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HEREDITARY CS-MODULES

NGUYEN V. DUNG and PATRICK F. SMITH

In [13], [14], B. L. Osofsky proved that a ring R with the property that all its
cyclic right modules are injective is semiprime Artinian. Consequently, any right
hereditary right self-injective ring is semiprime Artinian [13, Corollary]. This
interesting fact is quoted by several authors (see, for example, [1], [2]). In[15, p.
46 Proposition 2.24], Osofsky gives a second proof that right hereditary right
self-injective rings are semiprime Artinian.

The purpose of this note is to extend Osofsky’s result on hereditary
self-injective rings to modules. We prove that, for any ring R, any right R-module
which is an hereditary CS-module is a direct sum of Noetherian modules.
Moreover, as an application of this result, we show that, for any ring R which is
either commutative or semiprime, any hereditary continuous right R-module is
semisimple. Several other applications are given. For example, any right con-
tinuous ring with all right ideals countably generated is semiperfect. It follows
that, for any ring R, any countable continuous right R-module is a direct sum of
uniform submodules.

These results generalise [12] and the proofs given substantially simplify the
corresponding proofs in [12].

1. The main theorem.

Throughout this note, R will denote an associative ring with identity and all
modules considered will be unitary right R-modules. Following [2], a module
M is called a CS-module provided every submodule of M is essential in a direct
summand of M. Moreover, M is called continuous if M is a CS-module such that
every submodule of M isomorphic to a direct summand of M is itself a direct
summand of M. For basic properties of CS-modules and continuous modules we
refer to [11]. A module M is called an hereditary module if every submodule of
M is projective (see [4] or [6]). In particular, it is well known that if R is a right
hereditary ring then any projective right R-module is hereditary.
To prove our main theorem, we require some lemmas.
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LeEMMA 1. Let R be any ring and M a right R-module such that M is a projective
CS-module. Then there exists an index set I such that M is a direct sum @; M; of
submodules M; (i € I) of M such that each submodule M; contains a finitely generated
essential submodule.

Proor. By Kaplansky’s Theorem (see, for example [3, p. 120]), the module
M is a direct sum of countably generated submodules. By [11, Proposition 2.7],
without loss of generality, we may suppose that M is countably generated. There
exists a countable set of elements m,m,,m,...in M such that M = Z,- m;R. By
hypothesis, there exist submodules M, N; of M such that M = M; ® N, and
m; R is essential in M. Suppose that n; is the projection of m;in N; for alli = 2. By
[11, Proposition 2.7] again, there exists a direct summand M, of N, which
contains n, R as an essential submodule. Continuing in this manner we obtain
a direct sum M; @ M, ® M; @ ... of submodules in the module M such that

m1R+...+mkR§M1@...@Mk,

for all positive integers k. It follows that M = @; M;. Moreover, by construction,
each submodule M; contains a finitely generated (in fact cyclic) essential sub-
module.

Let R be a ring and M a right R-module. For any element m in M, let r(m)
denote the annihilator of m in R, i.e.

rim) = {re R: mr = 0}.

Recall that a right R-module M is called nonsingular if r(m) is not an essential right
ideal of R for any non-zero element m of M. The next lemma is due essentially to
Sandomierski [16].

LEMMA 2. Let R be any ring and P a nonsingular projective right R-module such
that P contains a finitely generated essential submodule. Then P is finitely gener-
‘ated.

PRrROOF. See [1, Proposition 8.24].
The next result is immediate by Lemmas 1 and 2.

COROLLARY 3. Let R be any ring. If a right R-module M is a nonsingular
projective CS-module then M is a direct sum of finitely generated modules.

We shall require the following key lemma of Osofsky [14].

LEMMA 4. Let {e;: i€ I} be an infinite set of orthogonal idempotents in a ring R.
Suppose that for each non-empty subset P of I there exists an idempotent fin R such
thate; = fe; foralliin Pande;f = OforalljinI\P.LetK = {reR: er=0(icl)}.
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Let M be any right R-module containing R as a submodule. Then the right
R-module M/(K + Z, e;R) is not injective.

