COMPOSITION OF POTENTIALS WITH INNER FUNCTIONS

MANFRED STOLL

Abstract.

For a regular Borel measure μ on the unit disc U satisfying $(1 - |w|) \in L^1(\mu)$, let G_{μ} denote the Green potential of μ . In the paper we characterize those measures μ such that $G_{\mu} \circ f$ is a good plurisuperharmonic function on the unit ball B in \mathbb{C}^n (or U^n) for every inner function f on B (or U^n). The results are then used to obtain several results concerning the boundary behavior of $G_{\mu}(f(rt))$.

1. Introduction.

For $n \ge 1$, let B or B_n denote the unit ball in \mathbb{C}^n with boundary S. For convenience, when n = 1 we will denote the unit disc in \mathbb{C} by U, with boundary T. A nonconstant bounded holomorphic function $f: B \to U$ is called an *inner function* on B if $|f^*(t)| = 1$ a.e. on S, where

$$f^*(t) = \lim_{r \to 1} f(rt).$$

As in [7,9], an inner function f on B is said to be good if

(1.1)
$$\lim_{r \to 1} \int_{S} \log |f(rt)| d\sigma(t) = 0,$$

where σ denotes the normalized rotation-invariant measure on S. In the disc, the good inner functions are precisely the Blaschke products.

In the unit disc U, a superharmonic function V with $V(z) \ge 0$ is called a potential on U if the greatest harmonic minorant of V is the zero function. It is well known that this is equivalent to

(1.2)
$$\lim_{r \to 1} \int_0^{2\pi} V(re^{i\theta}) d\theta = 0,$$

Received August 1, 1991.

and if this is the case, then

(1.3)
$$V(z) = G_{\mu}(z) = \int_{U} G(z, w) d\mu(w),$$

where G is the Green function of U given by

$$G(z, w) = \log \left| \frac{1 - \bar{w}z}{w - z} \right|,$$

and μ is a nonnegative regular Borel measure on U satisfying

$$(1.4) \qquad \int_{U} (1-|w|) d\mu(w) < \infty.$$

The superharmonic function $G_{\mu}(z)$ as defined by (1.3) is called the *Green potential* of the measure μ . The condition (1.4) is necessary and sufficient that $G_{\mu} \not\equiv +\infty$.

In [3], M. Heins proved that if B(z) is a Blaschke product in U, then

(1.5)
$$\liminf_{r \to 1} (1 - r) \log \frac{1}{|B(rt)|} = 0$$

for all $t \in T$. This result was extended by the author in [10] to arbitrary Green potentials on U as follows:

THEOREM A. If G_{μ} is a Green potential of a measure μ satisfying (1.4), then for all curves $\gamma: [0,1) \to U$ with $\lim_{r\to 1} \gamma(r) = 1$,

(1.6)
$$\liminf_{r \to 1} (1 - |\gamma(r)|) G_{\mu}(\gamma(r)t) = 0$$

for all $t \in T$.

If B is a Blaschke product with zeros $\{a_n\}$, $a_n \neq 0$, satisfying the Blaschke condition $\sum (1 - |a_n|) < \infty$, then $-\log |B(z)| = G_{\mu}(z)$ where $\mu = \sum \delta_{a_n}$, and δ_{a_n} is point mass measure at a_n . Thus (1.5) follows from (1.6) with $\gamma(r) = r$. An alternate way to consider the function $-\log |B(z)|$ is as the composition of the potential G_{δ_0} with the inner function B, i.e.,

$$-\log|B(z)| = G_{\delta_0}(B(z)),$$

where δ_0 is point mass at 0. The purpose of the paper is to consider the composition of a potential G_{μ} with an inner function f on the ball B (or the polydisc U^n), and to consider generalizations of (1.5) for $G_{\mu} \circ f$.

As we will see in section 2, if G_{μ} is the potential of a regular Borel measure μ , then $G_{\mu} \circ f$ is plurisuperharmonic on B for every nonconstant holomorphic function $f: B \to U$. In analogy with (1.1) and (1.2), we will say that a plurisuper-

harmonic function $V \ge 0$ on B is good if

(1.7)
$$\lim_{r \to 1} \int_{S} V(rt) d\sigma(t) = 0.$$

Since plurisuperharmonic functions are also superharmonic on B, any plurisuperharmonic function V satisfying (1.7) can also be expressed as $V = G_v$ for some measure v on B, where G is the euclidean Green function for B.

