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COMPLEX COBORDISM AND FINITE SOLVABLE
GROUPS WITH PERIODIC COHOMOLOGY

ABDESLAM MESNAOUI

The complex cobordism ring U*(BG) is calculated in [2] when G is a finite
abelian group (BG denotes a classifying space of G). Such rings are studied in [3]
for generalized quaternion groups and in [4] for some particular metacyclic
groups.

The purpose of this paper is to calculate the cobordism ring U*(BG) G being
a finite solvable group with periodic cohomology using results contained in [3].

I wish to express my sincere thanks to Professor C. B. Thomas who suggested
the subject to me some years ago.

0. Statement of results and preliminaries.

We have the following classification of all finite solvable groups with periodic
cohomology (see [7] page 179).

. G=C(A,B), A"=B"=1, BAB™'=4"m21,n21, (n(r—1),m=1,
" = 1(m), ord G = mn.

II. G=({A,B,R)with{(A4,B)asin1,R* = B">, RAR™' = A, RBR™' = B,
n=2vu=202v=12=r1=1m), k= —12",k*> = 1(n), ord G = 2mn.

L. G ={A,B,P,Q)> with (4,B) as is 1 and P*=1, P?> = Q? =(PQ)?,
AP =PA, AQ=QA, BPB '=Q, PQB '=PQ, n=1Q2), n=0Q3),
ord G = 8mn.

IV. G ={A,B,P,Q,R)> with (A4,B,P,Q> as in III and R?=P?
RPR"'=QP, PQP '=Q° !, RAR '= 4%, RBR !=B k*=1(@n),
k= —1(3), ¥ ! = 5% = 1(m), ord G = 16mn.

In the type Il condition (2, v) = 1 does not appear in the classification of [ 7] but
is a consequence of the proof of 6-11 in the same book.

This paper contains four sections corresponding to the four types described
above,
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In sections II, III, IV the generalized quaternien group I', (k = 3) plays
a central role. We recall that I', is generated by u,v with u' = v2, uvu = v,
t = 2¥~2. We have U¥(BI,) = A,/I,, A = U*(pt) [[X, Y, Z]] the U*(pt)-algebra
of formal power series in X, Y, Z with coefficients in U*(pt) graded by taking
dimX =dimY =2, dimZ = 4 and I, a graded ideal generated by six homo-
geneous formal power series (see [3]). We will also use the fact that
U*BZ,) = U*pt) [[X1I/([m](X)), dimX =2, [m](X) = F([m — 1](X),(X)),
[1](X) = X, F being the formal group law. If P(Y) is a homogeneous element of
U*(pt) [[Y]), dim Y =k, P = Za;Y',a, + 0, then we shall denote v(P) = 2kp.
The notation U*(pt) [[ Y]] ™" will be used for the U*(pt)-algebra of formal power
series Q(Y), Q(0) = 0.

a) Goftypel. We will show that it is sufficient to suppose m = p%, p prime. Let
d be the order of r in (Z,)* the multiplicative group of integers ¢, mod(p”),
(p,q) = 1. There are X, e U*(pt) [[X]], M(X)eU*@pt) [[X,]], dim X = 2,
dim X; = dim M(X,) = 2d such that:

THeoreM. U*(pt)  [[X,11%/11 x [UX(pt) [[X1]*A[n)(X)], 1= U*(pt)
[[X 1] ([p*1(X)) = M(X,) U*(pt) [[X]]. (See theorem 1.3 and proposition
1.4).

b) G of type II. This case may be reduced to the following:
Ay =12, = Zq{ X Zqé, 41, 9, primes, ¢, ¥ q,; the conjugation by R on Z{ is

trivial and on qu is the inversion: x - —x; (B*) =2Z, = ij’ X Zpi;, P1> D2
primes, p; + p,; the conjugation by R on Z,,nlr is trivial and on Zpg is the inversion

x — —x. Then there are homogeneous elements Y, of U*(pt) [[X]] and homo-
geneous formal power series M,(Y,)e U*(pt) [[ Y]], such that:

THEOREM. U*(BG) = U*(BT,+1) X f] U*pt) [[%117 /L

K=1
L = Mi(Y)- U*(pt) [[Y,]]. (see theorem 2.4).

c) G oftype IIL. Let U*(pt) [[Z]] be the U*(pt)-algebra of formal power series
graded by taking dim Z = 4. The group {4, B) = G, is of type L.

THEOREM. There is T(Z)e U*(pt) [[Z]] such that:
U*(BG) = U*(BG,) x U*(pt) [[Z1]*/(T(2)).
d) G of type IV. It is enough to suppose that {(A4) = Zpalz X Z,,/;,
(B*) = Zq{ X qu, P1s P2> 41> 42 primes, p; £ p,, g, + g, with the following

property: the conjugation by R restricted to Z,,al, Z“i is trivial and on Z,,g, qu is the
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inversion x - — x. The following U*(pt)-algebras U *(BZy )R, l7(BZ,,¢27)<“”’> are

calculated respectively in proposition 1.2, lemma 2.1 and lemma 2.3. We shall
denote U*(pt) [[Y,Z1]" = {Q(Y,2)e U*(pt) [[¥,Z]], Q(0,0) = 0}, dim Y = 2,
dimZ = 4.

THEOREM. U*(BG) = (U*(pt) [[X1]* /([4}1(X)) X 0(sz°{)<3> X ﬁ*(qu‘;)<R>
X L7"‘(BZ,,/;<‘“’> x U*(pt) [[Y,Z]]1*/L,, L, being a graded ideal generated by

three homogenous formel power series Y2 + J(Z)) + E(Z), Y?> — YS(Z) — F(Z),
G(2).

