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REAL-VALUED DUALS OF H-CONES

SIRKKA-LIISA ERIKSSON-BIQUE

Abstract.

We prove that an H-cone is always specifically solid in its second real-valued dual. Moreover if an
H-cone possesses a special unit then it is even solid and increasingly dense in its second real-valued
dual.

Introduction.

The dual of an H-cone is the set of extended real-valued additive, left order
continuous functions finite on a dense set. The concept of an H-cone was
introduced in 1970. Since then it has been unknown how well an H-cone can be
embedded into its second dual. Moreover it has been an open question if an
H-cone is solid in its second dual with respect to initial or specific order. We
prove the surprising result that an H-cone is always specifically solid in the
real-valued second dual and under some nice conditions even solid and dense
with respect to the initial order. The same results also hold for duals.

We do not assume that the reader is familiar with the theory of H-cones. The
notion of an H-cone is closely connected to the theory of vector lattices (Riesz
spaces). In fact, if a vector lattice E is Dedekind complete (conditionally com-
plete) then E* is an H-cone. Roughly speaking an H-cone is formed from
a certain type of vector space in which we consider two partial orderings called
initial and specific order. A potential-theoretic model of an H-cone is the cone of
positive superharmonic functions on a harmonic space.

1. Preliminaries.

First we recall the concept of an H-cone. Second we present an equivalent
definition used subsequently.

Let (S, +, <) be a partially ordered abelian semigroup with a neutral element
0 and having the properties
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(L.1) uz=0,
(1.2) usveut+wsv+w,

foralluand vin S. A partial order called specific order denoted by <( is defined in
S by

sSXt<t=s5s+5s forsomeseSs.

The least upper bound and the greatest lower bound of a subset E of S is denoted
by Vv E and A E, respectively.

Astructure (S, +, <) satisfying (1.1) and (1.2) is called an ordered convex cone if
it admits an operation of multiplication by positive real numbers such that

ax + y) = ax + ay, (x + P)x = ax + Px,
(2B)x = «(fx), Ix=x, x=y=ax=soay,
foralla, feR* and x, yeS.

DEFINITION 1.1. An ordered convex cone (S, +, <) is an H-cone if the follow-
ing axioms hold:

(H;) any nonempty upward directed family F < S has a least upper bound
satisfying \/(x + F) = x + \/F for all x€$§,

(H;) any nonempty family F < S has a greatest lower bound satisfying
Nx + F)=x + \Ffor all xe S,

(H3) (Dominated decomposition property) for any u, vy, v,€S with
u < v; + v, there exist uy, u, € S such that u = u; + u,, u; < vy and u, < v,.

The concept of an H-cone was introduced by Boboc and Corneain[2,3]. Itis
further developed by Boboc, Bucur and Cornea (see [4] and other references
there).

DEFINITION 1.2. Let E be an ordered vector space and S be a convex subcone of
E such that S < E* and E = S — S. The cone S is called an H-cone in E if it
possesses the following properties:

(A,) any nonempty upward directed and dominated subset F of § has a least
upper bound in E and v Fe S,

(A,) any nonempty subset F of S has a greatest lower bound in E,

(A;) for any s and ¢ in S the greatest lower bound of the set {ue S|s — t < u}
denoted by R(s — 1) satisfies R(s — t)e S and s — R(s — t) e S.

THEOREM 1.3. Definitions 1.1 and 1.2 are equialent.

ProOF. Assume that S is an H-cone in the sense of Definition 1.1. Define in
S x S an equivalence relation ~ by (u,v) ~ (s,t) <> u +t =0v + s. Settingu — v
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equal to the equivalence class generated by (u, v) the structure S — Sis an ordered
vector space with respect to the partial ordering < defined by

Uu—vSs—t<su+tss+o.

Moreover § — Sisan H-cone, since clearly (A;)and (A,) holdin S — Sand by [4,
Proposition 2.1.2.], property (A;) is valid in § — S.

Conversely, assume that S is an H-cone in an ordered vector space E in the
sense of Definition 1.2. Then obviously (H,) holds in S. Assume thatu < v, + v,
foru,vy,v,€8. Then(A,)leadstov, = R(s — v,). As R(u — v,) = u — v, we have
v, = u — R(u — v,). Hence picking u; = R(u — v,) and u, = u — R(u — v,) we
obtain (A ). Let now F be a nonempty subset of S and w be a greatest lower bound
of F in E. Then Rw belongs to S and Rw < x forall xe F. Hence Rw is a lower
bound of F, and so from Rw = w it follows that Rw = w. Thus the set F has in
S the greatest lower bound which is the same as the greatest lower bound in E.
Consequently the greatest lower bound is translation invariant completing the
proof.

