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LENGTH OF POLYNOMIAL ASCENDING CHAINS
AND PRIMITIVE RECURSIVENESS

GUILLERMO MORENO SOCiAS

Abstract.

In a polynomial ring K[X,,..., X,] over a field, let
Ipclic -l

be a strictly ascending chain of ideals, with the condition that every I; can be generated by elements of
degree not greater than f(i). A. Seidenberg showed that there is a bound on the length s of such a chain
dependingonly onn and f, whichis recursive in f for every n and primitive recursivein f forn = 2.In
this paper we give a better bound, expressed in a rather simple way in terms of f, which is attained
when f is an increasing function. We prove that it is primitive recursive in f for all n. We also show
that, on the contrary, there is no bound which is primitive recursive in n in general.

0. Introduction.

Let R = K[X}4,...,X,] be a polynomial ring over a field K. By definition of
noetherianity, the length of any strictly ascending chain

10C11 C"‘CIi"‘

of ideals of R is finite, but to bound it we need some information about the ideals
themselves. In [Seidenberg71], A. Seidenberg studied the case where I; can be
generated in degree not greater than f(i), where f: N —— N is a given function
(i.e., one can write I; = (p;y, ..., pi,) With deg p;; < f(i)). He showed that a bound
gn(f) can be found which depends only on n and f, saying that “one could
explicitly write down a formula for g, in terms of f and n”; in fact, the derivation
he gives is rather complicated, so he adds that “it would be desirable to bring to
a more satisfactory expression the nature of the dependent of g, on f”. About
recursivity, he says: “This argument gives g,(f) as general recursive in f. For
n = 2, following our argument, one can find a g,(f) primitive recursive in f. Even
for n > 3, where primitive recursiveness looks doubtful, we still think we have
more than general recursiveness.”

Here we show that if one looks for it, an optimal bound can be obtained which
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not only is easily expressible in terms of f and n, but also is primitive recursive in
f for every n. The monomial ideal used to construct the bound permits it to be
attained when f is increasing. On the other hand, while one has the recursivity in
n, by taking simple linear functions we show that no general bound can exist
which is primitive recursive in n.

We hope our methods in answering Seidenberg’s questions will also fulfill his
aspirations for constructive proofs, as stated in [Seidenberg72].

This paper is organized as follows, Sections 1 and 2 contain some prelimina-
ries. In section 3, a series of reductions allows us to restrict ourselves to what we
call simple monomial chains. The longest, as shown in section 4, are the com-
pressed ones, and their Hilbert-Samuel functions are studied in section 5. The
questions about primitive recursiveness in f and non primitive recursiveness in
n are considered in sections 6 and 7, respectively, while in section 8 an example is
given. Some of the results presented here have been partially given in
[Moreno91], where a simpler problem was solved.

A question of notation: in the rest of the paper, superscripts will be used to
number ideals, to avoid confusion which the graduation (thus I} will refer to the
set of elements of degree v belonging to the ith ideal of a chain).

1. Preliminaries: The Hilbert-Samuel function.

Here we make some definitions and recall some well known results we shall need.
They are essentially due to F. S. Macaulay ([Macaulay27]; see also, e.g.,
[Sperner30], [Clements&Lindstromé69], [Stanley78], [Demazure84], [Rob-
biano90]).

LetR = K[X},..., X,] be our polynomial ring. In .#, the set of its monomials,
we introduce the degree-lexicographic order: X% ... X < X%'... X! if and only
ifeither (1)ay +--- +a, <by +--- + b,or(2)a, +---+a,=by +--- + b,and
ay=by,...,a;_y =b;_y, a; > b; for some ie{l,...,n}. This will be the order
used, unless we state explicitly that we apply the degree-anti-lexicographic order:
m; X m, if degm, < degm,, or degm, = degm, and m, > m,. Both are total
orderings compatible with the natural graduation of R by total degree, indicated
by subscripts:

R=R,®R,® - - ®R,®---.

A set of monomials {m,...,m,} < .# will be called irredundant if no m; divides
m; for i + j.

For a monomial ideal J < R we define J;,; = J N #,, the set of its monomials
of degree v.

Initial ideal. To every p € R we associate its leading monomial [for <] m(p)e 4,
which is the largest monomial having a non zero coefficient in p. The initial ideal
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ofanideal I £ R is the monomial ideal m(I) = ({m(p)| pe I}); it has the property
that R/I ~ R/m(I) (isomorphism of K-modules induced by m). The set

st) = {(ay,...,a,)eN"| X3 ... X2 d m(I)}
is called the stairs of I, and its cardinal is the volume of the stairs.
Compressed sets. A set of monomials M < . will be called compressed [for <]
if
mmed, m <m, meM=>meM

for all v (i.e., the monomials of degree v of M are the first ones in the lexicographic
order). For a monomial ideal J, we shall say that it is compressed if J n .# (the set
of its monomials) is compressed.

There is the following well known and easy to prove criterion of compression:
A monomial ideal J = (my,...,m,), with {m,,...,m} irredundant and
my < ---<m,,is compressed if and only if foralli = 1,...,r

m; = min{meJ |mé¢(my,...,m;_,)}
(or, equivalently, m; = min{me 4, |m¢(my,...,m;_,)}, where d; = degm;).

Binomial radices. For v> 0 and qg = --- = a, = 0 we define

(a0t a+v—k
<a0a”'9ak>v_< v >+ +( V—k ),

where (’:) =m(m — 1)---(m — n + 1)/n! (in particular, (), = 0).

Foreveryv > 0, the application (ay, . . ., ;) — {do,. . ., 4 ), is an order-preserv-
ing bijection between the decreasing sequences of length at most v (with the
lexicographic order) and N (with the usual order) (this is a consequence of lemma
(6.3)). Thus the inverse of this bijection gives a unique decreasing sequence for
every nonnegative integer, which we shall call its v-binomial representation.

If a = <ay,...,a),, we define

a(v) = <a0’~ . '9ak>v+1
(in particular, 0<*> = 0).