In the sequel we shall consider exact sequences of groups of the form:

1 H-'56-1s5—1,

H being normal in G, S a subgroup de G, ord H, ord S coprime and G finite,
solvable, with periodic cohomology. There is a homomorphism g: S — G such
that fog = 1, g*° f* = 1. U¥(BS) - U*(BS). We shall make use of the topolo-
gies on U*(BG), U*(BS), U*(BH) defined by the subgroups J* * associated to the
U*-Atiyah-Hirzebruch spectral sequences for BG, BS, BH; these topological
groups are complete, Hausdorff (see [3]). If 1 denotes the edge homomorphism
we get a commutative diagram:

U*(BS) —— U*(BG) —— U*(BH)
H*BS) —— H*(BG) —— H*(BH)

The maps u are surjective. Moreover S acts on H by inner automorphisms and we
have the following exact sequence:

0 —— A*BS) - A*(BG) —— H*(BH)’ —— 0

ProrosiTION 0.1. The short sequence

0 —— U*BS) - U*(BG) —— U*(BHY® —— 0
is exact.

PROOF. Since g*o f* = 1, i*° f* = (f°i)* = 0 it follows that f™* is injective
and im f* < ker i*. Let xe U*(BG) with i*(x) =0 and J**, J¥*, J3* the
filtrations on respectively U*(BG), U*(BH), U(BS) associated to the
U*-Atiyah-Hirzebruch spectral sequences for BG, BH, BS. Suppose x # 0; then
there is p > 0 such that xe J2P2" =27 x ¢ J2r+1.2n=2r=1 1 et ¢ be the quotient
map:

J2p,2n—2p_’J2p,2n—~2p/J2p+1,2n—2p—1 = HZP(BG, U2n—2p(pt) and @1, O, the



216 ABDESLAM MESNAOUI

similar maps for BH, BS. We have the following commutative diagram, the
bottom line being exact:

J22p,2n—2p I le, 2n—-2p N JZp,Zn*Zp

] ‘| “
0 - A?7(BS, U~ 2#(pt)) — A*"(BG, U~ *#(pt)) —— A**(BH, U~ >"(pt)))* - 0

Thereis y, € J?7-2""2Psuch that x — f*(y,)eJ?P+ 12~ @2p+1) = J2p+2.21-(2p+2)
Similar argument shows that there are y,eJ Pt 2n-Qrtd)
Y € JZP+2m. 20— (2p+ 2m) such that X—f*y,+ys+ ...+ yme
J2p+2m+2.2n-(2p+2m+ D) Consequently y =Y y; = UY(BS) satisfy f*(y) = x
since f* is a continuous map. It follows that im f* = ker i*. Now it is clear that
imi* « U*BH)>. Let xeU?(BH)S, x different from 0. There is p =0,
xeJi =2 A UMBH)S, x¢JPt12nm271 It follows that ¢@,(x)e
H?!(BH,U?" " ?P(pt))’ and there is y,eJ?” 2"~ 27 such that x — i*(y,) =
Jirt2m=(2r+2) ~ U*(BH)S. As above there are y,, ..., y,, belonging to U?"(BG)
withx — i*(y; + y, + ... + yp)€JHPTIm*2.2n-2m+2) Ag j* js continuous we get

x=*0),y= Y. Ym

m21

As a direct consequence we obtain:

COROLLARY 0.2. The map (g*, i*): U*(BG) - U*(BS) x U*(BH)® is an isomor-
phism of U*(pt)-algebras.

Section 1.

Suppose G of type I. G=<{A4,B), A”"=B"=1, BAB " '=A", m21,n21
(n(r—1),m)=1, r"*= 1(m), ord G = mn. We have an exact split sequence:
l1-H->G->S—>1 with H={A4), S=<B). By corollary 0.2 we get:
U*(BG) = U(BS) x U*(BH)S. If p%' ... p** is the factorisation of m = ord 4, into
k
primes and H; = Z,a: then we have: UX(BH)® = [ [ U*(BH,)’. Hence it is enough
! i=1
to consider the casem = p° p prime. We need to calculate H*(BZ,,.)*. Let d be the
order of 7 in the multiplicative group (Z,.)* of residues mod p* of integers prime to
p.
PROPOSITION 1.1. We have H*(BZ,.)’ = Z,.[a]*, dim a = 2d.

ProOF. We have H(BZ,)= Z,.[b]*, dimb =2 and HYBZ.) =Z. As
r" = 1(p%), we have d|n. The conjugation by B sends A to A" and if
A*: H(BZ,.) » H¥(BZ,) denotes the map induced by this conjugation we get
A¥(b) =rb and A*(?) = rb%. If keZ, we have kb%e H*YBZ,)’, q 2 1, iff
k(r? — 1) = 0(p*). Three cases may occur:
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i) (p,r" —1)=1. The relation k(r!— 1)=0(p*) implies k= 0(p") and
H*Y(BZ,.) = {0}.

i) " —-1=p"p;,, Ep)=10<a,<a If k(" —1)=0p* then
kpy =0(p*"*') and k =0(p). Take c=(1+r' + ... + r"Y)bie H*YBZ,.).
Thend =1 + r* + ... + r " Y4(p)and d = O(p) which is impossible since d | n and
(p,m) = 1.

i) ¥ — 1 = p*'pya; 2 a. Thenr! = 1(p*) and g = kd = 1.

