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SINGLY SUPPORTED C*-ALGEBRAS

HUAXIN LIN*

Abstract.

We show that all support algebras of a g-unital C*-algebra A4 are *-isomorphic provided A4 has an
approximate identity consisting of projections. Other C*-algebras without projections are also
shown to be singly supported.

0. Introduction .

Let A be a o-unital C*-algebra. The concept of support algebra S of A was
introduced in [Li 1] and also studied in [Li 2]. We redefine it as follows:

DEerINITION 0.1. A subalgebra S of 4 is called a support algebra of A if
(1) S is a dense *-subalgebra of A4;

2 S= U,°,°= 1 S,, where each S, is a hereditary C*-subalgebra of 4;
(3) for each n there is e, € S such that 0 < ¢, £ 1 and

xe, =e,x =x forall xe8§,.

When 4 is commutative, so that 4 = Cy(X), where X is a locally compact,
o-compact Hausdorff space, then S = Cyo(X), the set of continuous functions
with compact support. Infact,in both [Li 1] and [Li 2], we view support algebras
as analogues of Cq(X). We notice that S has the following properties:

(i) For any he S, there is a ae S such that [h] < a, where [h] is the range
projection of h in A**, the enveloping von Neumann algebra of A. So every
element in S has a “compact” support.

(ii) There is a subsequence {n,} such that {e,, } forms an approximate identity
for Aande, , e, =e,e, ., =en.

Both (i) and (ii) are easily proved.

DEerINITION 0.2. Let a be a strictly positive element of 4. Define
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0 0st=1nm+1
) = {linear Im+1<t<l1/n.
1 I/ngt<ow

So f, is a continuous function defined on [0, ©). Set a, = f,(a). Then {a,} forms
an approximate identity for A. Moreover, a,. 14, = 4,8,+1 = a,.S04a,+, = [a,],
n=12,....

Let a and a, be asin 0.2. Set S = | )2 ; a, Aa,. Then it is easy to see that S is
a support algebra. We may write this support algebra S = S(a). In fact, every
support algebra arises this way. Suppose that S is a support algebra of A. By
(i), we may assume that {e,} forms an approximate identity for 4 and
€nt1€n = €nensy = €, Seta= Y= 2 "e, Thenaisastrictly positive element of
A. A straightforward computation involving functional calculus shows that

S=S@= ) a,4a,
n=1

Moreover, if {¢,} forms an approximate identity for A and €, 18, = €,&,+1 = &
then

S{en)) = Ql e, Aeg,

is also a support algebra of 4.

From [Li 2] we know that for a g-unital C*-algebra A, there may be more than
one support algebra S in A. Following [Li 2], we say that a o-unital C*-algebra
A is singly supported if every pair of support algebras are *-isomorphic. The
purpose of this note is to show that many o-unital C*-algebras are singly
supported. Notably, every C*- algebra with an approximate identity consisting
of a sequence of projections is singly supported. We also show that some
projectionsless C*-algebras are also singly supported.

Throughout this note, M(4) denotes the multiplier algebra of A (see
[Pe 3,3.12.4]).

1. C*-algebras with approximate identities consisting of projections.

LeMMa 1.1 ([Li 2, 7.6]). Let A be a g-unital C*-algebra and let {e,}, {p,} be two
approximate identities consisting of projections. Suppose that S, = S({e,}) and
S2 = S({pa}). Then there is a unitary ue M(A) such that

u*S U= S 2.
Moreover, we may choose the unitary u such that

lu—1] < 1.
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ProOOF. From the proof of [Li 2, 7.6] we see that we can make
lu—1] <1
or even smaller.

THEOREM 1.2. Let A be a C*-algebra with an approximate identity {e,} consist-
ing of projections. Then A is singly supported. Moreover, if S is a support algebra of
A, there is a unitary ue M(A) such that u*Su = { ) e, Ae, and |u — 1|| < 1.

PRrROOF. Suppose that S is a support algebra of A and S = S(a), where a is
a strictly positive element with 0 < a < 1. Set a, = f,(a) as in 0.2. Let p, denote
the spectral projection of a (computed in the enveloping von Neumann algebra)
corresponding to the interval (1/n, 1]. For each n, there is m such that

lena, — a,ll < 1/4.
Since {a,} forms an approximate identity for A, there is k(= n) such that
larenar — enl < 1/4.
Thus, by [Ef, A8], there is a projection g, in B; = (a, Aa,)~ such that
Ign — emll <1/2.
So

"qnan - an" é ”qnan - eman”
+ llema, — a,l| < 3/4.