The main result of the paper (Theorem 1) characterizes the regular Borel measures μ on U such that $G_{\mu} \circ f$ is good for every inner function f on B. Specifically, we will prove that $G_{\mu} \circ f$ is good for every inner function f if and only $\mu(K) = 0$ for every compact subset K of U of capacity zero. As a consequence of Theorem 1 and Theorem A, for such a measure μ ,

(1.8)
$$\lim_{r \to 1} \inf(1 - r) G_{\mu}(f(rt)) = 0$$

for every inner function $f: U \to U$ and every $t \in T$. By example, we will show that (1.8) in general is false for n > 1. However, in Theorem 6, we will prove that if we restrict ourselves to those $t \in S$ for which $|f^*(t)| = 1$, then (1.8) is valid for every potential G_{μ} .

The main result of the paper is stated and proved in section 3. In section 4 we give two examples of measures satisfying the hypothesis $\mu(K) = 0$ for every compact subset K of U of capacity zero. Finally, in section 5 we give several applications of the result to boundary limits of $G_{\mu}(f(rt))$.

2. Preliminaries.

Let Ω be a domain in \mathbb{C}^n . A lower semicontinuous function $V: \Omega \to (-\infty, \infty]$, with $V \not\equiv \infty$, is said to be *plurisuperharmonic* on Ω if for each $a \in \Omega$ and $b \in \mathbb{C}^n$, the function $\lambda \to V(a + \lambda b)$ is superharmonic in a neighborhood of 0 in C. The class of *plurisubharmonic* and the class of *pluriharmonic* functions on Ω are defined analogously. As in the unit disc, it is easily shown that if $V \geq 0$ is a good plurisuperharmonic function on B, then the greatest pluriharmonic minorant of V is the zero function.

For a compact subset K of U, the (Green) capacity of K is defined to be

$$C_g(K) = \sup \{ \mu(K) : S_\mu \subset K \text{ and } G_\mu \leq 1 \text{ on } K \},$$

where S_{μ} denotes the *support* of the measure μ . Thus a compact subset K of U has *positive capacity* if there exists a positive measure μ supported on K such that the Green potential G_{μ} is bounded on U. An arbitrary set E has positive capacity if some compact subset of E has positive capacity.

For a fixed compact set K, let \mathcal{M}_{K}^{+} denote the set of Borel measures μ with

 $S_{\mu} \subset K$ and $\mu(K) = 1$. A measure $\mu \in \mathcal{M}_{K}^{+}$ is said to have finite energy if $I_{g}(\mu) < \infty$, where $I_{g}(\mu)$ denotes the energy integral of μ given by

$$I_g(\mu) = \int_K G_{\mu}(z) \, d\mu(z).$$

It is well known that if $C_g(K) > 0$, then there exists a unique measure $\mu_K \in \mathcal{M}_K^+$, called the *equilibrium measure* of K, which minimizes the energy integral and satisfies

$$I_g(\mu_K) = \frac{1}{C_g(K)}.$$

Finally, for $w \in U$, let φ_w be the biholomorphic automorphism of U given by

$$\varphi_w(z) = \frac{w-z}{1-\bar{w}z}.$$

Then $G(z, w) = -\log |\varphi_w(z)|$.

LEMMA 1. If f is an inner function on B, then

- (1) $\varphi \circ f$ is an inner function on B for every inner function φ on U, and
- (2) $\varphi_w \circ f$ is a good inner function on B for all $w \in U$ except possibly a subset of U of capacity zero.

PROOF. That $\varphi \circ f$ is an inner function on B is due to W. Rudin [9, Theorem 17.5]. The proof of (2) is identical to the corresponding result in the unit disc, which is initially due to O. Frostman [2].

LEMMA 2. Let G_{μ} be the Green potential of a regular Borel measure μ satisfying (1.4) and let $f: B \to U$ be a nonconstant holomorphic function. Then

- (1) $G_{\mu}(f(z))$ is plurisuperharmonic on B, and
- (2) $G_{\mu}(f(z))$ is pluriharmonic for all $z \in B$ such that $f(z) \notin S_{\mu}$.