The next lemma is well known but we do not know a convenient reference for
it.
LEMMA 5. Let R be a ring and M a right R-module such that the endomorphism

ring § = End(Mp) of M does not contain an infinite set of orthogonal idempotents.
Then M is a finite direct sum of indecomposable submodules.

PrOOF. Suppose that the result is false. Then M is not indecomposable, so that
M = N, @ K, for some non-zero submodules N, K;. Either N, or K, is not
indecomposable, so that we can suppose without loss of generality that
K, = N, @ K, for some non-zero submodules N, and K,. Repeating this argu-
ment we obtain an infinite properly ascending chain Ny = N, € N; = ... of
direct summands of M. For each k > 1 there exists an idempotent ¢, in S such
that N, = ¢, M. It is easy to check that e,S S e,S S e;S =... is a properly
ascending chain of direct summands of S (see, for example, [11, Lemma 3.1]).
Since the ring S does not contain an infinite set of orthogonal idempotents, it is
well known that the right S-module S has ACC on direct summands, a contradic-
tion. Thus M is a finite direct sum of indecomposable submodules.

We are now in a position to prove our main theorem.

THEOREM 6. Let R be any ring and M a right R-module such that M is an
hereditary CS-module. Then M is a direct sum of Noetherian uniform modules.

PrOOF. We show first that M is nonsingular. Let 0 + me M. Note that
R/r(m) =~ mR, and mR is projective. Hence r(m) = eR for some idempotent ein R.
Clearly, r(m) is not essential. It follows that M is nonsingular. By Corollary 3, M is
a direct sum of finitely generated modules. By [11, Proposition 2.7], we may
suppose, without loss of generality, that M is finitely generated, and prove that
M is both Noetherian and a direct sum of uniform modules.

Let S = End(Mpg). Since M is a finitely generated hereditary module it follows
that S is a right hereditary ring (see [4, Corollary 2] or [6, Theorem 2.5]).
Suppose that S contains an infinite collection {e;: iel} of orthogonal idem-
potents. Let P be any non-empty subset of I. Let N denote the submodule @,
e;M of M. Since M is a CS-module, there exist submodules L, L of M such that
M = L@ L and N is an essential submodule of L.

Let f: M — L denote the canonical projection. Clearly f is an idempotent in
Sande; = fe,forallie P.Letje I\P. Let xe M. Then f(x)€ L,and, by [1, Lemma
1.1], there exists an essential right ideal H of R such that f(x)H = N. Thus
¢;f(x)H = 0. Because M is nonsingular, it follows that e;f(x) = 0. Therefore
€;f(x) = 0 for all xe M. We have now proved that e;f = 0 for all je I\P.
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Let E denote the injective hull of the right S-module S. Let K = {seS: ¢;s =0
(ieI)}. By Lemma 4, E/(K + ) s ;) is not injective. However, because $ is right
hereditary, every quotient of E is an injective right S-module, a contradiction.
This contradiction shows that S cannot contain an infinite set of orthogonal
idempotents.

By Lemma 5, the right R-module M is a finite direct sum of indecomposable
submodules. By [11, Proposition 2.7] each of these indecomposable summands
is a CS-module and hence is uniform. Thus M is a finite direct sum of uniform
submodules. Finally, M is Noetherian by Lemma 2.

A ring R is called a right CS-ring if the right R-module R is a CS-module. As an
immediate consequence of the above theorem we obtain [12, Theorem 3.1]:

COROLLARY 7. Any right hereditary right CS-ring is right Noetherian.

In [7, Proposition 2], Jendrup proved that if R is a commutative ring then any
hereditary module with Krull dimension has Krull dimension at most 1. In view
of this fact, Theorem 6 has another immediate corollary, as follows.

COROLLARY 8. Let M be an hereditary CS-module over a commutative ring R.
Then M is a direct sum of Noetherian uniform modules, each with Krull dimension
at most 1.

2. Continuous modaules.

In this section, our concern is with continuous modules. First of all, we consider
hereditary continuous modules.