Working now in the unitized algebra Bj (with 1 denoting the identity in By), we set
x, = (1 — a,)'?(1 — gq,). Then

(1 = ga) = xxxall = (1 = gn)an(l — gu)ll < 3/4.

So x*x,isinvertiblein (1 — g,)Bi(1 — gq,). Letv = x,|x,|~*. Then x, = v|x,|is the
polar decomposition of x,, in By. Thus v*v = 1 — g, and d, = vv* is a projection
in B,. Moreover, d, e(x,,ﬁkx,f)". Since (1 — a,)pp—1 = Pn-1(1 — a,) = 0, we ob-
tain that d, <1 —p,_,. Since v =1+ s for some s in By, it follows that
gn=1— w* =1 — g, is a projection in B,. Moreover,

Ogs1 ZGn 2 Pn-1 Z Gn-15

forn=23,....
Hence there is a subsequence {n, } and a sequence of projections {&} in 4 such
that

> ¢ 2a, forall k

a"k+1
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Therefore

U &Ae = | a,4a, = S(a).
k=1

n=1
It follows from Lemma 1.1, there is a unitary u € M(A4) such that

u*S(a)yu = | ) e,Ae,, and lu — 1| < 1.

n=1
This completes the proof.

REMARK 1.3. Some of the arguments used in the proof arose in a private
communication with Larry Brown.

REMARK 1.4. The original proof of 1.2 in the case A = C(§') ® K (where K as
usual denotes the algebra of compact operators on I?) was much more compli-
cated. Let feC(S')® K (= C(S*,K)) and [f] < b for some be C(S') ® K. It
was not clear (at least to the author then) that there should be a projection p in
C(S") ® K such that f < p.

COROLLARY 1.5. Let A be a separable C*-algebra with an approximate identity
consisting of projections. If ae A , such that [a] < b for some b€ A then there is
a projection pe A such that p = a.

REMARK 1.6. Many g-unital C*-algebras has an approximate identity consist-
ing of projections. For example, C*-algebras with real rank zero and C*-algebras
with the form B ® K, where B is unital. There are many more. Among them we
would like to present the following examples:

ExaMPLE 1.7. Let B be a o-unital simple C*-algebra with a non-trivial projec-
tion and let A = B® K. Then A has an approximate identity consisting of
projections. Consequently, A is singly supported.

Infact,by [Pe 1], Bhas LP(see [SZ 1, 1.]). It follows from [SZ 1, 1.1] that 4 has
an approximate identity consisting of projections.

ExaMPLE 1.8. Let
0-I-A4A-C-0

be a short exact sequence of o-unital C*-algebras. Suppose that C has an
approximate identity consisting of projections and I is a C*-algebra of real rank
zero and K,(I) = 0. Then A has an approximate identity consisting of projec-
tions. This follows easily from the proof of [SZ 2, 2.3]. Therefore A is singly
supported.
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2. C*-algebras which may not have projections.

In this section we show that some C*-algebras without approximate identities
consisting of projections or even without any (non-trivial) projections are singly
supported.

LemMa 2.1 (cf. [Ef, A.8]). Let A be a C*-algebra and I a closed ideal of A.
Suppose that n: A — A/l is the quotient map and a, e€ A, , e is a projection. If
n(e) = n(a), and

le —all <1/2,
then there is a projection p in the C*-subalgebra of A generated by a such that
le —pll <2lle —all
and n(p) = n(a) = n(e).
PROOF. Let 8 = |le — a||. Since sp(e) = {1,0}, we obtain that
sp(a) = [—d,0]u[l —4,1 + 4]

Then the function y = ys,; + 4 is continuous on sp(a). So p = y(a) is a projection
in the C*-subalgebra generated by a. Since

n(x(a)) = x(=(a)) = x(p)),
n(x(a)) = n(a) = n(p).

The rest of the proof is exactly the same as that of [Ef, A8.1].

LemMA 2.2 (cf. [Ef, A8.2 and A8.3]). Let A be a C*-algebra and I a closed ideal
of A. Suppose that n: A — A/l is the quotient map and e, p are projections in A. If

lle—pl <1
and n(e) = n(p), then there is a unitary u in A such that
u*eu =p, |lu—1|| = 2je - pl
and n(u) = 1.
PrOOF. Let x = pe. Notice that
n(x) = n(pe) = n(p) = n(e)
and n(x|x| ™) = n(p) = n(e). The proofis the same as that of [Ef, A8.2 and A8.3].