Then H*YBZ,.)* = Z,.b" Finally H *(BZ,.)’ = Zu[a]", a = b

Let X, = X* + ([rJX))* + ... + ([r* UX)), x = h(X), x; = h(X,), h being
the projection map U*(pt) [[X]] - U*(BZ,.). We have dimx =dimX = 2,
dimx,; = dim X, =2d. Let U*(pt) [[x,]] = {P(xy), PeU*(pt) [[X,]]} and
I'=U*(pt) [[X,1] N ([p"1(X)).

PROPOSITION 1.2. We have U*(BZ,.)* = U*(pt) [[x,]1* = U*(pt) [[X,1]1*/I.

Proor. We shall use the topology on U*(BZpa) defined by the filtration
corresponding to the Atiyah-Hirzebruch spectral sequence for BZ, (see [3],
section 1). The map A*: U*(BZ,.) » U*BZ,.) induced by the conjugation map A:
A— BAB™! = A" sends [r'](x) to [r** '](x) because x may be taken as the Euler
class e(n) of a classifying vector bundle # for Z . over BZ,. and obviously we have
[F*11(x) = e(n) = e(A*(") = A*(e(n) = AX([')(x)), 2 being the map: BZ,. — BZ,.
corresponding to the conjugation by B. As [r*](x) = x, we get A*(x,) = x; and
x; € UX(BZ,)>. We observe that A*: U~*(BZP,,) - U~*(BZpu) is continuous for the
topology defined above and consequently A*(P(x,)) = P(A*(x,)) = P(x,) if
P(X,)e U*(pt) [[X,]], that is P(x,)e UX(BZ,.) if P(X;)e U*(pt) [[X;]]. Con-
versely let ye U *(BZ,.)%, y + 0, dim y = 2k. We may suppose that ye U*(BZ,.),
Y=o+ o X"+ ..., 0,¢p*U*(pt) because there is t =0 such that
yEJZt,Zk—-Zt’ y¢J21+1,2k—2t—1 and if @ J2t.2k—21 _>J2t.2k—2t/J2t+l,2k"2t—1 —
H*(BZ,., U**~%(pt)) = H*(BZ,.) ® U**~*(pt) denotes the quotient map then
o(y) =b®a + 0 and consequently o, ¢p*U*(pt). From the following com-
mutative diagram:

Jan2k=2t A , Jaa-au
0| le
H(BZ,. ® U*~%(pt) 24, 2(Bz,.) ® U~ *(pt)

it follows that ¢(y) = b' ® a, = A*(b") ® o and A*(b") = b". By proposition 1.1 we
get t=gqd, g=1. We denote x, = (1 +r+r2+ .. .r@ U)x? 4 g x?*1 +

=d+h pYx? + B x**t + ..., B, UX(pt). As (d,p) =1 there is seZ with:
sx; = (1 + WpH)xd + Byxit? c=x%+ pyx?*1 + ... by using the relation
[p*1(x) =0. Hence - a,(sxl)" =g x"+ Y oaxit; >t We have

i>t1
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y — oy(sx,)7€ UX(BZ,)* and y — a,(sx,)?e J* 2k~ 211 By iteration of the same
process we obtain a formula of the form:

y = [asx)? + o (s3,)" 4 .. + af(sxt)] g 122

Lyt >HE>.. >0 ;> G- >...>q. As l7*(BZp¢) is complete Hausdorff it
follows that:

y=alsxy)? + Y oad(sxy) € UXpt) [[x,]1].
i1
The second isomorphism is evident.

From corollary 0.2 and proposition 1.2 we have

THEOREM 1.3. UX(BG) = U*(pt) [[X,117/1 x U*®pt) [[XT]*A[n](X)) s
U*(pt)-algebras, I = U*(pt) [[X,]] ~ ([p*](X)).

RemARK. K. Shibatain[4] hasfound a similar resultin the case a = 1 by using
different methods.

The U*(pt)-algebra U*(pt) [[X,]] is graded by taking dim X; = 2d. If
PX,) =0, X} +...0, % 0, we define v(P) as 2dt. In the next proposition we shall
consider the topology on U*(pt) [[ X, ]] defined be the filtration corresponding to
v.

PROPOSITION 1.4. Thereis M(X;)e U*(pt) [[X,1], M(X,) = p°X, + ), o X},
i22
dim M = 2d, such that: UX(BZ,.)* = U*(pt) [[ X,]J1/(M(X,)).

PrROOF. Letao(Y;,..., ¥3),1 £i < d, betheelementary symmetric polynomials
in d variables Y,,..., ¥;. There is My(X,)e U*(pt) [[X]], dim M(X,) = 2i, such
that o;(x, [r](x),...,[r" " ](x)) = M{(x,). We observe that M;(X,) is well deter-
mined mod the ideal ([p*](X)) of U*(pt) [[X]]. Now x* + ([r](x)* + ... +
[0, = si(My(xy),. .., My(x1)), sx€Z[Yy,...,Y;] being such then
(01, o)=Y+ 4+ Y I R(Xy) = si(My(Xy),..., My(X;)) then
dim R(X,) = 2k and w(R;) = 2k.

Consider the formal power series:

N(X) = X" [p1(0) + (XY - 101X + ... +
(Lo 10.9) i ¥ 0 (K [0:9))

If [p"1(X)=p"X +Y 4X;, then N(X)=p"X, +Y ARyri—1(Xy) + [P]1(X)
G(X) = M(X,) + [p*1(X)- G(X). As limWRy(X,)) = + o it follows that that
k

M(X,) is a well defined formal power series mod ([p*](X)). Moreover
N(x) = M(x,) = 0. We observe that R, ;1) > 2d, i = 2. Hence M(X,) has the
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form: p*X; + Y «Xi, o;eU*pt). From this remark it follows that

i22
0(X,) e M(X)U*(pt) [[X,]1] iff Q(x;) =0 by a proof similar to that of [3],
Theorem 2.12. Furthermore dim N(X) = dim M(X,) = 2d.

