). €)' 0:(0p,0(t ~ )Pt )ty (g)diz(s)

= JF (9> (Blgh™", €)1 0x(ergn-1(0) Pt €00 1() ™ A1 (9)dpea ().

o

The last equality is due to the identity: e = oy~ 1(t ') = g gn-1(t ™ )agn-1(t). By the
second identity of Lemma 2.2 in [M3] again, we have

8:(0)xlgh ™", €) = 8(etgn- (x(Bgh™ ') e).

Hence (2.4) continues as follows:

24 = JJF (9, S)x(gh™ 1, €)1 85(0) ™ W(t, )51 (h) ™ ' dpuy (g)dpsa(s)

= 8,(h)™105(t)” ' x(h,€)¥(t, ) J JF (9, 5)x(g. €)™ ' dp1(9)dpa(s).

It is now easy to see that the modular function has the desired form.

We put # = I3(G,) ® I2(G,). Bicrossproduct Kac algebras .# and M, where
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M = [*(G,) x .G, and A = [°(G,) x #G2, are both acting on 5 in a standard
form. We shall retain these notations in what follows.

THEOREM 2.5. The Kac algebras # and M M’ are both von Neumann algebras of
Takesaki’s type. In fact, we have

M = M(G,=<G,/G,, XG,)),
M = M(G,\ G, <G, p(G,)),

where A (resp. p) is the left (resp. right) regular representation of G,><1G,. These
isomorphisms are spatial isomorphisms.

Proor. By Theorem 3 of [T1], it suffices to show the second isomorphism. First
we note that the commutant .#’ is engendered by I*(G,)®C and
{(t) ® p,(t):te G,}", where p, is the right regular representation of G, and (") is the
canonical implementation of the action f given by {U)f}(g) =
Yt 1, 9)*f(B,-1(9) (f € IZ(G,)). Let us denote by I*(G, ><1G,) the Hilbert space of
square-integrable functions on G,><1G, with respect to the left Haar measure
obtained in Lemma 2.2. Then it is easy to see that the equation

{K&}(g,s) = Ug,2,-1(s) (EeH)

defines a unitary operator from # onto I2(G,0<1G,). For any nel?(G,0<G,), we
have

{K(f ® DK*n}(g,s) = flgin(g; s).

We write f (f € [°(G,)) for the function on G, ><1G, given by f(g,s) = f(g). Then the
above calculations means that K([*(G,) ® C)K* = {f: f € [*(G,)}. Meanwhile, for
n as above, we have

2.6 {Kt) ® p2()K*n}(g,s)
= {((®) ® p2()K*n}(g, %-1(5))
= 0,02 ¥(t™ ", ) {K*n}(B,- 1(g) 0~ 1(5))
= 8,(0)"¥(t, )~ *n(Bs-1(9), %p, - 19 (eg- (5)0).
The matched-pair relations (1.1) yield
%, - 1%~ 1(S)8) = g5, - g%~ 1(S)tp, - 1)(D)
= 5%g,1)t)
= sa (™)1

The last step is guaranteed by the identity: e = o, (1t ") = oy _,(,)(t)t,(t ). Hence we
can further compute (2.6) in the following way.
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(2.6) = 3,(t)"*¥(t,€) (- 1(9), syt ")™Y
= 5(8, t)l/Z ?’((g, S)(e’ t))
= {ple,}(g,5).

Here 4 is the modular function of G, ><1G, that appeared in Lemma 2.2. Consequent-
ly, we get

K{ft) ® pa0):1€G,)'K* = p(G.

Therefore it is enough to show that the set {f": f € [*(G,)} exactly coincides with the
algebra [°(G, \ G,1><G,). For this, we introduce a unitary U on 5 given by

{USHg.9) = xg™".9)'"*Lg, 25-1(5) (e ).

Then we have that {UK*n}(g, s) = x(g,e)~*/*n(g, s)for any n € I*(G, ><1G,). From this,
iteasily follows that UK* (e, )KU* = 1 ® A,(t), where A,, of course, stands for the left
regular representation of G,. Obviously, Ad UK* maps the algebra [*(G, ><1G,) onto
L°(G,) ® [*(G,).From ergodicity of the action Ad A, of G, on I(G,), it results that

UK*I*(G,\ G, ><1G)KU* = [°(G,)® C.
Since UX(L°(G,) ® C)U = [*(G,) ® C, we see that
I[°(G,\ G, ><1G,) = KUXI(G,) ® CUK*
= K(I*(G,) ® C)K*
= {[:fe2Gy)}-
This completes the proof.

In order to prove that the Kac algebras .# and .#' are also von Neumann algebras
of Takesaki’s type, we consider the set G, x G, with the product topology which is in
turn equipped with the following group structure:

9,9 (h,0) = (gBh™") ™", o-1(s)),
997" = (Bs-1(9) ", agls ™).

Let us denote by G; © G, the locally compact space G, x G, with this group
structure. Set

G, =1{9.€):9€G,}, G,={(e,9:5€G,}.

Then G, and G, are closed subgroups of G; O G, that are topologically isomorphic to
G, and G,, respectively. By a method similar to that in Lemma 2.2, one can prove that
the Borel measure ¥(-,") " 'd(u; x u,)is a left Haar measure on G; © G, with § as its
modular function again. Then, by arguing as we did in the proof of Theorem 2.5, we
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may conclude that the von Neumann algebra .4’ is spatially isomorphic to
M(G,\ G, © G, AG,)), where p is the right regular representation of G, © G,. To
sum up, we obtain

THEOREM 2.7. The Kac algebras .# and .#' are also von Neumann algebras of
Takesak?’s type. Indeed, we have

M= M(Gl G GZ/G-I’I(GI»’
M = MG\ G, O Gy, 4(Gy)).

Here 1 is the left regular representation of G, © G,. The above isomorphisms are spatial
isomorphisms.

ReMARK 2.8. In [DeC], were proved our Theorems 2.5 and 2.7, by introducing
what he called an action of a locally compact group on a Kac algebra, in the case where
o = id. (So B acts on G, by automorphisms. In this case, the bicrossproduct group is
the ordinary semidirect product). Hence our theorems contain his resulits.

Theorems 2.5 and 2.7 assert that a von Neumann algebra of Takesaki’s type can be
a Kac algebra in a certain situation. It is an interesting problem to determine under
what conditions it comes equipped with a Kac algebra structure.
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