PROPOSITION 9. Let R be any ring and M an hereditary continuous right
R-module. Then M is a direct sum of Noetherian uniform submodules, each with
endomorphism ring a division ring.

Proor. By Theorem 6, M is a direct sum of Noetherian uniform submodules.
Let N denote any uniform direct summand of M. By the proof of Theorem 6, N is
nonsingular. Let f € End(Ng). Suppose that f has non-zero kernel K. Let xe N.
There exists an essential right ideal E of R such that xE < K, and hence
f(X)E = 0, giving f(x) = 0. It follows that f = 0. Hence any non-zero endom-
phism f of N has zero kernel, and hence is an automorphism by [11, Proposition
2.7]. Thus End(Np) is a division ring.

LEMMA 10. Let R be any ring and M a finitely generated quasi-projective right
R-module such that Homg (M, N) # 0 for every non-zero submodule N of M. Then
M is semisimple if and only if the endomorphism ring End(Mg) of M is semiprime
Artinian.
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ProoF. See [5, p. 102 Remarks].

THEOREM 11. Let R be a ring which is either commutative or semiprime. Then
any hereditary continuous right R-module is semisimple.

Proor. Let M be an hereditary continuous module. By Proposition 9, we can
suppose, without loss of generality, that M is Noetherian and End(Mp) is
a division ring. If R is a commutative ring, then it is well known that M is
a self-generator, i.e. M generates all its submodules, and in particular
Hompg (M, N) % O for every non-zero submodule N of M. On the other hand, if
R is semiprime then Zelmanowitz [17, Proposition 1.2] has shown that
Homg (M, N) % 0 for every non-zero submodule N of M. In any case, M is
semisimple by Lemma 10.

Let R be a ring. In view of Theorem 11 (and Osofsky’s Theorem mentioned in the
introduction), it is natural to ask whether every hereditary injective (or even
continuous) right R-module is semisimple. That this is not the case can be seen by
the following example of Miller and Turnidge [10].

ExaMPLE 12. Let D be a division ring, and A the ring of countably infinite
column-finite matrices over the ring D. Let R denote the subring of 4 consisting
of all upper triangular matrices with entries from D. Forall 1 £i,j < oo, let ¢;;
denote the matrix unit of R having 1 as (i,j)th entry and all other entries 0. Let
M = e, R.Itis shownin [10] that M is a Noetherian injective right ideal of R. All
R-submodules of M appear in the chain M =e; R 2 e;,R>e;3R>... 201t
is easy to check that, for each j = 1, r(e,;) is a direct summand of Rg, and hence
e1;R is projective. Thus M is an hereditary injective right R-module which is not
semisimple.

Let R be any ring. A right R-module M will be called regular if every cyclic
submodule of M is a direct summand of M. Clearly, any regular uniform module
is simple. Thus Theorem 6 gives the following fact at once: for any ring R, every
regular hereditary CS-module over R is semisimple. In particular, if R is a right
hereditary ring then a right R-module M is semisimple whenever M is a regular
projective CS-module. The next result gives a necessary and sufficient condition
for a regular projective CS-module over a general ring to be semisimple.

PROPOSITION 13. Let R be any ring and let M be a right R-module such that M is
u regular projective CS-module. Then M is semisimple if and only if every sub-
module of M is a direct sum of countably generated modules.

PrOOF. The necessity is clear. Conversely, suppose that every submodule is
a direct sum of countably generated submodules. A standard argument shows
that every countably generated submodule of M is a direct sum of cyclic sub-
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modules and hence is projective. Thus every submodule of M is projective. Apply
Theorem 6.

COROLLARY 14. Let R be a right continuous ring such that every right ideal of
R is countably generated. Then R is a semiperfect ring. In particular, any countable
right continuous ring is semiperfect.

ProOF. Let J denote the Jacobson radical of R. Then the ring R/J is a von
Neumann regular right continuous ring and idempotents can be lifted (see, for
example, [11, Corollary 3.9 and Theorem 3.11]). Clearly, every right ideal of the
ring R/J can be countably generated. Thus R/J is semiprime Artinian by
Proposition 13. The last part is immediate.