From corollary 0.2 and proposition 1.4 we have:
THEOREM 1.5. As U*(pt)-graded algebras we have:
U*(BG) = U*(pt) [[XT)* A[n](X)) x (U*(pt) [[X,1]*/(M(X ).
Section 2.

Suppose G of type II: G=<A4,B,R), A,B as in section 1, R* = B"?,
RAR™'=4% RBR '=BY @=rFl'=1imn=2 @Quv=1 u=2,
k= —112%, k? = 1(n), ord G = 2mn.

The subgroup (B**) = Z, isnormalin (R, B) and (R, B)/{B**) = (R, B’) =
I, is the generalized quaternion group of order 2“*! (see [7], page 179). As
(2,v) = 1 we have the split exact sequence:

1) 1= (B = (" = (™) =Ty > 1.

The conjugation by B” on { B**) = Z, is trivial and the one by R is of square 1.
Hence we have a canonical decompositionZ, = Z, x Z,,, v = v,0;,(v1,0;) = 1,
Rx R '=xifxeZ,,Rx R™'= —xif xeZ,, It is enough to consider the
case vy = p}, v; = p, p1, P2 prime, p; + p,. Let G; = (R, B).

LemMa 2.1. a) U*(BG,) = U¥BI,,,) x ﬁ*Bz,,a{) X U*(Bz,,g)<R>

b) If X, = X + ([ph — 11(X))* then we have

U*(BZ,8)™ = U*pt) [[X,11"/11, It = U*pY) [[X,1]1 N ([P21(X))

) Thereis M(X,) = p5X, + 3 uy X% such that

k22

U*(BZ,8)™ = U*(pt) [[X,11"(M(X))), dim M(X,) = 4.

ProoF. The assertion a) is direct consequence of the exact split sequence (1).
The proofs of b), c) are identical to that of propositions 1.2 and 1.4.

The order m of A is odd because (m,r) = (m,r — 1) = 1. Moreover since
ord (R, B) = 2n we obtain the following exact split sequence:

2) 1 ><A>><{A,R B) =G - {(R,By—> L.

There is a decomposition of {4) = Z,, = Z,,, x Z,,, such that the conjugation by
RonZ, istrivial and on Z,,, is the inversion x — — x. It is sufficient to consider
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the case m, = g}, m, = q5, q,, q, prime, q; # q,. Let g = ¢35, G, = (R, B), d the
order of r in the multiplicative group (Z,)*. We have H%(BZ,) = Z,[b]",
dimb = 2.

LEMMA 22. We have H*BZ)% =2Z,[b"1* if d is even and
H*(BZ,)°* = Z,[b*]" if d is odd.

Proor. We have H*(BZ,)® = Z,[b?]* and H*(BZ,)*®> = Z,[b%]" (see prop-
osition 1.1), then I’-7*(BZ,,)G1 = Z,[b*]", « being the least common multiple of
2 and d.

We recall that G, = (R, B).
LEMMA 2.3. a)) devend = 2d,.

di—1 di—1

IfX,= Y [1X) + 3 ([g — DrIX)) then we get: U%(BZ,)% = U*(pt)

i=0 i=0

([X:117/L, 1, = U*(Pt) [[Xz]] N ([‘I](X)) d1m X, =2d
b)d odd if X;= Z (r1xX)* + Z ([(g — Dr)(X)** then we have:

U*(BZ,)®' = U*(pY) [[Xa]]+/13, Iy = U*(pt) [[X31] n ([q](X))dim X3 = 4d.
c) There are My(X;)eU*(pt) [[X;]]), i=2,3 such that M(X;) = qX; +
2t XE I = M(X,)U*(pt) [[X]], dim M5(X;) = 2d, dim M3(X) = 4d.

Proor. The generator b of H*(BZ,) may be taken as the Euler class of
a universal vector bundle n over BZ,. Let f,g be the maps: BZ, — BZ, induced by
the conjugations on Z, respectively by B and R. The elements x, x,, x3 will be the
images of X, X,, X; by the quotient map:

U*(pt) [[X]1] = U*(BZ,).

a) deven. If iz U¥(BZ,) > H*(BZ,) denotes the edge homomorphism then we
di—1 di—1

have  p(x;) = Y rp*+ Z (g — D7 =d,(1 + (g — 1)) =db’. As
i=1
(d,q) = 1, db” is a generator of the ring H*(BZ,)°". Furthermore x, € U*(BZ,)*"
since f*(x,) = g*(x,) = x,. Then the proof of a) is similar to that of proposition
1.2.
b) d odd. We have: u(x3) = d(1 + (g — 1)*)b? = 2db". As (2d,q) = 1,2db" is
a generator H*(BZ,)°" as a ring. Moreover x5 € U*(BZ,)°* and we conclude as in

a).
dy—1 di—1

¢) Consider N;(X) = Z ([ 1X) ~"[qr1X) + Z X))~ *[alg — DrIX):

As in proposmon 14 there is MZ(Xz)eU*(pt) [[X;]], M,(X;)=4qX,+
Y paaxk, dim M,(X,;) = 2d, such that Ny(X) = M,(X;) + [¢]1(X)G(X) and

k22

Ni(x) = My(x,) = 0. It follows that I, = M,(X,)U*(pt)[[X,]]. Similarly if
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d—1 d—1
i

N(X) = 3 (F1IX)* g 1(X) + ¥ ([ I(X)**'[alg — Drl(X), then

i=0 i=
Ny(X) = M3(X3) + [q)(X)G"(X), M3(X3) =gqX; + Z,Us,kxs, dim M;3(X;) = 44,
N,(x) = M;3(x3) = 0. We have: I; = M;(X;3)U*(pt) [[X5]] (see proposition 1.4).