PROOF. The proof is an immediate consequence of the fact that for fixed $w \in U$, the function $z \to G(f(z), w)$ is plurisuperharmonic on B, and pluriharmonic for all z such that $f(z) \neq w$.

Lemma 3. If V is plurisuperharmonic on B, then for $0 < \rho < r < 1$,

(2.2)
$$\int_{S} V(rt) d\sigma(t) \leq \int_{S} V(\rho t) d\sigma(t).$$

Proof. Since (2.2) holds for superharmonic functions (e.g. [4, p. 103]), it also holds for plurisuperharmonic functions.

REMARK. If B is replaced by the unit polydisc U^n in \mathbb{C}^n , then the results of Lemmas 1 through 3 are still valid for inner functions on U^n . In this setting, a bounded holomorphic function f on U^n is inner if $|f^*(t)| = 1$ a.e. on T^n , where $f^*(t) = \lim_{r \to 1} f(rt)$ [7], and a nonnegative plurisuperharmonic function V on U^n is good, if

(2.3)
$$\lim_{r \to 1} \int_{T_n} V(rt) \, dm_n(t) = 0,$$

where m_n is normalized Lebesgue measure on T^n .

3. Composition of potentials with inner functions.

If f is an inner function on B (or U^n), let

$$E_f = \{ w \in U : \varphi_w \circ f \text{ is not good} \}.$$

That the set E_f is a Borel set is obtained as follows: For $w \in U$ and 0 < r < 1, set

(3.1)
$$U_r(w) = \int_S G(f(rt), w) d\sigma(t).$$

Then U_r is lower semicontinuous on U, and thus $U(w) = \lim_{r \to 1} U_r(w)$ is Borel measurable on U. Since $E_f = \{w : U(w) > 0\}$, E_f is a Borel set.

Theorem 1. Let G_{μ} be the potential of a regular Borel measure μ satisfying (1.4).

- (1) If f is an inner function on B (or U^n), then $G_{\mu} \circ f$ is good if and only if $\mu(E_f) = 0$.
- (2) $G_{\mu} \circ f$ is good for every inner function f on B (or U^n) if and only if $\mu(K) = 0$ for every compact subset K of U of capacity zero

PROOF. (1). Let f be a nonconstant inner function on B (or U^n). By Tonelli's Theorem,

$$(3.2) \qquad \int_{S} G_{\mu}(f(rt)) d\sigma(t) = \int_{U} \int_{S} G(f(rt), w) d\sigma(t) d\mu(w) = \int_{U} U_{r}(w) d\mu(w),$$

where U_r is as defined by (3.1). If f is an inner function on U^n , the integration is taken over T^n .

Suppose $\mu(E_f) = 0$. Since $\varphi_w \circ f$ is good for every $w \in U \sim E_f$,

$$\lim_{r\to 1} U_r(w) = 0 \quad \mu \text{-a.e.}.$$

Since $z \to G(f(z), w)$ is plurisuperharmonic on B for each $w \in U$, by Lemma 3 we have $0 \le U_r(w) \le U_*(w)$ for all $w \in U$ and all $r, \frac{1}{2} \le r < 1$. Furthermore,

$$\int_{U} U_{\frac{1}{2}}(w) d\mu(w) = \int_{S} G_{\mu}(f(rt)) d\sigma(t) < \infty,$$

since $G_{\mu} \circ f$ is superharmonic (e.g. [4, p. 67]). Thus by (3.2) and Lebesgue's Dominated Convergence Theorem,

$$\lim_{r \to 1} \int_{S} G_{\mu}(f(rt)) d\sigma(t) = \lim_{r \to 1} \int_{U} U_{r}(w) d\mu(w) = \int_{U} \lim_{r \to 1} U_{r}(w) d\mu(w) = 0.$$

Conversely, suppose $\mu(E_f) > 0$. Since μ is regular, there exists a compact set K with $K \subset E_f$ such that $\mu(K) > 0$. Thus

$$G_{\mu}(f(z)) \ge \int_{K} G(f(z), w) d\mu(w),$$

and with U_r as defined by (3.1),

$$\int_{S} G_{\mu}(f(rt)) d\sigma(t) \ge \int_{K} U_{r}(w) d\mu(w).$$

But $U(w) = \lim_{r \to 1} U_r(w) > 0$ for all $w \in K$. Hence by Fatou's Lemma,

$$0 < \int_{K} U(w) d\mu(w) \leq \lim_{r \to 1} \int_{K} U_{r}(w) d\mu(w) \leq \lim_{r \to 1} \int_{S} G_{\mu}(f(rt)) d\sigma(t),$$

and thus $G_{\mu} \circ f$ is not good.