In [8], Lawrence proved that a countable right self-injective ring satisfies ACC
onright annihilators, and thusis a QF-ring (see, for example [3, Theorem 24.20]).
Using similar methods, Megibben [9] proved that if R is an arbitrary ring and
M a countable injective R-module then R satisfies ACC on annihilators of
subsets of M, and hence M is X-injective (see, for example, [3, Proposition
20.3A]). We now give an example of a countable continuous commutative ring
which does not satisfy ACC on annihilators. Note that this ring is semiperfect
(Corollary 14) but is not semiprimary.

EXAMPLE 15. Let p be any rational prime. Let F = Z/Zp, the field of p elements
and G the Prufer p-group C(p*). Then the group algebra R = F[G]isa countable
continuous commutative ring which does satisfy ACC on annihilators.

Proor. Clearly the ring R is commutative. Suppose that G has the presenta-
tion

G ={x1,X3,X3,...| Xy =1L,xf,, =x; (i21))

Foreachi = 1, let G;denote the subgroup <{x;). It is well known that G is the union
of its finite subgroups G; (i = 1), and hence R is the union of its finite subrings
F[G;](i = 1). Thus Ris a countable ring. Let «, # be any non-zero elements of R.
Then there exists j = 1 such that o and f both belong to the subring S = F[G;] of
R. But G;isa cyclic p-group, so that S is an Artinian principalideal ring and hence
Sa = SBor SP < Sa. It follows that R is a chain ring (i.e. the ideals of R are totally
ordered). In particular, the R-module R is uniform, and hence R is a CS-ring.
It is well known that the augmentation ideal J of R is a nil ideal (just note that,
for eachi > 1, (x; — 1)? = x? — 1 = 0, where q = p). But R/J = F, so that R is
a local ring. In particular, the only direct summands of R are 0, R. Let ¢: R —» R
be any monomorphism. Suppose that ¢(R) < J. Let 4 = ¢(1), and let ndenote the
index of nilpotency of 1. Then ¢(A"~!) = A" !¢(1) = A" = 0, so that A" ! =0,
a contradiction. Thus ¢(R) & J, and hence ¢(R) = R. Thus R is a continuous ring.
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Next we show that R does not satisfy ACC on annihilators. For eachi > 1, let
J; denote the augmentation ideal of the subring F[G;]. Then J,R < J,R =
J3R < ...is an infinite ascending chain of annihilators in R. Moreover, the ring
R is not semiprimary since the Jacobson radical of R is J which is an idempotent
ideal, because, for each i > 1,

Xiv1 — 1 =(x,-— l)pergJZ.

Any Z-injective module is a direct sum of uniform modules (see, for example,
[3, Corollary 20.6A]). Hence, by [9], any countable injective module is a direct
sum of uniform modules. Using Corollary 14, we now show that a similar result
holds for countable continuous modules.

THEOREM 15. Let R be any ring. Then any countable continuous right R-module
is a direct sum of uniform modules.

PrROOF. Let M be a countable continuous right R-module. By the proof of
Lemma 1, M is a direct sum of submodules each containing a finitely generated
essential submodule. Without loss of generality, we can suppose that M contains
a finitely generated essential submodule N. Suppose that N = x;R + ... + x,R,
for some positive integer n. Let S = End(Mpg). Define an Abelian group
homomorphism n: § - M" by

) =(f(x1),.... fxa)) (f€S)
Clearly the kernel K of = is given by

K = {feS:f(N)=0}.

Let J denote the Jacobson radical of the ring S. By [11, Proposition 3.5 and
Theorem 3.11], the ring S/J is von Neumann regular and right continuous, where

J = {feS:ker f is essential in M}.

Clearly K < J. But M is countable, and hence so too is M", and also S/J. By
Corollary 14, S/J is semiprime Artinian. Thus S does not contain an infinite set of
orthogonal idempotents. By Lemma 5, M is a finite direct sum of indecompos-
able submodules. Now apply [11, Proposition 2.7] and note that every indecom-
posable continuous module is uniform.
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