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ON THE REGULARITY OF GRADED k-ALGEBRAS OF
KRULL DIMENSION <1

RICKARD SJOGREN

Let Fy,. .., F, be homogeneous polynomialsin 4 = C[Xj, ..., X,], such that the
Krull dimension of R = A/(Fy, ..., F,)is at most one. In his article [1] Briangon
gives an upper bound for the degrees of a system of generators for the relations
between F;,..., F,, depending on the degrees of the polynomials (which is less
than D, say). In this article we generalize Briangon’s results in two ways, using
homological algebra.

The relations can be measured by Tor4(R, C). First we extend the results to
cover also all higher syzygies Tor#(R, C), i = 2. We will show (especially) that

Tor(R,C)=0 for k>nD—(n—1)+i—1,

that is, I has Castelnuovo regularity nD — (n — 1).

Next, we relax a little on the condition dimR £ 1 to cover e.g. the case
R a two-dimensional domain. If this is the case, and, if in addition, R is Co-
hen-Macaulay, we compare our result with that of Gruson-Lazarsfeld-Peskine,
which states that I has Castelnuovo regularity s — n + 3 (s = mult. R).

After this introduction, we will now be more precise.

Let A =k[X,,...,X,], k an infinite field (if k is finite, just extend with
atranscendent), and let I be a homogeneousideal in 4, withdim A/ = n — c. We
begin by recalling some definitions from [1].

Firstly, for the definition of characteristic sequence for I, find a set of gener-
ators for I; say Fy,...,F, with degrees dy,...,d, respectively (d; < d;,). Let
Ij=(Fy,...,F), 1 <j<p,and put i, = inf{j|dimA/[; =n —t} for 1 St <c.
Now, define the characteristic sequence for I as

5() = (di,,...,d;).

This sequence is independent of the choice of generators for I.
Secondly, we’ll define two numbers, o and B, for an ideal I, when A/I is of
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dimension 0 or 1. Let the characteristic sequence be d,...,d, in the O-dimen-
sional case, and d4,...,d,_, in the 1-dimensional case.

DEFINITION 1. o(I) =) .6; — (n — 1)

DErFINITION 2. B(I) = inf {s|(A/I); = 0}, in the O-dimensional case, f(I) =
inf {s |dim,(A/I), = mult. (4/I) for all ¢ > s}, in the 1-dimensional case.

Next, we list some results from [ 1] (I is here homogeneous with characteristic
sequence O, . .., 0,.).

1) There is a regular sequence G4,. .., G, of forms in I with degrees d;,...,d,
resp.

2) If dim A/I = 0, then B(I) < o(I).

3) Ifdim A/I = 1, then B(I) £ o(I) + D, where D is a majorant for the degrees
of a set of generators for I.

We now turn to the generalizations mentioned earlier.

TreoReM 1. If dim A/I = 0, then Tor{,(A/1,k) = 0 for p = p(I) + i.

PrROOF. Xi,...,X, is a regular sequence in A4, so the Koszul complex
K(4;X4,...,X,)is acyclic, that is

() n
K 0-A[-n]->...o@A[-2]>PA[-1]-A4-0
1 1
is exact, but in dimension 0, where the homology is k. Applying the functor
A/l ® 4-on K gives us the complex

0—»/1[—n]—*...—>é)/i[——1]—+/1-*0 (A= A/D
1

Now, Tor#(A/I, k) = H,(A/I ® 4K), so it remains to show

H; ,(A/1 ®,K) =0 for p= B(I) +i.
But,ifwelet T; ... T;,1 < j; <... <j; < nbe a basis for (A/D% = 4;,and r an
arbitrary element in A/I, we get

deg(rT;,... Tj) =degr +i S () — 1 + i,

so every element in A; has degree < B(I) — 1 + i, thus

(A1 ®4K), =0  for p2 B) +i.
Done.

Let’s invoke some notation. Z(R) = {zero-divisors in R} (R any ring). Let
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R = ®¢ R; be a graded k-algebra, and m = @, R; it’s graded maximal ideal.
Define the socle of R as Soc(R) = 0:m.