The theorem of Macaulay. Recall that the Hilbert-Samuel function of R/I is the
function Hg,;: N —— N defined by

HR/I(V) = dimg R,/I,,

and that one has Hg;; = Hpgm() (by the isomorphism between the two quotients).
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Now, by a theorem of Macaulay, H: N —— N is the Hilbert-Samuel function
of some R/I if and only if

H(0) =1
Hv+ 1) < HW)™ Vv L

Moreover, if J = (m,,...,m,)is a monomial ideal with degm; < d for all i and J,
is compressed, then one has Hg;(d + 1) = Hg/;,(d)‘®.

2. Preliminaries: Recursivity.

In this section, some more definitions and well known results are given. They are
due to several people ([Ackermann28], [Godel31], [Godel34], [Kleene36]); we
have used [Hermes69] as a general reference.

The functions considered here are those going from N” to N (“total functions”,
i.e., defined for every r-tuple of natural numbers), with re N (r is the number of
arguments; for r = 0, one has the “constant functions”). Some basic functions are:
— the 0-ary constant function 0;

— the successor function S: N —— N, S(x) = x + 1;
— the projection functions n, : N' —— N, 7, i(x,...,x,) = x;(reN,i=1,...,7).

Recursive functions. (We only give an informal description.) Suppose we are
given a finite system X of functional equations formed with numbers (i.e., 0,
1 = $(0), 2 = $(5(0)),...), the function S, number variables X,, Xi,..., X, and
function variables F, F, F,, ..., F (for an example, see the Ackermann function
below). We are allowed to add other equations constructed by using those we
already have and two rules:

— substitution of numbers for variables (e.g., from Fg(Xs,X,)=
S(F4(Xo,Fo(Xs))) one can build Fg(3,X,) = S(F+(Xo, Fo(3))) by making
X5 3)

— replacement of an expression by its numerical value (e.g., if one has
7= Fi(4,F,(6)) and F(F\(4, F5(6))) = F3(F1(4, F(6)), S(F1(4, F(6)))), one can
build for instance F(F (4, F,(6))) = F5(F(4, F,(6)), S(7))).

All these equations, new and old, are said to be derivable from X.

Now, a function f is said to be recursive (or general recursive for emphasis) if
there exists a system X as above such that for all x,...,x,, ye N one has: the
equation F(xy,...,x,) = y is derivable from X if and only if y = f(xy,...,X,).
Recursive functions are computable in the intuitive sense (the set of valid derived
equations being enumerable, for given arguments x,..., x, one “just” needs to
apply the two rules to the corresponding system until finding an equation of the
form F(xy,...,Xx,) = y).

Primitive recursiveness. Two basic processes used to define new functions are:
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— substitution: from f:N"——N and g,,...,9,. N —— N one obtains
h: N* —— N with
h(xl’“"xs) = f(gl(xh'--’xs):' "sgr(xl‘-“,xs))'

— induction: from f:N'——N and ¢:N*?2——N one obtains
h: N**1 — N defined by

h(xlr-"xr,o) =f(x1"-‘,xr)
h(xlﬁ'“’xny + 1) = g(xlﬁ-'-,xny,h(xl""yxr)y))‘

A function is said to be primitive recursive in f1, ..., f, if it can be obtained from
the basic functions 0, successor and projections, together with f,..., f;, by
finitely many applications of substitution and induction (if t = 0, then one has the
plain primitive recursive functions). Since usual recursive functions encountered
in mathematics are primitive recursive, one could ask if the two concepts are
equivalent. Wilhelm Ackermann gave a negative answer by providing an
example.

Ackermann’s function. We define the Ackermann generalized exponential
¢: N3 = N by the recursion

o+ L,x,y+ 1) = o(,x, 00 + 1,x,Y))
with (for i,x,y = 0)
?0,x,y) =y +1
»(1,x,0) =x
¢(2,x,00=0
o(i +3,x,00=1.

This definition is slightly different from the original one in [Ackermann28]
(Ackermann makes ¢(3, x,0) = 1 but @(i + 4,x,0) = x), we choose it because we
think it easier to grasp, as one has

o(Lx,)y=x+14+--+1l=x+y (iteration of successor)

o2, x,y)=x+x++x=xy (iteration of sum)

o3, x,y)=xx--x=x*= xty (iteration of product)
X '

o4, x, ) =x =x11y (iteration of power)

o, x,y) =x172y.
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What is usually known as “the” Ackermann function A: N> —— N is the simpler
one given by

A(m,n) = ¢(m,2,n + 3) — 3.
Its traditional recursive definition is:
AQO,n)=n + 1
A(m + 1,0)= A(m, 1)
Am + 1,n + 1) = A(m, A(m + 1,n))

for m,n = 0. In fact, it can be defined over Z2, here we only extend it a little by
making

A0, —1)=0
Am+1,-1) =1

It has the property of bounding all primitive recursive functions (i.e., for every
f: N* —— N primitive recursive there exists m such that f(x,,...,x,) =<
A(m,max{x, ..., x,})); this means in particular that m— A(m, 0) is not primitive
recursive (thus 4 itself and ¢ are not, either).

3. Reduction to the simple monomial case.

For a finite set E = {py,...,p,} = R, we define deg E = max{degp,,...,degp,},
and for a non zero ideal I £ R, we define

gdegI = min{deg{p;,....,p,} | I = (p1,...,D,)}

(so that I can be generated by elements of degree not greater than gdeg I and this
is the best possible). By convention, gdeg(0) = 0.

We shall say that & = (I°. ..., I¥) is an ascending chain if I°,..., I* are ideals of
R and

Pcllc...cP.

An ascending chain will be called monomial if its ideals are so. We shall note I(Z)
the length s of the chain.

Let f N —— N be any function. We shall say that the ascending chain Zis an
ascending chain for f if

gdegI' < f(i) Vi=0,...,s.