PROOF OF (2). Let f be any inner function on B (or U^n). Suppose μ satisfies $\mu(K) = 0$ for every compact subset K of U of capacity zero. By Lemma 1, E_f has capacity zero. Since μ is regular, $\mu(E_f) = \sup \{\mu(K)\}$, where the sup is taken over all compacts subsets K of E_f . Thus $\mu(E_f) = 0$, and thus $G_{\mu} \circ f$ is good by (1).

Conversely, Suppose K is a compact subset of U of capacity zero with $\mu(K) > 0$. By [1, p. 118] there exists an inner function φ on U whose range is precisely $U \sim K$. Let g be any inner function on B. Then $f(z) = \varphi(g(z))$ is an inner function on B whose range is contained in $U \sim K$. Since

$$G_{\mu}(f(z)) \ge \int_{K} G(f(z), w) d\mu(w),$$

$$\int_{S} G_{\mu}(f(rt)) d\sigma(t) \ge \int_{K} \int_{S} \log \left| \frac{1 - \bar{\omega}f(rt)}{w - f(rt)} \right| d\sigma(t) d\mu(w).$$

But F(z) = G(f(z), w) is pluriharmonic on B for all $w \in K$. Therefore

$$\int_{S} G(f(rt), w) d\sigma(t) = G(f(0), w),$$

and hence, for all r, 0 < r < 1,

$$\int_{S} G_{\mu}(f(rt)) d\sigma(t) \ge \int_{K} G(f(0), w) d\mu(w),$$

which proves the result.

4. Examples.

In this section we provide two examples of measures satisfying (1.4) and $\mu(K) = 0$ for every compact set K with $C_g(K) = 0$. If μ is a regular Borel measure on U, we adopt the notation $\mu \ll C_g$ to mean that $\mu(K) = 0$ for every compact subset K of U with $C_g(K) = 0$. This notion is sometimes referred to as C-absolute continuity.

EXAMPLE 1. Let h be a nonnegative Borel measurable function on U satisfying

$$(4.1) \qquad \int_{U} (1-|w|)h(w)\,dA(w) < \infty,$$

where A denotes area measure on U. Then μ defined by

(4.2)
$$\mu(E) = \int_{E} h(w) dA(w)$$

is clearly a regular Borel measure on U satisfying (1.4). Since every compact set K of capacity zero has planar measure zero, $\mu \ll C_q$.

EXAMPLE 2. Let K be any compact subset of U with $C_g(K) > 0$, and let μ_K be the equilibrium measure of K as defined in section 2. Suppose C is any compact subset of U with $C_g(C) = 0$. Then

$$\mu_{K}(C) = \mu_{K}(C \sim K) + \mu_{K}(C \cap K).$$

Since $C \sim K \subset \tilde{S}_{\mu_K}$, $\mu_K(C \sim K) = 0$. If $\mu_K(C \cap K) > 0$, then $C_g(C \cap K) > 0$, and thus $C_g(C) > 0$, which is a contradiction. Thus $\mu_K \prec \prec C_g$. In fact, the same argument shows that if μ is any measure with $S_\mu \subset K$ for which the energy integral $I_g(\mu) < \infty$, then $\mu \prec \prec C_g$

As a consequence of this example we obtain the following variation of the Theorem of Frostman:

THEOREM 2. If E is a subset of U with $C_g(E) > 0$, then there exists a measure μ on U with $S_{\mu} \subset E$ such that $G_{\mu} \circ f$ is good for all inner functions f on B (or U^n).

5. Applications to Boundary limits.

In this section we will consider several applications of Theorem 1 to boundary limits of $G_{\mu}(f(rt))$, where f is an inner function on B or U^{n} . The results are new even in the case n = 1.