We have seen that 4> =2, = Zq{ X Zq«; and consequently: U*(Z,)¢' =
(7*(32,,1) X ﬁ*(qu;)G*. The U*(pt)-agebra 17*(32,,1)<B> is calculated in proposi-

e—1
tion 1.4.: U "‘(BZ,,K)<H> = U*(pt) [[X4]1/1s- Xo = Y [F'1(X)", e being the order of
i=0
rin(Zy)*, I = U*(pt) [[ X411 0 [q11(X] = My(X)U*(pt) [[X4]), My = 1 Xa +
Zm,kXL dim M4(Xy) = 2e.
Now we can state the main result of section 2 using the above notation: n = 2%,
u g 23(25 U) = 1: v= pallpg,plapl Pfimeal’l = P2, <BZ“> = Zpi X Zpg; RxR—l =X
if xeZyx, RXR™! = —x if xeZy, <Ay =27, xZ2, RxR™" = x if xeZp,
RxR™!'= —xif xezqg, d the order of r in (qu)* and e its order in (qul )*. Then
lemmas 2.1, 2.3, the split exact sequence 2) and the remarks after lemma 2.3 imply
the following result:
THEOREM 2.4. We have U*(BG) = U*(B,,{) x U*(pt) [[X]1*/I x U*(pt)

[[X11*/I; x U*(pt) [[Xi 11" /L x U*(pt) [[X117/1, with k=2 if d is even,
k=3ifdisodd, I, = My(X;)- UXpt) [[X;1].j = 1,2, 3, 4, I = ([p3](X).

Section 3.

Suppose G of type III: G =<A,B,P,Q) with (4,B) as in 1, P*=1,
P2 = Q% =(PQ)?, AP = PA, AQ = QA, BPB ' =Q, BQB™! = PQ, n odd,
n = 0(3), ord G = 8mn.

The quaternion group G consists of { +1, +1i, +j, +k} subject to the relations
ij =k, jk =i, ki = j,i? = j* = k* = — 1. The vector bundles &;, &;, &, n over BI',
are associated to the irreducible representations: &:i—1, j—o 1, {iio —1,
J= L& i —1j- —1,

. i 0 . (0 -1
T2 —i) 7\ o )
Wehave (P, Q) = I'(see [7] page 180) and (P, Q) is normalin G. Asord I'and
ord G/{P,Q) = ord {4, B) are coprime we have the split extension:

1) 1T =<(P,Q>>G—>{A,B)—1

_Let G, =(4,B); then we have U*(BG) = UXBG,) x U*BI° =
U¥BG,) x UXBI)®. Let A3, B3, C3, D5 denote the Euler classes of ;, &j, &,
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n as explained in [3], section 2; A3, B3, C; play a symmetrical role (in order to
avoid any confusion with the generators A, B of G, we have adopted the notation
Aj, B; instead of 4, B appearing in [3]). We denote U*(pt) [[D3]] = {P(D5),
P(Z)e U*(pt) [[Z]] = Q,, dim Z = 4} ~ Q_ /T(Z)) (see [3], theorem 2.18). If
u=PQ,v=Pthen{P,Q) = {u’, f=0,1,0 S a < 3, u* = v?, uvu = v}. It is
easy to see that if 2: BI' — BI" denotes the map induced by the conjugation by
B then A¥(43) = Cj, A¥(C;3) = B, A¥(B3) = A3, A¥(D3) = D3.

LEMMA 3.1. We have U*(BI')‘®> = U*(pt) [[Z]]1/(T(Z)) as graded U*(pt)-alge-
bras.

PROOF. As A*(D3) = D3 we have U*(pt) [[D3]] = U*BI)¢®. It is enough to
show thatif A, M(D5 + B3N(D3)e UX(BI)® then A;M(D;) = B3N(D5) = 0. As
& =¢&¢& we have Cy=A;+ By + Y a;AB, with FX,Y)=X+Y+
Y a;X'Y’ the formal group law. By using the relation A3 = A;S(D;),
B} = B3S(D3), A3B3 = (43 + B3)(P(D3) — S(D3)) — Q(D3) (see [3], proposition
2.10), we see that there are H(Z)eQ, H{Z)e2, such that
C3 = A3 + B3 + (43 + B3)H(D3) + Hy(D3) = A3(1 + H(D3)) + Bs(1 + H(Ds))
Y H(Dy), WH) =4 We have A¥A;M(Ds)+ ByN(Ds)) = CsM(D3) +
A3N(D;) = A3;M(D3) + B3;N(D3) and consequently:

A3[M(D3)H(D3) + N(D3))] + Bs[M(Ds)(1 + H(D3)) — N(D3)] +
M(D3)Hy(D;) = 0.

Thus M(Z)H(Z) + N(Z)e(2 + J(2))Q2,, M(Z)(1 + H(Z)) — N(Z)e(2 + J(2))L,
and then M(Z)(1 + 2H(Z))e(2 + J(Z))2, (see [3], lemma 2.15). It follows that
M(Z)e(2 + J(Z)Q, and AsM(D3) = B;N(D;) =0.