We want to bound the length s of such a chain in terms of the only data we have,
namely n and f. To do this, we shall boil down our problem to a combinatorial
one by means of the following successive reductions: 1) increasing f;2) monomial
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chains; 3) “simple” chains (to be defined). We are looking for an optimal bound,
and this is easier to do when f is increasing (note that we can suppose f(0) = 0, as
we can always replace I° by (0) in our chains), so we begin by defining

FO0)=0
F(x)=max {f(1),..., f(x)} x>0

(it might be amusing for the reader to prove F is primitive recursive in f; this fact
will be used later). The optimal bounds we are loking for are:

g(n, ) = max {l(Z)| £ is an ascending chain for f}
y(n, f) = max {l(£)| £ is a monomial ascending chain for f},

for which we have

Yn, ) < g(n, f).

First reduction. As f(x) < F(x), every ascending chain for f is an ascending
chain for F, and we obviously have

g(n, f) < g(n, F)
n, f) = y(n, F).
So we only need to consider increasing functions.
Second reduction. Monomial chains suffice:
3.1. LeMMA. g(n, F) = y(n, F).

Proor. We shall see that the first is not greater than the second. Let
I° < ... < I* be an ascending chain for F, so that we have I' = (p;y,.. ., Dir,) With
degp;; < F(i). Fori = 1,...,s, asI'"* < I', there exists a p;; not belonging to I' ,
let us call it g;. Furthermore, we can suppose that m(g;) is not a multiple of
m(qy), ..., m(g; ) (if m(q;)\m(q;), replace g; by the non-zero rest g; of the ordered
division of g; by g;; as m(q;) < m(q;), these replacements will be done only finitely
many times). Now letting J° =(0) and J' = (m(q,),...,m(g;)) we obtain
J® < ... = J%, a monomial ascending chain for F of the same length.

Third reduction. Let E = (J°,...,J) be a monomial ascending chain for F. We
can write J' = (m,,...,m, ), and we suppose it is done in as irredundant a way as
possible; that is, we take {my, ..., m, } to beirredundant (ifr, = 0, aslikely, we are
asking for nothing here), and for i = 1,...,s we take {m,  .y,...,m,} to be
irredundant with m;¢ J'~* forr,_, <j <,

Now we notice that if s is to be maximum, then we should have r; = i (i.e., we
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begin with J° = (0), and we add only one monomial at each step); otherwise, we
could lengthen our chain by replacing (my,...,m, ) by

(0) < (ml) < (mbml) < (ml"“smro)’
or (my,...,m, _ )< (my,...,m, )by
(my,....m, )<= (my,....m,_ ,m, )< <(my,..,m)

We shall say that Z is simple if it has this property (i.e., if one can write
Ji = (ml,...,mi) fori= O,...,S).
We have thus shown:

3.2. PROPOSITION.

g(n’ f) é g(n, F) = y(n, F) = ‘ysimple(n’ F)

Therefore, we can restrain ourselves to the study of simple monomial chains.

4. The simple monomial case.

We let
F(n’ f) = ysimple(n’ F)

And from now on, in order to minimize notations, we shall often drop n and f;
considered to be fixed unless otherwise explicitly stated.

Now we are going to construct a special “compressed” simple chain Z(n, f),
and we shall show that it has maximum length. Our strategy is the following:
every new monomial to be added will be chosen among those of maximum
possible degree, by taking the least available one for the lexicographic order (so as
to get compressed ideals). Thus starting with J° = (0), we add J* = (u,) where
uy = max*{me .# |degm < F(1)} (this is the maximum for the degree-anti-lexi-
cographic order), and we go on in this way while possible, letting J* = (uy, ..., 4;)
where

;= max*{me ./ |degm < F(i),mé(uy,..., 1)}

(“while possible” means thus “while J'=* 4 (1)”). Let Z(n, f) = (J©, ..., J*) be the
chain obtained. We are going to see that L =T

Before proceeding, we wish to make a remark we think important to under-
stand what follows. Note that in this process there are two different stages: while
dim J*~! > 0(i.e., the corresponding projective variety is not empty), we can (and
do) always add a monomial of degree F(i); but eventually our Hilbert-Samuel
function will become zero at a large degree, and then F(i) will be of no importance,
as the available monomials will have small degree. The frontier, which will play
an important réle in our proofs, is given by
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Q = Q(n, ) = max {i|deg u; = F(i)}.

(In stairs language: g, closes the stairs, i.e., its volume becomes finite, and after
that the monomials of the stairs will be removed one by one, in descending
degree, till none is left.) The maximum of the degrees of the generators in our
chain is thus

2 = 9(n, f) = F(Q(n, f)) = gdeg J*.

Now, for the sake of completeness, we justify our claim about compression
(this is easy and surely well known):

4.1. LEMMA. J'is compressed fori = 0,..., L.

Proor. We suppose i > 0, as J° is obviously compressed. If i < Q, then
py <+ < p; and {gy,..., ;) is irredundant, so that J' is compressed by the
criterion indicated in section 1.

Suppose now i > 2, and note that in this case {y,, . . ., i;} need not be irredun-
dant (in fact, it will not be). We proceed by induction. Let us suppose J' ! is
compressed, and letd = deg ;. Forv < d onehas J = Ji~* which is compressed.
Forv = d, the set Jj;; = Jij; ' U{} is compressed by definition of ;. If v > d, then
d < F(i) means Ji,;! = .#,, so that J,=.#, which is obviously com-
pressed. |

To show that compressed simple monomial chains have maximum length, we
shall need to compare the Hilbert-Samuel functions of their ideals. This will be
done using the lexicographic order (for hy, h;: N —— N, one has h; <h, if and
only if there exists i €N such that h,(j) = hy(j) for j < i and h,(i) < h,(i)). The
Hilbert-Samuel function of J* will be noted H'.

We shall make implicit use of the next easily verified fact:

4.2. LEMMA. Let I c R be anideal and I' = I' = I + (p), where pe R,\I; then
Hgyp(v) = Hgp(v) Vv<d
HR/I’(d) = HR/I(d) -1
Hpg;p(v) < Hg(v) Vv>d.
Now we have:
4.3. PROPOSITION. (Compressed monomial simple chains have maximum length)
I(n, f) = UE(n, f)).