It’s easy to verify that the following statements are equivalent.

i) Soc(4/)=0

il) me Ass (1)

iii) There is a non-zero divisor of positive degree in 4

Before stating and proving the next theorem we state this

LemMA 1. X & Z(A/I), deg X = 1 = Torf(4/I, k) ~ Tor/®(4/I + (X), k)

PROOF. We use the well-known change of rings spectral sequence (see [4],
p. 364)

Tory/™ (Tor (A/1, A/(X)), k) = Tor#(A/I, k)

It’s enough to show that this sequence collapses to the p-axis. Consider the exact
sequence 0> A% 4 - A/(X)—0, and tensor it with A/I;, this gives
Tor] (A4/1, A/(X)) = 0 for ¢ > 0.

THEOREM 2. If dim A/I = 1, then Tor{,(A/I,k) =0 forp>a(l)+ D +i— 1
(D is the majorant mentioned earlier).

Proor. We divide the proof in two parts, which together give the result. Let’s
write A/ = ® R;. We will show

a) If Soc(A/I) = @§ R, then Torf, (4/1,k) = 0 for p > max (N, a(l)) + i

b) Soc(A/I) =« @Y R;, with N = a(l) + D — 1

ProoF oF a). 1. First assume Soc(A4/I) =0. Choose a regular sequence
Gy,...,G,_ (according to 1) in the list above). Let G = (Gy,...,G,_ ). Now
choose an element X of degree 1 such that X ¢ Z(A/I) U Z(A/G) (this is possible,
since m¢ Ass(I) U Ass(G) and k infinite). Applying the lemma and Theorem 1 we
get

Tor{,(A/I,k) =~ Torf/®(A/I + (X),k) = 0 for p = B(I + (X)) +i.

Now, (I + (X)) £ ol + (X)) £ (G + (X)) = a(I) + 1, where the first inequal-
ity is due to 2) above, and the second to the fact that G + (X) = I + (X). Hence
Tor{!,(4/1,k) = 0 for p > o(I) + i.

II. Now assume Soc(4/I) + 0. Choose o, eSoc(4/I) of maximal degree.
Then, choose g, € Soc(A4/I + (a,)) of maximal degree. Note that deg o, < degoy,
and that factoring out with ¢, hasn’t changed the dimension (it’s still 1). Continue
this process, until it terminates (there are only finitely many monomials of degree
< N). This gives us elements 64,. .., d,, such that

Soc(A4/I') = 0, where I' = [ + (04,...,0,).
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Let K be the Koszul complex K(4; X,,. .., X,), which, as pointed out before, is
a resolution of k. Put K,;; = K®, A/J for J any ideal.

CLamm 1. H; ,(Kyp) =~ H; ,(Kyr) forp> N+

Before proving the claim, let’s finish the argument. The right-hand side is O for
p > a(I) + i, according to I above. It remains only to verify that a(I) = a(I'); but
this is clear, since I <= I'.

PRrROOF OF CLAIM. Let S; = (g4,...,0;), 1 £j =<t (So = 0). We will show, by
induction over j, that H; (K +5,) = H; ,(K4) forp> N +i(note I + S, =1I').
Consider the exact sequence

0—"0'1(/1/1 + Sj—l)_) A/I + Sj—-l —)A/I -+ SJ—>0

Tensoring the complex K with each term in this sequence gives us a short exact
sequence of complexes, namely

0> K® 0 A/l +5;_1) > K® Al +S;_; > K®,A/I +S; > 0
I I I

ajKA/I+Sj_1 KA/Hsj_l KA/1+s,-
This, in turn, yields a long exact sequence of graded 4-modules
- Hi(ajKA/I+Sj_1) - Hi(KA/Hs,_,) -
- Hi(KA/I+Sj) - i—1(0jKA/1+s,_,) - ...

Note here, that the boundary homomorphism, also, is of degree zero. Hence, we
get exact sequences of k-spaces, one for each p, which read

- i,p(UjKA/Hs,_,) - Hi,p(KA/Hs,_,) -
- Hi,p(KA/I+Sj) - i—l,p(ajKA/I+Sj_,) - ..