LEMMA 2.3. Let A be a o-unital C*-algebra with an approximate identity {e, }
consisting of projections, I a closed ideal of A and S a support algebra of A. Suppose
that 7 is the quotient map from A onto A/l and iie M(A/I) such that
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# )i = | nle(A/)ter)

and ||t — 1|| < 1. Then there is a unitary ue M(A) such that

u*Su = e,Ae,,
n=1
n(u) =4, and
flu—1]| < 1.

ProoF. It follows from 1.2 that S = | )& ; p,A4p,, Where {p,} is an approxi-
mate identity for 4 consisting of projections. Since

lu — 1] < 1,

there is he M(A/I),,. such that @ =exp(ih) with |k < 7. By Pedersen’s
Tietze-theorem [Pe 2, 10], there is h € M(A),, such that n(h) = h and ||h| = ||A].
Set uy = exp(ih). Since ||k = ||h||, by considering the commutative C*-subal-
gebra generated by h, we have

luo — 1l = Jlo — 1] < 1.

Setd = (1/2)(1 — |l — 1)), &, = upe,uf and §; = | )2~ , ¢, Ae,. Let g, and b, be in
S and S, respectively, such that 0 < a, <1 and 0 < b, £ 1, n(a,) = n(s,) and

n(b,) = n(pa)-
Now there is an integer n, such that

(X — paerll < /64
and
||Pn1e1pn, — &l < d/32.
Since a, €S = U,‘f; 1 Pn APy, We may assume that
Pn,G1 = G1D,, = Gy.
So
(Pn,€1Pn,) = TP, )7(e1)T(Pn,)
= 71(Pa,) (1) 7(Ps,) = (@) = 7(ey)-
By 2.1 and 2.2, there is a projection q; < p,, such that
lq; — &1l < é/16.
n(q1) = n(¢,) and a unitary w, € 4 such that

wiqiwy =gy, [[wy — 1] < 9/8.
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and n(w;) = 1. Set v; = w¥q,. Since
ler — qu1ll < 6/16

and

(1 — pa,)ed]l < 6/64,
there is an integer m; such that

I(em, — &0)(Pn, — q1)(Em, — €1) — (P, — q1)]| < I/8.

Since b,,, € S;, we may assume that

em b, = by &, = bpn,.

Therefore

7t[(sm, - 81)([3,,1 - ‘h)(ﬁml - 81)] = ﬂ(l’n, - 111)

By applying 2.1 and 2.2, we obtain a projection g, < ¢,, — ¢, and a unitary
wie[(l — &;)A(1 — &;)] such that

92 — (P, — g0l < 6/4,
m(q2) = n(pa, — q1),
(W)*(Pay, — 41)Wy = 45,
Iwy — (1 — &)l < 6/2

and n(w}) = 1 — &;. Set v, = (W))*(Pa, — q1)» 41 = &; and g, = p,, — 4.
Then

41 + 492 = Pnp 41 + 45 = Emy
v¥v; = g, vivf = ¢,
n(v;) = n(qy) = n(qy)s
and
lo: — g;ll < 6/2',
i=1,2

By repeating these argument and induction we construct sequences of projec-

tions {g,} and {q,} such that Y 2% | gm = Pu.> Y om=1qm = &m, and 7(qx) = 7(q}),
and a sequence of partial isometries {v;} such that

— * _ o
VUL = Gk, D = i

n(ve) = n(qe) = m(qi)
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and
loe — aill < 8/2"
It is easy to check that Y , v, is a unitary in M(A) satisfying
flo—1] <d,n(w) =1
and v*Sv = §;.
Now take u = ugv. Then
n() = n(uo)m(v) = m(uo) = 4,
u*Su = )., e Ae,
and
lu—1=Ja—-1|+d< 1.
This completes the proof.

Recall that a projection p in A** is open if it is in (4.)™ (see [Pe 3, 3.11.9,
3.11.10]) and p is closed if 1 — p is open. If pe A**, then j denotes the smallest
closed projection majorizing p. If p is open, we denote by Her(p) the hereditary
C*-subalgebra pA**p N A.

THEOREM 2.4. A g-unital C*-algebra is singly supported if it satisfies:

(1) thereis a sequence of closed ideals {I;} of A, if py is the central open projection
corresponding to I, then py 2 Py +1 = P+ 15

(2) there is an approximate identity {e,} for A such that if n,: A — A/I, denotes
the quotient map, then n(e,) is a projection for n < my for every k and some my;

(3) for any a€ A,

lim flap| = 0.
k-

Moreover, for each support algebra S of A, there is a unitary ue M(A) with
llu — 1|| < 1 such that

u*Su= ) e, Ae,.

n=1
Proor. For any ae A, and ¢ > 0 there is n such that
llapmll < & for m = n.