ProOOF. Let = =(J%...,J) be any simple monomial chain with
J' = (my,...,m;), and suppose | = L. We must show that our choice of the
monomials y; is the best possible, i.e., that I = L.
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Let H' be the Hilbert-Samuel function of J'. We have J* = (1), so that H = 0; if
we show that H* < A%, then H™ = 0 and J* = (1), and we shall be done.

One could expect to show that H' <\ H' by recursion on i, but this need not be
true for all i. However, it is so for some i, and that will be enough to conclude (see
remarks below on non-uniqueness of simple monomial chains of maximum
length). Let iy = 0, i, = L and

{il"",ir—-l} = {“0 <i< L9degui 4: deg:ui+l}’

withi; <--- <i,_,. Let ussee that HY < H by recursion on . Clearly H® = H°,
so suppose 0 < j <rand H-* < H"-'. Let « = i;_, and B = i}, and let

0 =degp,y =+ =deguy
d =min{degm,,,...,degms}
vo = min{v| H*(v) < H*v)} U {00}

(vo is thus the first place where the two Hilbert-Samuel functions differ). Note
that d < degm, < 6 for a < k < B, by definition of y,.

We consider four cases (we recall that (4.2) is used all the time):
— Ifd > vy, then

HY(v) = H(v) = H*v) = H*(v) Vv <,
HP(vo) = H(vo) < H(vo) = H(vo),

which implies H? < H”.
~ Ifd £ vy and d < 6, then

H%v) = H(v) = H*v) = H¥v) Vv<d
H'(d) < HY(d) £ Hd) = A*(d),

which implies H? < H.
- Ifd =6 = vy, we have

H%v) = H(v) = H(v) = H¥v) Vv<d
H'(d) = Hd) — (B — o) < H(d) — (8 — o) = H’(d),

which implies H? < H?.
— If d = § < v, (this is the interesting case), we have

H%v) = Hv) = H*(v) = H(v) VYv<$
H?(0) = H*(0) — (8 — a) = HX(d) — (B — o) = H?(5).

Now if § < Q, the theorem of Macaulay says, for v = 9§, that
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H(v + 1) £ H¥ (v
Hi(v + 1) = HA (v

(where we have equality because J? is compressed and gdegJ? = ), as a < b
implies a¢””> < b¢* (remember, e.g., the order-preserving bijection), we conclude
that H? < A*.

Otherwise o = @ (the case a < Q < f is impossible), and then we know that
H%S + 1) £ H¥6 + 1) = 0, so that

HY0) = A') =0  Wv> 6
and H? = A*.

The proof just given shows that compressed monomial simple chains are not
the only monomial chains having maximum length. If F is not strictly increasing
in the range {1,...,Q}, then there are consecutive monomials of the same degree
among the u;, which can be permuted. And beyond £, where the value of F is no
more considered, the monomials are added so as to fill every degree, and this can
be done in any order. All these permutations of monomials of the same degree do
not seem to be very relevant, so we can perhaps say that the monomial simple
chain of maximum length is essentially unique. And because of the properties of
initial ideals, the same could be said of general chains.

5. Hilbert-Samuel function.

Using the theorem of Macaulay, we shall give in this section the expression of the
Hilbert-Samuel functions occurring in our chain. First we define

a’»” =aq
gkt Do (a<v>)k<v+ 1)
(so that a*+ D = g +13- )y and for a non zero Hilbert-Samuel function

H and a = 0 we define a new function H —a as follows:

H(v) for v<a

(H = a)) = {min {(H@ — 1)*~, HW)} for vz a

where « = max {v < a| H(v) > 0}. _
In the previous section we have built a chain Z=(J°...,J%, with
J' = (uy,..., u;) of Hilbert-Samuel function H'. Now we can state:

5.1. LeMMA. Fori=1,...,T one has

H =H""' =~ F(.
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PrOOF. Remember that J' = J'~! + (y;), where
Wi = max* {me'/” I degm § F(l)s m¢(#la-~ ",ui—l)}'

We consider two cases, as usual. If i < Q, then H '(v) > 0 for all v and
deg i1; = F(i), so that gdeg J' = F(i), and then, J* being compressed, we have

H (v (v < F(i))
H(v) =1 H '(v) -1 (v = F@)
| H(v = DO™Y (v > F(i).

Thus H' = H'~! = F(i) (the corresponding o equals F(i)). If i > Q, then
deg u; < F(i) and we know that H ~'(v) = 0 if and only if v > deg u;, so that
gdeg J' = deg y; and we have

H~'(v) (v < deg )
Hy)=! H ') -1 (v=degu)
0=H"(v) (v>degu)

Thus once again H' = ™' = F(i) (now the corresponding o equals deg u;).

6. Primitive recursiveness.

In order to find a primitive recursive expression for I', we shall write itas Q + ¥".
The second term ¥~ = I' — Q is just the volume of the stairs of J:

6.1. LEMMA.
vV = #s(J% = HY0) + --- + HY2 —1).
Proor. This is a corollary of (5.1): for i > Q we have

Y H) =Y H '(v) -1,

veN veN
so that, as JT = (1),
0= Z ﬁr(v) = Z Hﬂ(v)—(l"—{))

veN veN

as claimed (we recall that H%(v) = 0 for v = 9).

To compute the first term Q, we shall make use of the v-binomial representa-
tions. The following “exponential” notation for them will be very useful:
Lers--nesinsesls =<t s+ Lo,s+ s, 8),

[—— R e e i

ey €5+ 1 Cs
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where v=-e, + -+ 4 e,y + e, + t (in particular, [ ], , = 0). This will be called
the v-expbin representation, were the number ¢ is the number of free places in the
binomial representation. (It is unique if we demand that s >0, e, > 0, as
e, €541,0)5, = [e,...,ec4 11541, Note that one could admit s = — 1, so that
[er,....e0]0,: = [er,...,€0,t]_1 o (this is admissible because (—1)! = o0), the
number of free places being then e_,.)