The U*(pt)-algebra U*(BG,) is calculated in section 1. Then lemma 3.1 and the
sequence 1) show that:

THEOREM 3.2. We have U*(BG) = UXBG,) x U*(pt) [[Z]1TAT(Z)) as
U*(pt)-algebras.

Section 4.
Suppose G of type IV: G = (4, B, P,Q, R) with {4, B,P,Q) as in 3, R* = P?,
RPR™ ' =QP, RQP™'=Q !, RAR"' = 45, RBR™ ! = B, n odd, n=0(3),
kK*=1(n), k= —1Q3),r* ' =5* = I(m), ord G = 16 mn.

We have the following split exact sequence:

1) 1-{4>->G6G—-<B,P,Q,R)~ 1

As the action of R on A4 is of square 1 we have a decomposition {A) = Z,, X Zp,
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the action of R on Z,, being the identity and on Z,,, the inversion x - —x. We
may Suppose ml = palza m, = pg’ P1, pZ Primes, Pl + pZ' Let Gl = <B’ P’ Q’R>

LEMMA 4.1. We have U¥(BG) = U*(BG,) x U*(Bz,,a;)<8> x U*(Bz,,g)<“>.

Proor. This lemma is a consequence of the sequence 1) and the fact that the
actions of P, Q on A are trivial.

The U*(pt)-algebras U "‘(BZ,,H;)“’> and U *(BZ$ )¢R-B> are calculated respective-

ly in section 1 and section 2. It remains to calculate U*(BG,). We may write
n=ord{B) = 3“v, (,6) = 1. We have BP = PB*, B3Q = QB*, RB’R™! =
B* and then R?B3R™2? = B3 since k? = 1(n). Hence the action of R on
(B*) =1Z,isofsquareland Z, = Z, x Z,,,RxR™' =x,xeZ, ,RxR™! = —x,
xeZ,,. Furthermore we may suppose v; = g, v, = ¢3, q;, q, primes, q; % q5.
The sequence:

2) 1-<{B*)—>G,—><{(B"P,Q,R)—>1
is split exact. Hence with G, = (B", P,Q, R) we get:
LemMma 4.2. UX(BG,) = UXBG,) x ﬁ*(qu{) x U*(qu§)<">®

Now we give some information about G, = (B, P,Q,R) with B, = B”. We
have <P,Q,R)> = I', the generalized quaternion group of order 24. If x = RP,
y = R we obtain the classical representation of I'y: (P,Q,R) = {x**, B = 0,1,
0<a <7 x*=y?% xyx = y}. We have the relations {B;PB{ ' = Q, B;QB;' =
PQ, RB;R™! = B;'} or {B,PB;! = PQ, B,QB;' =P, RBy;R™! = B{''} ac-
cording as v = 1(3) or v = 2(3). We shall consider the first case only, the second
one being similar. As H%(BG,) = Hom(G,, U((1)), it follows easily that
H?*(BG,) = Z,a,a = c,(p) the first Chern-class of the unitary representation p of
G,: x - —1,y - —1, B; - 1. Moreover well-known results of R. Swan (see [5])
show that H*(BG,) = Z,g, ¢ = 3“2, g a generator and H*(BG,) is periodic of
period 4.

From [3], section I1I, we recall the following facts. The element D, € U*(BG,)
denotes the Conner-Floyd class c¢f3(n;), where #; is the irreducible unitary

. w 0 0 -1 .
representation of I'y: x — y—  a primitive 8th root of
0 w-1 1 0

1

2
tions of I"y ofdimensior\l/l_are Lx->lLy-1L¢ix->lLy->—1¢E:x—> -1,
Y=L E¢ix> —1, y> =1 If dy = c(n1), a1 = ¢1(&y), by = ¢1(C3), then {df},
{a\d%,b,d%} are generators of respectively H*?(BI'y) and H*?*?*(BI'y), p = 0.
Moreover if B, = cf,(£;), Ca = cfi(¢5) then any element of U*(BI') can be

unity, for example w = (1 + i),i> = — 1. The irreducible unitary representa-
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written in the form B,H,(D,) + C4H,(D4) + H,(D,), where H,, H,, H; are
elements of Q, = U*(pt) [[Z]], dim Z = 4. If H(Z) = a,Z* + a,,Z"*' + ...€
Q,,a;€ U*(pt), a, ¥ 0, then v(H) denotes the integer 4p. We shall use the elements
24+ J(Z)eQy, G4(Z)eQ,, S(Z)eQ,, Li(Z2)eQ,, T,(Z)e Q, from [3], section 3,
which satisfy the relations: B4(2 + J(D4)) + G4(Ds) = Ca(2 + J(Dy)) +
Gy(Dys) = Ty(Dy) = 0, B] = B4S(Dy) + La(Dy), C3 = C4S(D4) + Ly(D,). Denote
E ={C,H(D,) + K(D,), H(Z), K(Z)e Q,} = UX(BI',). It is easy to see by using
the methods of [3] that E is isomorphic to U*(pt) [[Z]]/J as graded
U*(pt)-algebras. J, being the graded ideal generated by Y (2 + J(Z)) + G4(2),
Y2S(Z) + L4(Z), Ty(Z),dim Y = 2, dim Z = 4. Let i be the inclusion I'y = G,.

LemMA 4.3. We have (Bi)*(BG,) = E.