)]

Now, since (0;Kyr+s,_ )i = oA/ + S;—1)®, and dego; < N, we have that
(UjKA/I+Sj_1)i.p = O for p > N + i.
Fix i, fix p > N + i, and use (1); we get

Hi,p(KA/Hs,_,) > H,; ,(Kq/r +s,)-
The induction hypothesis now establishes the claim.

ProOF oF b). Choose a regular sequence Gy,...,G,- according to 1) above.
Choose a linear X as in the proof of a) above. Just as there, we get f(I + (X)) £
a(l) + 1. Multiplication by X (e 4/I) is a homomorphism of graded 4-modules of
degree 1, that is

@s:(A/D)y 5 (A4,

is a homorphism of k-spaces, for each s.
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Now,
sz2al) = s+ 120+ (X) = m*! I+ (X) = ¢, surjective,

and, since s = a(l) + D according to 3) above implies dim, (A4/I); = dim,(A/I), 4,
we have ¢, injective for s = a(I) + D. Since Soc(4/I) c Ker (mult. by X), the
result follows. )

We also have the result of Theorem 2 for 4/I a 2-dimensional domain; or, more
generally:

CoOROLLARY 1. If dim A/I — depth A/I <1, then Tor{,(A/1,k) =0 for p >
(n — t)(D — 1) + i, where t = depth A/I (depth A/I = length of a maximal regular
sequence in m/I).

PrROOF. We can assume that dim A/I —depthA/I =1. Let ¥,,..., Y be
aregular sequence in A/I such that deg Y; = 1. Repeated use of the lemma above
gives

Tor{ ,(A/I,k) ~ Torf/Y 1YY A/l + (Y,,..., Y;), k).
For large p, the right-hand side is zero, according to Theorem 2.

One way to define the Castelnuovo regularity for an ideal I in 4 is as follows

(cf. [2])
DEFINITION 3. I < A is t-regular if Torf,(A/I,k) = Ofor p >t +i — 1,Vi.
With this in mind, we can restate our two theorems:

1) A/I O-dimensional = [ f(I)-regular
2) A/I 1-dimensional => I o(I) + D-regular

But, since

B £ a(l) £ nD — (n — 1) in case 1), and
o) + DL (n—-1)D—(n—1)+ D =nD —(n— 1)in case 2),

we can cover both cases by saying that I is nD — n + 1-regular.
Now, finally, let’s discuss a connection between our result and a result of
Gruson-Lazarsfeld-Peskine [3], which states:

A/I 2-dimensional domain = A/Is — n + 3-regular (s = mult.(4/])).

To compare, we also need the additional condition, that A/I is Cohen-Macauley
(C-M). Let Y, Y, be a regular sequence in A, deg ¥, = 1.

Torf,(A/1,k) ~ Torf ¥+ Y2 (A/I + (¥, V), k) ~ Torf (A/, k)
where 4 = k[X,,...,X,-2].
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Our result for I tells us that Iis(n — 2)D — n + 3-regular. There is a theorem of
Treger [5], which assumes that A/I is a 2-dimensional C-M domain. It reads
t(hn —2) = s = D < t. This is obviously equivalent to

D < [s/(n — 2)], where [x] = min {integers N|N = x}.

So, I has Castelnuovo regularity (n — 2)[s/(n — 2)] — n + 3. This is the same
result as that of [3] if n — 2| s. With this assumption, we have the following string
of inequalities:

BH<La)Em—2)D—n+3<s—n+3.

Now, what happens in the case of equality in the theorem of [3], that is, I is
precisely s — n + 3-regular (i.e. and not less)? Since we have shown that I is
B(I)-regular, we must have equalities everywhere in the string above.

Equality in 1st step = I (and hence I) is gen. by a reg. sequence [1]
Equality in 2nd step = T (and hence I) is gen. in one degree, D.

So, I =(f1,...,fn-2), Where fi,..., f,-, is a regular sequence with deg f; = D;
whence s = D" 2.

Equality in 3rd step = (n — 2)D = D"~ 2,

But this is true only if n = 3 or n = 4, D = 2. Putting aside these cases leaves us
with a contradiction.

Conclusion: If n — 2| s and equality holds in the theorem of [3],and n = 3 or
n =4, D = 2 is not the case, then A/I can not be C-M.
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