AF will denote the derivative of F:

AF(0) = F(0)
AF() = FG)— Fi—1)  (i> 0).

We shall focus on J = J?, the most important ideal of our chain (the entire
chain can be deduced from it), and on H = H?, its Hilbert-Samuel function. For
simplicity, in the proofs we shall implicitly suppose henceforth that n 4 1 (one
has (1,f)=1, I'(1,f) =1+ f(1)), and that J # (1) (i.e., F(1) > 0), but the
reader will have no pains in seeing everything works for n = 1 or the trivial chain

(0) = (1).
6.2. LEMMA. Leti < Q.
(1) If H(F(i — 1)) = <ao, ..., % ri-1)> then

H(V) = <a0’”->ak>v (F(l - 1) é v< F(l))
H(F(l)) = ag,..., @ re — 1,

() If HFG— 1) =[e,...,e)s; in F(i — 1)-expbin representation (i.e.,
e+ -+ +e +t=F(i—1)),then

ﬁ(F(l)) = [en“-ses]s.H-AF(i) - L

ProoF. (1)is animmediate consequence of the theorem of Macaulay and (4.1):
as our ideal is compressed, we have

Ay) = (Kaos s @ pa- )T = Lag, .. a0y, (F(i— 1) S v < F(i)
H(F(i)) = H(F({i) — 1)FO=D — 1 = (ag, ..., & e — 1.
Expressing H(F(i)) in exponential notation we obtain (2).
Let us see how to find the expbin representation of [e,,...,e];, — 1
6.3. LEMMA. If e, > O, then
le,,--.,e,e0]o. — 1 =[ep...e1,e0 — 1o, 1
Ifs > 0and e; > 0, then

[er,-~~’es+laes]s,t - 1 = [er,"'aes+bes - l’t + 1]8—1,0'
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ProoF. For s = 0 and e, > 0 we have by definition

S+ t+ 1)

[era--~’es+lyes]s,t = [en"-&es+19es - 1]s,l+l + < t + 1

1
If s = 0 we are done, else using " + Mo (™t we can write
n+1 n n+1

s+t+1 (=D +rt+1 -1+t s—1D+1
CRUSH G NES MO

= <S - 1,.--,3— 1>t+17
N e
t+1

and we are done too.
We can now give the expbin representation of H(F(i)):
6.4. PROPOSITION. Fori < Q, if one has the F(i — 1)-expbin representation
H(F(i — 1)) = [e,,..., €15,
with e; > 0, then one has the F(i)-expbin representation

= [e,,...,e1,e0 — 1]0:+AF(i)+1 if s=0
H(F(i)) = ’
(FG) {[e,,...,esﬂ,es— Lt +AF(@) + 1]-y,0 if s>0.

Proor. It is enough to put together (6.2) and (6.3).

We are now ready to give a primitive recursive expressionfor I' = Q + 7. Let
us define ¥ = ¥, ;N x N*™! x N x N —— N, where g: N —— N, by

(@i, (0,...,0),t,v) =i+ v,
with
Y(i—1,(en—25---56r+1,6r,0,0,...,0),t,0) = ¥(i,(€n-2,--- €, + 1,6, — 1,1,0,...,0),0,0)
ifr > 0and e, > 0 and
V(i —1,(es—2,...,€1,€0), t,0) = ¥(i,(en—2,...,€1,€0 — 1), 1,0+ t')

if eq > 0, where t' =t + ¢g(i) + 1. Replacing “=" by “—” we orient these two
equations to obtain two rewriting rules for .

6.5. THEOREM.
F("’f) = !I,n,AF(l,(F(I)aO,“"0)’0a0)'

(Perhaps I'(n, f) = ¥, 4r(0,(1,0,...,0), —1,0) with ¥:N x N" x N’ x
N —— N could be more aesthetic.)
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6.6 COROLLARY. I'(n, f) is primitive recursive in f for every n.

Proors. It is easy to see that ¥, 4 is primitive recursive in AF, hence in F,
hence in f; so the corollary is clear. Let us prove the theorem.

Our function ¥Y(i, (e, - 3, ..., eg), t, v) codes the information about the chain = in
the way suggested by the notation: i for the index going from 1 to @
[€n—125---,€0]o, for the value of H(F(i)), t being the number of free places; and v for
counting the volume of the stairs, to become ¥~ at the end.

This is not difficult to show. At the beginning we have

H'()=<n—1), Vv<F(Q),
thus (using (6.3))
H'(F(1)) = <n — Dray —1=l-1,r-1 — 1 = [F)Ia-2,0
= [F(l),()g;O]o,o,

n—2

F(1)-expbin representation which corresponds to ¥(1,(F(1),0,...,0),0,0), the
starting point. And the recursive definition of ¥ corresponds to the obtaining of
the F(i)-expbin representation for H'(F(i)) from the F(i — 1)-expbin representa-
tion H'~Y(F(i — 1)) = [en-2,...,€0]0, by using (6.3) (we think unnecessary to
detail the two cases to be considered).

So starting with ¥(1,(F(1),0,...,0),0,0) and applying the recursion rules we
obtain successively Y(i,(€; ,—2,-.-,€:.0), t;v;) for i = 1,2,..., with the property
that [e; ,—5,....€i0lo,., = H(F(i)). The rules can no more be applied when
€in—z =" =¢e =0, ie, when H'(F(i)) = 0, which happens for i = Q. So we
have

¥Y(1,(F(Q1),0,...,0),0,0) > - = ¥(£2,(0,...,0),to,v9) = 2 + vg,

where t, = F(Q) = 2 = gdegJ, the maximum of the degrees of the generators
appearing in our chain.

If we prove that v, = ¥, then we shall be done. For that we need two results, so
we make now a paranthesis to show them (they are perhaps well known; our
proofs are given for the convenience of the reader).