Proor. We show first that E < (B;)*(BG,). There is a unitary representation
_ 3
0 of G, defined by 6(x) = <“’ w‘il), 0(y) = (0 01>,o(31) - .L(“’ 1>,

0 1 ﬁlw

= —\}—5(1 +i),i2 = — 1. As i*(0) = n, it follows that (Bi)*(cf,(0)) = D,. More-

over the above definition of the representation p of G, shows that i*(p) = &5 and
consequently (Bi*)(cfi(p)) = C4. So E < (Bi)*(BG,). Now the inclusion
(Bi)*(BG,) = Eis aconsequence of the following assertion: if (Bi)*(z) = B4H(Dy,),
HeQ,, then we have B H(D,)eE. Suppose H(Z)=y,Z° + p,+,Z°"" +
..., 7s€2U*(pt). Then y, = 2y;, H(Z) — y,Z°2 + J(Z)) = H\(Z) = y; Z°* + ... is
such that v(H) = s(v(H,) = s, and B4H(D,) = B,H(D,) — y.D}L4(D,) because
B4(2 + J(D,)) + L4(D4) = 0. If y;, €2U*(pt) we continue the same process.
Therefore two cases may occur:

a) H(Z),H\(Z),...,H,(Z),... have their first coefficient in 2U*(pt). In this case
for each n>0 we get: ByH(D,) = B4H,,(Dy) — (y;Dy + y;,D% + ... +
Y5, DF)La(Dy), s <51 <...<S$,, VH) <vH)<...<WH,4+,) It follows that
11{1,1 B4H,(D,) = 0 and B,H(D,) = “L4(D4)< Z V;.Di‘> € E(so = ).
noo i=0

b) There is n > 0 such that the first coefficient of H,(Z) does not belong to
2U*(pt). We will show that this case is impossible. It is enough to prove that we
cannot have (Bi)*(z) = B4H(D,), H(Z) = y,Z° + y,+1Z°** + ..., y,¢2U*(pt).
Let J**, J¥ * be the filtrations corresponding to the Atiyah-Hirzebruch spectral
sequences respectively for BI'y and BG,. As z ¢ 0, there are k, k" such that ze J ok
z¢JETLRF 1 Let ¢, ¢ be the quotient maps J¥¥ — Jek/Jit1kK-1 =
HYBG,, U¥(pt)) and J*¥ — je¥ /Jk+1.k=1 - HYBI,,U¥(pt)). It is clear that
k=4h + 2 or k = 4h. The generator g of HBG,) may be chosen so that
(Bi)*(g) = d, = c,(n,) and we have (Bi)*(a) = b,, with a = ¢,(p), b; = ¢,(&3). The
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above element B,H(D,) belongs to J**2:0 |y|=dimy,, B,H(D,)¢
J4s* 3.1~ 1 pecause y, ¢ 2U*(pt). Three cases only may take place.

4h+2,h' 4h+3,h -1
1) ZeJHT2H 1¢ !

Consider the commutative diagram:
Jan+ 2. (Biy* JAh+ 2,
Jo Js
Z,ah' ® U¥(pt) —22 8L, (7,a,d" @ Z,b,d") ® U" (pt)
We have ¢,(z) = ag" ® A + 0 and then ¢(B,H(D,)) + 0. It follows that h = s.

As (B4H(D,)) = a,d" ® y, we get: bydt ® 1 = a,d" ® 7, + 0 which is imposs-
ible.

2) ze P, 24PN T 0,(9) = pg" ® 4,244 p.
We have by using a similar diagram 4s + 2 = 4h which is impossible.
3) zeJ{",ze PN 0,(9) = pg" ® 4,24 p.

Then ¢,3“2)=0 and 3“zeJ®*, k>d4h But 3“B,H(D,)eJ**2 Il
3“B,H(D,) ¢ J**3Isl=1 If 3%z falls in the case 1) or 2) we have a contradiction,
otherwise we form 3%z, 3%B, H(D,) and then 3*zeJ"", n > k > 4h. Therefore
we see that after a finite number of operations we have either a contradiction or
there is p > 0 such that

Puzedit t24s + 3,6+t =4s + |y + 2.

Hence (Bi)*(37z) = 3B, H(D,)e J"" < J**3I»=1 which is in contradiction
with 3#B,H(D,) ¢ J**31"s=1 This ends the proof of lemma 4.3.

LEMMA 4.4. There is D e U%BG,) such that (Biy*(D) = D, u(Bj )*(D)) is a gen-
erator of H*(BZ3.) = Z3. = G,, p being the edge homomorphism, i: G, < G,,
J:Z3u = G,.

Proor. We have H*BG,)=2Z,9, q=2%3" g can be chosen so that
(Bi)*(g) = d, = c4(n,), (Bj)*(g) = c3(p), which are generators respectively of
H*BG,) and H4(BZ,.). Let Do e U*(BG,) be such that u(D,) = g. By lemma 4.3
(Bi)*(Do) = C4Q(D4) + R(D4), Q, R Q2,. We have u((Bi)*(Do)) = d; = u(R(D4));

so we may write: R(Z) = Z + Y, 7;Z'. Now we refer to the notation used in the
iz2

proof of lemma 4.3 and take D, =cf5(8), C =cfi(p) We have
(Bi)*(Do) = (Bi)*(CQ(D,) + R(D,)). Consider D = Dy — (CQ(DI) + ¥ yiD"> =

iz2
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Do — (CQ(D,) + R(D,)) + D, € U%BG,). We have (Bi)*(D)= (Bi)*(D,) =D,
and u(Bj)*(D)) = u(Bj)*(Do)) = (Bj)*(g) which is a generator of H*(BZs.).

THEOREM 4.5. There are E(Z)e Q,, F(Z)e Q4, G(Z)€ Q4 such that if L, is the
graded ideal of U*(pt) [[YV,Z]] (dimY =2, dimZ =4) generated by
YR + J(2) + E(Z), Y?>-—YS(Z)—F(Z), G(Z) then U*BG,)= U*pt)
(LY, Z11/L,, as graded U*(pt)-algebras.