Any pair of elements in an H-cone has mixed envelopes introduced by Arsove
and Leutwiler in algebraic potential theory ([1] and other references there).

THEOREM 1.4. Let S be an H-cone. Then for any elements s and t in S there exist
a mixed lower envelope

s At=max{xeS|x<s, x=t}
and a mixed upper envelope
s ~Vt=min{xes|x>xs, x=t}
satisfying the equality
S At+tJs=s+t
Proor. See [1, Theorem 2.5].

The least upper bound of two elements s and ¢ in an H-cone has a useful
formula

(1.3) svt=R(s+ t—5At)

proved in [4, Corollary 2.1.3].

Let (S, <) be an ordered convex cone. A subset T of S is called solid if for all
se T the condition t < s for some t e S implies t € T. A subset T of S is called order
dense in § if the condition

s=\/{teT|t<s}
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holdsforall sin S. A subset T of S is increasingly dense, if T is order dense in S and
directed upwards.

Let T be a subspace of a vector lattice (E, <). Then T'is called solid in Eif T+
and T~ are solid in E*. In addition T is order dense in E if T* is order dense in
E*.

Recall also that an ordered set is Dedekind complete (in other words condi-
tionally complete) if any bounded set has a least upper bound. It is relatively easy
to see that an H-cone is Dedekind complete with respect to the partial order <.
Moreover the following result holds with respect to the specific order [4, The-
orem 2.1.5.7].

THEOREM 1.5. Let S be an H-cone in a vector lattice E =S — S. Then E is
Dedekind complete with respect to the specific order.

Obviously the positive cone of Dedekind complete vector lattice is an H-cone
in which the initial order and the specific order coincide.

DErFINITION 1.6. Let (S, <) be an ordered convex cone. A function ¢ from
Sinto R* U {00} is called left order continuous, if (v F) = sup.r ¢(f) for any
non-empty upward directed set F = S possessing a least upper bound.

The set of left order continuous additive maps finite on a dense subset of S is
called a dual of S. The set of left order continuous and additive real-valued
functions on S is called sa real-valued dual of S and denoted by S *. If E is a vector
lattice then we set E* = (E*)* — (E*)*. A partial ordering in E* (resp. in S ) is
defined by u <  if u(s) < Y(s) for all se E* (resp. s€S).

The evaluation map x+— X is defined by

X(w) = p(x)
for xeS and ueS™(or ueE™).

In this work we consider only real-valued duals of H-cones. Duals of H-cones
are considered in a subsequent paper.

Note that a left order continuous mapping ¢ is increasing; that is, the condition
s < timplies ¢(s) £ ¢(t). A left order continuous additive map ¢ is also positively
homogeneous: ¢(ax) = ap(x) for all xe R*. Moreover, a real additive map
¢ from a positive cone E* of an ordered vector space E to R is left order
continuous if and only if

inf o(f) =0
SJeF
for any non-empty downward directed subset F of E with A F = 0.
Order continuous maps play an important role in the theory of vector lattices.
Fremlin has proved the following useful result in [6, p. 85-86]. We point out that
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our notation E ™ is the same as Fremlin’s notation in [6] if E is a vector lattice.
The notation E™ in [6] is the same as L*(E, R).

THEOREM 1.7. Let E be a vector lattice. If E is Dedekind complete, the image of
the evaluation map is order dense and solid in E* *.

Applying Theorem 1.5 we obtain the next corollary.

COROLLARY 1.8. Let S be an H-cone in an ordered vector space E. Then the
assertions of the preceding theorem hold for E with respect to the specific order.

We need the following version of the Hahn-Banach theorem proved by
Fuchsteiner and Lusky in [7, Theorem 1.3.2].

THEOREM 1.9. Let S be an ordered convex cone and G be a subcone of S. Assume
that u: G - R is increasing positively homogeneous additive and p: S — R is
increasing positively homogeneous subadditive with p = u on G. Then u can be
extended to an increasing positively homogeneous additive mapping fi on S if and
only if

(1.4) uyg1) = ug2) + p(s)

for all g4, g, in G and se S satisfying g, < g, + s.