6.7. LEMMA. (Correspondence between generators and Hilbert-Samuel function
for compressed monomial ideals)
Let J = (my,...,m,) be a compressed monomial ideal, with {m,....,m,} irredun-
dant and m; < --- <m,, and let d; = degm;. If d; < d;{ ori =r, then
m; = X‘ln . Gt :n A H(du) = [ala PPy . I]O,a,‘a

n—1

where H is the Hilbert-Samuel function of J.
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PrOOF. (As usual, we shall identify X§'... Xie .# with (a,,...,a,)e N".) First
we show that the application

@g,..,an-1,a)—[ay,....,a,-1]o.a,
is an order-preserving bijection between (.#,, <), the monomials of degree v with
the degree-anti-lexicographic order, and ({0,...,<v :i—; 1) — 1}, <>, the
first natural numbers. To begin with, we have

©,...,0,v)—>[0,...,0]o,, = 0.

Letm = (e,—2,...,€+1,€5,65-1,0,...,0)€ 4, with e,_; > 0; the successor of this
monomial for X, if it is not the last (ie, if s—1<n—2) is
m = (e,_2,---,€s+1,6s + 1,0,...,0,e,_; — 1); suppose m+ i, m'— i’; using (6.3),
if s = 0 then

il - 1 = [en—Z’-'-9e1,eO + 1]0,9_1—1 - 1 = [en—Z""aebeO]O,e_l = ia

else
o .
r— 1 = [en—Z’---,es+1aes + l]s,e,_|—l - 1 = [en—z,“~’es+l’es>es—1]s—l,0 =1L

The order-preserving bijection is thus established by induction.

Now let d = d;, h = H(d;). As Jig = (my,...,m;) 0 M, is compressed, the set
{me M;|mé Jig}, of cardinality equal to h, contains all degree d monomials less
than m; (for <), so by the above bijection they map to 0,...,h — 1. This means
that m; maps to h, as claimed.

6.8. PROPOSITION (Volume of the stairs of a compressed monomial ideal).

Let J = (my,...,m) < K[Xj,..., X,] be a 0-dimensional compressed monomial
ideal, m; = X{"'... X3, with {my,...,m,} irredundant, and let H be its Hil-
bert-Samuel function. Then

#s(J)=Y HV)=ay,+ -+ arp
veN

Proor. Here we use induction on n. The result is obvious for n = 1 (one has
r=1,5(J)={0,...,a;,; — 1}). Letn > 1. We can suppose m; < - - - < m,, so that
a;,=2a,,, more precisely, letting a=a;,;, we take i,4; =0,

i; = max{i|a; ; = j}, so that
A, +1,1 = =01 > G411 == Q0> > 8iag,1 =00 = Gy

Notice that the criterion of compression given in section 1 implies that
Qi 41,1 =i, + 1 there are no “holes” between the values of g; ;; the same is
true for the a; , corresponding to a fixed g; ;; the same is true for the a;



LENGTH OF POLYNOMIAL ASCENDING CHAINS AND PRIMITIVE ... 197

corresponding to a fixed a; {, and so on (“the steps of a compressed stairs are of
depth 17).
Now we decompose the stairs s(J) in slices along the X;-axis:
s(J) = so()Usy ()L - - Us,(J),

where

s;(J) = {(ey,....e)es(J)| ey =j}.
By the previous remark, the only generators m; which have an effect on the jth
slice are those with a; ; = j, so that
si(J) = {(31, sen)ley =j, Xt X:"¢(mi,+,+1,--~,mij)}~
Through the projection (ey, e,,. .., e,) > (e,,...,e,), we obtain a stairs of the same
volume corresponding to the monomial ideal
Ji=mi,, +1--om) S k[X;,..., X,],

where m; = X5"2--- Xy,

This monomial ideal is 0-dimensional and compressed (the compression
follows from the recursive definition of the degree-lexicographic ordering), so
that by the hypothesis of induction we have

#SU) =y, ernt o
Putting all the volumes together we obtain
#5(j) = #so(J) + -+ #s;()) =a1n+ -+ an
the desired result.

We can now finish the proof of (6.5): v, is equal to the sum for i < Q of the
free places of the binomial representation of H(F(i)), which by (6.7) corresponds
to the sum of the last coordinate of the y;, and this by (6.8) is the volume of the
stairs, so that vp = 7.

7. Non primitive recursiveness.

This section is devoted to showing that Q(n, f) is not primitive recursive in n if the
function f increases at least linearly. As I'(n, ) = Q(n, f) is the maximum length,
attained by Z(n, f), this will imply that no bound can be primitive recursive in nin
general. Of course, for some special classes of functions f (e.g., constant fun-
ctions), I'(n, f) can be primitive recursive in n too.

So from now on n will no more be fixed. On the other hand, throughout this
section f will be a linear function

1) = ai + b,
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witha,beZ,a = —b = 0, and we let
I'(n,a,b) = I'(n, f)
Q(n, a,b) = Qn, f)
2(n,a,b)=D(n, f)

(a and b will not always be written, as they can be considered fixed).

We want to show that I'(n, a, b) is an Ackermann-like function, using ¥, , (we
identify AF with a), and for that we turn once again to free places. As a conse-
quence of, e.g., (6.7), we have by appling the rewritten rules to ¥ that

lIl(ia(en—Z:- ces€py l’enoy . -,0)’ t, U) > 'P(i’,(en—Zw Ry A l>0a09 .. ~,0), tla U’)
(i.e., e, becomes 0; note that e, _,,...,e,,; remain unchanged). Let
wr,e,t) =1t

(the number of free places after eliminating e,), which is well defined (see the
rewriting rules). It can be characterized as follows:

7.1. LEMMA. For k,r 2 1 and t = 0, one has
1(r,0,t) =t
1(0,k,t) =10,k — 1,t +a+ 1)
wr,k,t) = 1(r,k — L,7(r — 1,t + a + 1,0)).
Proor. Replace ¢g(i) = AF(i) = a in the rules for .
Our rewriting sequence is (see the proof of (6.5))
I'=%(,(fQ1),0,...,0),0,0) > --- - ¥(2,(0,0,...,0,2,%)=Q + ¥,
so that
aQ+b=92=1n-2,1(1),0)=1(n — 2,a + b,0).
We are going to write 1(r, k, 0) in terms of the following ackermannian function:
i+ 1,x,y + 1) = D3, x,D(i + 1,x,Y))
with (for i, x, y = 0)
P0,x,y) =y +1
&(1,x,0) = x
(i + 2,x,0) = 1.
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Note that the “only” difference with the Ackermann generalized exponential ¢ is
in the initial condition for i=2. This is a slight difference (one has
&(i, x, y) ~ o(i, x, y + 1)), but it makes & more difficult to write:

P0,x,y)=1+y

(1, x,y)=x+y

P2, x,y) =1+ xy

o3, x,y)=xty=14+x+x>2+...+x

4, x,y)=xMy=1+x+x2+... +x1+._'+x.--l+"'+xl+x}”
DG, x,y) =xhi 2y

(We could say that @ is in a way the “integral” of ¢, which explains our “f”
notation.)