PrOOF. The element D € U%(BG,) of lemma 4.4 is such that u(D) is a generator
of H4BG,), u: U¥(BG,) - H*(BG,) being the edge homomorphism. We recall
that C = cfi(p) and u(C)is a generator of H%(BG,). It follows that for any element
ze U¥(BG,) (there are P(Z), Q(Z)e Q, such that z = CP(D) + Q(D) (see [3]). As
p?=1 we get 0 =[2])(C) =2C + a,;;C?* + .... Hence by using the relation
C? = CP(D) + Q(D)for some Pe Q,,Q € 2, we see that there are J, € Qy, E, € Q,
satisfying the relation CQ2 + J (D)) + E,(D)=0, wJ,) =4 We have
0 = (Bi)*(CQ2 + J1(D)) + E (D) = C4Q2 + Jy(D,)) + E|(D,). Consequently we
can find H e Q, H a unit of Q,, such that 2 + J,(Z) = (2 + J(Z))H(Z)) (see [3],
section ITI). If H, € Qo, H, = H™ !, then we have C(2 + J(D)) + H,(D)E (D) = 0.
Hence:

1) G2 + J(D)) + E(D) =0, E(Z) = H(Z) E{(Z)e Q,.

There are P,Qe®, such that C? = CP(D) + Q(D) and as a consequence
C2 = C,P(Dy) + Q(D,). But C2 = C4S(D4) + La(D,) (see [3], proposition 3.9).
So: C4(S(Ds) — P(Dy)) + La(D4) — Q(D4) = 0. There is H(Z)eQ, such that
S(Z) — P(Z) = H(Z)(2 + J(Z)) and by using 1) we get:

2) C? = CS(D) + F(D), FeQ,.

Let J¥* be the filtration corresponding to the reduced Atiyah-Hirzebruch
spectral sequence for BG,. We have De U4BG,) = J#°, qgDeJ® ~2, g = 243“
From the commutative diagram (y is the canonical map):

J$°® U™ (pt) * » P
¢1®11 l?’l

Z,a'g ® U™ *(pt) —=— H(BG,, U *(pt)),

where ¢, denotes te quotient map:
JEH — JEK IR L = HYBG,, U (pY),

we see that there is a; € U ~%(pt) such that gD — a;CDeJ§ ~*.
We continue the same process and as U*(BG,) is complete, Hausdorff for the
topology defined by the filtration J¥* there are Qo(Z) = gZ + y,Z> + ...
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Po(Z) = 0, Z + 0, Z* + ... such that CPy(D) + Qo(D) = 0. Hence C,Py(D,) +
Qo(D4)=0 and lemma 3.10 of [3] shows that. YPy(Z) + Qo(2) =
M(Z2)Y2 + J(Z) + Gu(Z)] + My(2)TW(Z), My €, M2€Qo. So Qo(Z) =
M(Z)G4(Z) + My Z)Ty(Z). From Cu(2 + J(Dy)) + G4(Dy) =0 = C,2 +
J(D4)) + E(D,) it follows that G4(Z) = E(Z) + M5(Z)T,(Z), M;€Q,. Then
00(Z2) = M(Z2)E(Z) + N2)T4,(Z). As v(M)=4, vE)=4, we have:
M(Z)E(Z) = Y, B:Z' and therefore N(Z)T,(Z) =qZ + Y hZ' = G(Z). We

iz2 iz2

want to prove that G(D)=0. It is enough to show that (Bi)*(G(D)) =
(B)*(G(D)) = 0,i: I'y = Gy, j: Z3. = G,. We have (Bi)*(G(D)) = Ty(D4)N(D,) =
0. It is clear that (Bj)*(E(D)) = (Bj)*(Qo(D)) = 0 because (Bj)*(C)=0. As
Qo(D) = M (D)E(D) + G(D) we get (Bj)*(G(D)) = 0. Hence:

3) G(D) =0,G(Z) = 2*3“Z + h,Z* + ...€Q,.

Now the relations 1), 2), 3) show by using the methods of [3], section III, that
U*(BG,) = U*(pt) [[Y,Z]]/L,, L, being the graded ideal generated by
Y2 + J(Z)) + E(Z), Y*> — YS(Z) — F(Z), G(Z).

We recall the notation used in this section: <{A) = Z,,alz X Z,,g,
(B*) =2Zpy x Z2, p1, P2, 41, 42 Primes, p; # Ps, 41 + g2; the conjugations by
RonZ,,Z,y are trivial and on Z,$, Z% are the inversion x - —x; U *(BZyz) ™,
U *(BZp )R U*(BZ,,/; )<R-B> are calculated respectively in proposition 1.2, lemma
2.1 and lemma 2.3; U *(qui) = U*pt) [[X11*/([q}1(X)). Finally U*(pt)

[[Y,Z]1]1" = {Q(Y, 2)e U*(pt) [[ Y, Z]], Q(0,0) = 0}. Then lemma 4.1, lemma 4.2
and theorem 4.5 give the following result.

TreoreM 4.6. UXBG) = U*py) [[X11*/[g51(X) x U*(BZz)®
x (7"‘(Bqu;)<R> x ﬁ*(BZptzi)<R' B x UXpt)[[Y,Z]1]1*/L,, L, being a graded ideal

generated by three homogeneous formal power series Y (2 + J(Z)) + E(Z),
Y? - YS(Z) — F(Z), G(Z).
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