Let f, be the continuous function defined in 0.2 with k > 1/e,

Jflap,) = 0.
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Since p, commutes with a, we have

fl@)p, =0.
Since fi(a)a — a in norm, it follows that
Ao ={aeA:ap,=0 for some n}
is dense in A. Set B, = Her (1 — ). By (1), | Ji%; Bx = A,.
Set F,={f:f(p)=0, feQ}, where Q is the quasi-state space of 4. Let
F = {J& F.. We claim that F is weak *-dense in Q.
Suppose that o€ Q, ¢ > 0 and a,,a,,...,a,€ A and
G={peQ:lpo(a) — pa)l <& i=1,2,...,m}.
Let ¢ € G such that
I(po(ai) - (o(a;)| < 8/2a i= 1923- <M.
There is n such that
I fulen)ai — aill < &/2
fori=1,2,...,m. Set ¢; = o(f,(e,)"). Then
lpo(a:) — @1(a:)l
= lop(@) — (@)l + lo(a) — o1(a)l <e.
So ¢, €G. Since
leapill >0 as k— oo,

by taking a subsequence if necessary, we may assume (as in the first part of the
proof) that

f;l(en) Pn= 0.
Therefore ¢(p,) = 0. So @, € F. This proves the claim.

We may assume that m,(e,,) are projections in A/I, for all k < m. Let S = S(a),
where a is a strictly positive element, and g, be asin 0.2. So S = U,‘?: 18, Aa, and
m;(S) is a support algebra of 4/1,. Since {r,(e,)} forms an approximate identity
for A/I,, there is, by Theorem 1.2, a unitary u; € M(A/I,) such that

e

ut(my(Su, = U n(en) A/1y mlen)

n=1

and

luy -1 <16
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for some 6 > 0.

By Lemma 2.3 and induction, we have a sequence {u;} such that

(i) u, is a unitary in M(A/L);

(i) w¥m(S)m = Un=1 melen) A/ L(en);

(i) m(u,) = u, forall n = k;

) e — 1 <1-6k=12,....
For any k, if be B, then

(1 = Pt Tm(B) = th(1 — Pi) Tim(b) = thTu(b) = th T (b)(1 — D)

for m = k. Therefore u,,n,,(b) € n,,(By) for m = k. Since n,, |5, is an isomorphism,
there are unique u(b) and (b)u in B, such that for all m,

Tn(u(b)) = unm,(b) and
Ton(B)U) = Tpu(b) thy.

Since | )%, By is dense in 4 and
lu)l < bl and [(b)ull = (bl
we conclude that there is a u in M(4) such that for all be | )>, By,

Tm(U(b)) = tmT,(b) and
Tm((B)u) = (D)t

Therefore m,(u), for each k, u is a unitary and |ju — 1| £1 - < 1. Since
lapkll = 0, as k —» oo, we may assume that a, = f,(a)€ B,, by passing a subsequ-
ence. By (ii)

Uy () < (e,
for some m,. Therefore
u*a,u(l — p,) < ep, (1 — pa) < €,

Since u*a,u = u*a,u(l — p,), we conclude thatu*a,u < e,, . Similarly for eachm,
there is m, such that

ue,u* < ap,.

Therefore,

u*Su= () e,Ae,.

n=1
This completes the proof.

COROLLARY 2.5. Let X be alocally compact, 6-compact Hausdorff space and let
A be a C*-algebra with an approximate identity consisting of projections. Then
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Co(X) ® A is singly supported. Moreover, if S; and S, are two support algebras of
Co(X) ® A, there is a unitary u in M(Cy(X) ® A)) such that

u*Sju=S, and |u—1|| <1

PrOOF: It is enough to show that B = Cy(X) ® A satisfies the conditions (1),
(2) and (3) in 2.4. There are compact subsets X, and open subsets G, of X satisfy-
ing

X,cG,cX,;1, n=12,....
Identify Co(X) ® A with Cy(X, 4). Let
Ik = {fECO(X,A):f(x) = O lf xeXk},

and p, be the open projection corresponding to I,. Then (1) and (3) are satisfied.
Since X is normal, there are functions ki, on X such that 0 < b, £ 1, h(x) = 1 if
x € X, and hy(x) = 0if x e X\G,. Let {p,} be an approximate identity for 4 con-
sisting of projections. Set

e, =mp,, k=12,....

Then {e,} forms an approximate identity for B. Moreover,
n(e,) are projections

in A/I, for n = k. So the condition (3) is also satisfied.

REMARK 2.6. It should be noted if X is not compact but X is connected, then
Co(X) ® A has no nonzero projections.
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