7.2. LEMMA.

(k0 =0r +2,a+Lk+1)—a—2=@+ )M k+1)—a—2

Proor. (By induction on r, using (7.1).) For r = 0, we have
70,k,0) =10,k —l,a+1)=---
- =10,0,(a+ Dk)=(@a+ Dk=P2,a+ L,k+1)—a—2
Suppose r > 0. For the sake of readability let us make
o (k) = t(r,k + a + 1,0)
Bi(y) = ®(i,a + 1,y).
To write 7 in terms of @, first we roll up o«
©(r, k,0) = o(r,k — 1,0, 1(0)) = t(r,k — 2,02_,(0)) = -+ = (r, 0,0 _ ,(0)) = o*_ ,(0).
Then using the induction hypothesis, namely
- wy=1r—lLu+a+1,00=dr+lLa+lLu+a+2)—a—-2
=B +u+a+2)—a—2,
we exchange o and g
Aoty 0) = HBrrala + D) —a— ) = 2B y@+ D) —a—2) =
=g @+2) —a-2

One sees by induction that ;, (1) =a + 2fori 2 0:



200 GUILLERMO MORENO SOCIAS

Bil)=a+1l+1=a+2
Bi+2(1) = Bis1(Bi+2(0) = Biv1(D) = a + 2,
which allows us to unroll §:
re1@ +2) = By (Bra2(1) = Brii(Bra22) = -+ = Brvs(Braa(k) = sk + 1),
Thus (r,k,0) = &(r + 2,a + 1,k + 1) — a — 2 as wanted.
From this we obtain:

7.3. PROPOSITION. For a > 0,
1
Qn,a,b) = —E((a + )Mt 2(a@+b+1)—a—b—2),

while

Qn, 0,b) = <" - ; + b).

Proor. For a > 0 we have
aQ+b=1n—-2,a+b0)=@+ )t" " 2@+b+1)—a-2.
If a = 0, then Q is the number of monomials of degree b in n variables.
In the special case a = 1 we come upon the Ackermann function:
7.4. COROLLARY.
Qn.1,b) = A(n,b) — b — 1.

Proor. (All recursions are on i for i=0). We begin by seeing that
oi +2,2,1)=2:

?(2,2,1) = 9(1,2,90(2,2,0) = ¢(1,2,0) = 2
oi+3,2,) =0 +2,2,0( + 3,2,0)) = o(i + 2,2,1) = 2.
Next, we show that &(i, 2, y) = ¢(i,2,y + 1) — 1; first for the initial conditions:
90,2,y))=y+1=¢0,2,y+1)—1
9(1,2,0) =2 = ¢(1,2,1) — 1
D +2,2,00)=1=0( +2,2,1) — 1

and second for the recursion formula:
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Pi+1,2,y+1)=9(,2,0( + 1,2,y) = 9,2, 0 + 1,2,y + 1) — 1)
=020+ 1,2,y + 1) -1l =0+ 1,2,y+1)— 1.
We then conclude that
Qn,1,b) =P(n,2,b+2)—b—-3=¢n2,b+3)—b—4=Anb) —b—1,
as wanted.

7.5. COROLLARY. The length of the ascending chains in K[X,,...,X,] for the
identity function f (i) = i cannot be bound by a function which is primitive recursive
inn.

PrOOF. We have [(5(n,1,0)) = I'(n, 1,0) = Q(n,1,0) = A(n,0) — 1 which is not
primitive recursive.

REMARK. It is easy to see that the same holds for the classes of functions
f verifying f(i) = ai + p witha,feR,a> — = 0.
We have the following expression for the volume ¥"(n, a, b):
7.6. PROPOSITION.
b—1

¥Y(nab)= Y ¥(n—1,a9nak) +1),

k=—a
where ¥7°(0,a,b) = 1 by convention.

Proor. Let I'y = I'(n,a,b), I'y = I'(n — 1,a,b), and analogously for Q and 2,
andletd = F(1) = a + b. Values which are uninteresting will be replaced by “x”.
We are going to split the rewriting of I',, namely,

r,=%,1,d0,0,...,0,0,0) > --- > ¥,((1,0,0,...,0),t,v) =
- ¥.(+1,0,t+a+1,0,..,0,0,0) > > ¥V,(x,0,0,0,...,0),x 7).

First, from the parallel rewritings

Iy, =%,(,d - 1,0,0,...,0),0,0) > ¥,2,(d — 2,a + 1,0,...,0),0,0) - ---
o= ¥,.(%,(0,0,0,...,0), 2,1, ¥5-1)

and

¥.(1,(,0,0,...,0),0,0) - ¥,(2,d - La+1,0,...,0),0,0) > -
<= ¥.(,(1,0,0,...,0),t,v),

we see that t = 9, _,, v = ¥, _,. Then, from the parallel rewritings
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Iy, +1=¥-11,(@p-1+a+10,...,0,0,00>---
o W, 1(%,(0,0,...,0), %, %, +1)
and
Y.(i+1,0,2,-y +a+1,0,...,0),0,%,_,) ..
<= W(%,(0,0,0,...,0), %, 73)
weseethat ¥, = ¥, 1 + ¥, ,+1. e,
¥ (n,a,b)=¥(nab—1)+¥{n—1,a,9n,a,b— 1)+ 1).