2. Embedding theorems.

We are mainly interested to solve the question how well an H-cone S can be
embedded in its second real-valued dual S *. We shall prove that an H-cone Sis
always specifically solid in S * . Moreover under some relatively weak assump-
tions an H-cone is even solid in $* *. The crucial idea is to utilize the fact that an
H-cone is a subcone of a Dedekind complete vector lattice with respect to the
specific order.

We need some results of the dual theory of H-cones studied by Boboc, Bucur
and Cornea (see [4] and other references there) stated next.

LEMMA 2.1. Let S be an H-cone. Then S* is an H-cone. Moreover for all f and
gin S we have

2.1) R(f — g)(x) = sup{f(y) — gy < x}.

In addition the evaluation map x+ % from S to S* ™ possesses the properties
(@) §+1=5%1and s =,
() R — i) = R — 1),
© §Ai=5AT
dsvi=5VvE
forallsand tin S and aeR™.
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ProoF. The equation (2.1) follows from [4, Proposition 2.2.5], since R* is an
H-cone. The property (a) is obvious. The property (b) is proved in [ 3, Proposition
3] and (d) is obtained from (b) by (1.3). From [4, Theorem 2.3.7] it follows (c).
Lastly $* is an H-cone by [4, Theorem 2.2.6].

The greatest lower bound of two additive left order continuous mappings is
given by the following proposition proved in [5, Theorem 1.4].

PROPOSITION 2.2. Let S be an H-cone and u,, u, be additive left order continuous
mappings from S into R*. Then the greatest lower bound of u, and u, in the set of
additive left order continuous mappings is given by the formula

By A pa(s) = inf{ui(s;) + pa(sz)| sy + 5 = 5,54,5, €S}

for all se S. Moreover, there exist elements s, and s, in S suchthat s = s, + s, and
B1 A fo(si) = pils:) fori=1,2.

We are ready to state that the image of the evaluation map from an H-cone to
S ™ is specifically solid. This result is a generalized version of Theorem 1.7.

THEOREM 2.3. Let S be an H-cone and the map x +— X be an evaluation map from
S to S* ™. Then the set {§|seS} is specifically solid in $™ ™.

Proor. Let E be a vector lattice and S an H-cone in E. By Theorem 1.5 the
vector lattice E is Dedekind complete with respect to the specific order and
(E,<)* = S. In this proof we consider only specific order in E and use the
notation E, for (E, <X). Then the notation E* stands for the set E* with respect to
the specific order. Hence (E])” = (5,<)* and E] = (5,<)" — (5,X)™.

Let ueS™ * and assume that there exists an element x in S such that u < X. We
extend p to the set ™ — §* by u(f — g) = u(f) — u(g). Note that $* — S™ is
asubspace of ES. Then we have £ = pon(S* — $*)*, since from % = pit follows
that

=W )2E—p@ = Af —g2uf -9

forall fand gin §™ with f = ¢.

In order to apply the version of the Hahn-Banach theorem stated in Theorem
1.9 we have to check the condition (1.4). Let f and g belong to (S* — §*)* and
assume that he(E*)* satisfy f <g + h in S = E}'. From Proposition 2.2 it
follows that f A ge(S* — S*)* and f —f A g < h. Hence we have

) =uf r g+ ulf —f rg) s ug) + X(f — f A g) = ulg) + X(h).

Consequently there exists an increasing, additive function p: (EX)* — R* such
that

Ho=pon(S* —8)", uo =< xon(EJ)".
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The mapping uo may be extended to E* naturally. Denote this extension also by
to- Then 0 < pp < X on E and applying Corollary 1.8 in E* * we observe that
Mo =2 on EJ for some ze E,. Therefore there exists u and v in E, such that
u=i—donS”. Thus we have

N
u=R({l —0)=R(u —v)
by Lemma 2.1 (b).

DEFINITION 2.4. Let S be an H-cone. An element ue S is called a generator if
5= \nen (nu \s)forall seS.

LEMMA 2.5. IfSisan H-cone and ue S is a generator then R(ii +  — p) + it for
all distinct mappings p and  in S™* satisfying u = .