As ¥'(n,a, —a) = 0, the result follows by induction.
(What we have done here is to cut the stairs in slices along the X, -axis; cf. the
proof of (6.8).)

In the special case a = 1, the Ackermann function appears once again:

7.7. COROLLARY. ¥(n, 1,b) = v(n, b), where

v(n, b) = bil v(n — 1, A(n. k)) (n>0)

k=-1
v(0,b) = 1.
PROOF. D(n,1,k) = A(n,k) — 1 by (7.4).

It is interesting to note that though in general ¥"(n, f) grows much faster than
Q(n, f), the latter increases rapidly enough for our results about non primitive
recursiveness in n to hold true; in fact, ¥ is obtained through ¥ as a “by-product”
of the computation of €, making it no more difficult to calculate (up to coefficient
growth).

8. An example.

Let us take
f=044555577891011111212161719202020212224252629---)
(i.e., f(0) =0, f(1) = 4, and so on), so that F = f. Then for n = 3 we have:

F()=4 ¥(1,4,0,0,00  p;=x*  H'@)=[4,0]00=<111,1),=14
FQ=4 ¥Y2,(3,1.00  p=x’y H@=[31]00=<11,1,00,=13
F@3)=5 ¥(3,(3,0,22  py=x%> HY5)=[3,0]o.=(1,11)s=15
F@=5 ¥(4,23)02)  p=x H)=[23]o,0=

<1,1,0,0,0)5 = 14
F§)=5 %(5,22,1,3)  us=x%y*2z H*5)=[22]o,1 =<1,1,0,0)s=13
F(6)=5 W6,21.,25  pe=x2yz2 HS)=[2,1]0,,=<1,1,0p5s=12
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F(7) =7 ¥(7,(2,0),5,10)
F®8) =7 ¥(8,1,6),0,10)
FO) =8 ¥(09,(1,5),2,12)
F(10)=9 ¥(10,(1,4),4,16)

F(11) = 10 ¥(11,(1,3),6,22)
F(12) = 11 ¥(12,(1,2),8,30)
F(13) = 11 ¥(13,(1,1),9,39)
F(14) = 12 ¥(14,(1,0),11,50)
F(15) = 12 ¥(15,(0,12),0,50)
F(16) = 16 ¥(16,(0,11),5,55)
F(17) = 17 ¥(17,(0,10),7,62)
F(18) = 19 ¥(18,(0,9),10,72)

F(19) =20 ¥(19,(0,8),12,84)

F(20) = 20 ¥(20,(0,7),13,97)

Hy =x2z°
ps = xy°

_ ,10,7
Hi7=)y "2
_ 9,10
Mig=)y'z
_ 812
Ki9=Yyz

_ 713
Ho=Yy Z

F(21) =20 ¥(21,(0,6),14,111) p,; = y®z'*

F(22) =21 ¥(22,(0,5),16,127) ps, = y2'¢

F(23) =22 ¥(23,(0,4),18,145) py3 = y*z'®

F(24) =24 ¥(24,(0,3),21,166) p,4 = y3z2!

F(25) =25 ¥(25,(0,2),23,189) u,s= y*z*?
F(26) = 26 ¥(26,(0,1),25,214) py6 = yz*°
F(27) =29 ¥(27.(0,0),29,243) u,,=z*°

Thus

203

H'() =[20]05=<1,1y;=15
H¥7) =[1,6]0,0=

<1,0,0,0,0,0,0>, =14
H9(8) = [1,510,2 =

{1,0,0,0,0,0>5 = 14
A'Y°9) =[1,410,4=
<{1,0,0,0,0>5 =14
H''(10) = [1,3]0,6 =
{1,0,0,0>,, =14
ﬁlz(ll) = [1a2]0,8 =
{1,0,0>,;, =14
AY(11) = [1,1]0,0 = <1,0>,, =13
H14(12) = [1,0]0,11 ={1>,=13
A(12)=[0,12]o,0 =
0,0,0,0,0,0,0,0,0,0,0,0>,, = 12
H'%(16) = [0,11]4,5 =
<0,0,0,0,0,0,0,0,0,0,0>,6 =11
H'(17) = [0,10],, =
<0,0,0,0,0,0,0,0,0,0>,, =10
Hls(lg) = [0’9]0. 10 =
<0,0,0,0,0,0,0,0,0>,5 =9
ﬁ19(20) = [098]0, 125
<0,0,0,0,0,0,0,0>,, =28
1'720(20) = [0,7]0, 135
<0,0,0,0,0,0,0>,, =7
ﬁu(zo) = [0, 6]0, 14 =
<0,0,0,0,0,0>,, =6
}-722(21) = [0,5]0,15 =
<0,0,0,0,0>,, =5
H‘23(22) = [Oa4]0,18 =
<0,0,0,0>,, =4
H?424)=[0,3]0.21 =
€0,0,0>54 =3
1‘725(25) = [Oaz]o,za =<0,0>,5=2
H26(26) = [0’1}0.25 ={0)26=1
ﬁ27(29) = [0,0]0,29 = <>29 =0.

I'3,f) = V3, 4¢(1,(F(1),0),0,0) - --- > ¥3 4£(27,(0,0),29, 243) = 270,

which means
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Q3,f) =27
23, f) =29
¥ (3, f) = 243
rG,f) =270.

And we have J = J? = (u,,..., ug), its Hilbert-Samuel function H = H? being
H=(1361013121414141414131212121211101096544321110..)

(notice by the way that it is not of the “increasing-constant-decreasing” type).

Next we show the stairs of three of the ideals J* = (uy,...,4;) of our chain
EG3,f)=(J°...,J"), namely fori=11 < Q,i=27=Q and i = 103 > Q. The
last is irredundantly generated by:

11,4 10,5 .96 ,8,7 7,8 .,6,9 ,,5,10 4,11 3,12 2, 14 15 16
{.ula"-,”ls’y zLy zny'zhyz,yzn,yz,yzonyz L, yznyz \vzo,z }
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