PROOF. Letu be a generator in an H-cone S. Assume that ue S* *and yeS™
such that 4 = ¢ and u # . On the contrary assume that R(d + ¥ — u) = u.
Applying (2.1) we have

sup{g(u) + Y¥(g) — wg)lg < f, geS™} =u(f)

forall feS™. Lete > Oand f € S™. Then thereexists g, e S for all ne N such that
gn < fand

2.2) S() — gulw) + (gn) — ¥(gn) < —-
Hence

sup gx(u) = f(u).

neN

Using (2.2) we infer that
sup g(s) = f(s)

neN
for all s in S with s <X w. Since u is a generator and f is left order continuous, the
equality

sup gu(s) = f(s)

neN

holds in fact for all se S. Hence we have f = \/yen gn Since \/i=; gn X Zzz 1 gnWE
notice from (2.2) that

n

(n— l//)( \V g ) < k‘i u(gn) — Y(ga) S €

k=1
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and therefore (u — Y)(f) < e. Since ¢ was arbitrary we conclude pu — ¢ =0,
which is a contradiction.

LEMMA 2.6. Let S be an H-cone. Let D be a specifically solid subset of S. If for all
distinct elements s and t in S such that s 2 t there exists an element ue D with
R(u + t — s) % u, then D is increasingly dense in S.

PRrROOF. Let E be a vector lattice and S be an H-conein E. Assume that se S. Set
F={yeD-S|0<y<s}

Then F is non-empty. Indeed, the element R(u — s) is nonzero for some u e D and
u — R(u — s) <s. Denote by \/p the least upper bound in E. Assume that
VeF # s. Then there exists an element x % s in E such that x > y for all yeF.
Since s — s A x > 0 there exists an element u in D satisfying R(u + s A x — s) + u.
Settingy = u — R(u + s A x — s) weinfer that ye Fand y < s — s A x. Thus we
have

y+fSy+sAax<s

forall f e F. Inductively we obtain ny < sforallne N. Since S is Archimedean, we
infer y = 0, which is impossible. Hence s = \/gF. As D is specifically solid we see
that R(u — t)eDforallu —te F and by (1.3)t v ve Fforall t,ve D n F, Conse-
quently, s = \/F n D and F n D is directed upwards, completing the proof.

THEOREM 2.7. Let S be an H-cone possessing a generator. Then the set {$|se S}
is solid and increasingly dense in S™ ™.

ProOF. Letubea generator in an H-cone S. According to Lemma 2.5 we have
R(ti + ¥ — p) + 4 for all distinct mappings ¢ and ¢ in $*™ with u = ¢. In
addition Theorem 2.3 states that the set {§| s € S} is specifically solid in S *. Now
by the preceding lemma {$|s € S} is increasingly dense and therefore also solid in
S,

An element u of an H-cone S is called a weak unit, if s = \/,en (nu A s) for all
se S. Note that a Dedekind complete vector lattice E can be extended to a vector
lattice F possessing a weak unit such that E™ is solid and dense in F* (see [8, p.
142]). Then F* is an H-cone possessing a generator. Hence Theorem 2.7 is
a generalization of Theorem 1.7.

A large class of H-cones possesses a generator as stated next.

THEOREM 2.8. Let S be an H-cone possessing a weak unit. If S admits a countable
dense set then it has a generator.

PROOF. Assume that an H-cone S possesses a weak unit u and a countable
dense set D = {s,|neN}. Put D, = {s,eD|s, < u}. We prove that the element
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v= Y, %sn=v<2 —21~s)

sneDy k s,.e(l;c,.
n<

is a generator. Assume first that x € S and x < nu for some ne N. Denote by I the
set of indexes k for which s, < x and s, € D,. Then x = \/,; s, and therefore we
have x = \/yr(ns, 2\ x). Since ns;, < n2*v we obtain x = \/,oy (kv ), x). If now
x€eS is arbitrary element of S then x = \/,y (ki A x) which renders that x =

Vaker(nu A(ku A x)). Consequently the relation x = \/,cy (nu < x) holds for
all xeS.

Recall that an H-cone S is called a standard H-cone ([4]) if it possesses a weak
unit u and there exists a coutable dense set of elements f satisfying for all¢ > O the
condition:

S = vF and F directed upwards = f < g + eu for some geF.

COROLLARY 2.9. A standard H-cone S possesses a generator and therefore the
image of the evaluation map from S into S™ ™ is solid and increasingly dense in S™ ™.
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