If G_{μ} is the potential of a measure μ on U, then by a classical result of Littlewood [5],

$$\lim_{r \to 1} G_{\mu}(rt) = 0$$

for almost every $t \in T$. It is also known (see [11]) that in general G_{μ} need not have a nontangential limit at any point $t \in T$, even if μ is an absolutely continuous measure. However, for $G_{\mu}(f(z))$ we have the following:

THEOREM 3. Let G_{μ} be the potential of a regular Borel measure μ satisfying (1.4).

(1) If f is an inner function on B (or U^n) for which $\mu(E_f) = 0$, then

(5.2)
$$\lim_{r \to 1} G_{\mu}(f(rt)) = 0 \quad \text{a.e. } t \in S \text{ (or } T^n).$$

(2) If $\mu \ll C_g$, then (5.2) holds for every inner function f on B (or U^n).

PROOF. Let $V(z) = G_{\mu}(f(z))$. Thus by Theorem 1, if either (1) or (2) hold, V is a good plurisuperharmonic function on B (or U^n). By [8, Prop. 1.4.7], for $n \ge 2$,

$$\int_{S} V(rt) d\sigma(t) = \int_{S} \frac{1}{2\pi} \int_{0}^{2\pi} V(re^{i\theta}t) d\theta d\sigma(t).$$

As a consequence, the function V_t defined on U by $V_t(\lambda t)$ is a potential on U for almost every $t \in S$ (or T^n). When n = 1, V itself is a potential on U. Thus (5.2) is now an immediate consequence of (5.1).

COROLLARY 1. If B is a finite Blaschke product in U, then

(5.3)
$$\lim_{r \to 1} G_{\mu}(B(rt)) = 0 \quad \text{a.e. } t \in T$$

for every potential G_{μ} on U.

PROOF. If B is a finite Blaschke product, then $\varphi_w \circ B$ is good for every $w \in U$. Thus $E_B = \phi$.

Another application of Theorem 1 is the following generalization of the result (1.5) of M. Heins:

THEOREM 4. Let G_{μ} be the Green potential of a regular Borel measure μ satisfying (1.4).

(1) If f is an inner function on U for which $\mu(E_f) = 0$, then

(5.4)
$$\lim_{r \to 1} \inf(1 - r)G_{\mu}(f(rt)) = 0 \quad \text{for all } t \in T.$$

(2) If $\mu \ll C_a$, then (5.4) holds for every inner function f on U.

PROOF. If either (1) or (2) hold, then by Theorem 1, $V_f(z) = G_{\mu}(f(z))$ is a potential on U. Thus the result follows from Theorem A with $\gamma(r) = r$.

Theorem 4 can be extended to inner functions on U^n as follows:

THEOREM 5. If $\mu \ll C_a$, then

(5.5)
$$\lim_{(r)\to(1)}\inf\left(\prod_{j=1}^n(1-r_j)\right) G_{\mu}(f(r_1t_1,\ldots,r_nt_n))=0$$

for all $t \in T^n$, where $(r) = (r_1, \ldots, r_n)$.

PROOF. If f is an inner function on U^n , then since $V_f(z) = G_{\mu}(f(z))$ is plurisuperharmonic on U^n , V_f is also n-superharmonic on U^n , i.e., superharmonic in each variable z_j . The result now follows by [6, Lemma 3.1].

The following example shows that for $n \ge 2$, the analogue of (5.4) is not valid for the unit ball B in \mathbb{C}^n .

EXAMPLE 3. There exists a measure $\mu \ll C_g$, an inner function f on B, and $t \in S$, such that

$$(5.6) G_u(f(rt)) \equiv \infty$$

for all r, 0 < r < 1.

PROOF. Let μ be an absolutely continuous regular Borel measure given by a nonnegative Borel measurable function h satisfying

(5.7)
$$\int_{U} h(w) \log \frac{1}{|w|} dA(w) = \infty.$$

An example of such an h is $h(w) = |w|^{-2} (-\log |w|)^{-2}$ for $|w| \le \frac{1}{2}$, and h(w) = 0 elsewhere. If μ is the measure given by (4.2), then $\mu << C_g$ and $G_{\mu}(0) = \infty$. For $z = (z_1, \ldots, z_n)$, let $z' = (z_1, \ldots, z_{n-1})$. By [9, Theorem 8.4], there exists a nonconstant inner function f on B_n such that f(z', 0) = 0 for all $z' \in B_{n-1}$. Thus if $t \in S$ is such that $t_n = 0$, we have f(rt) = f(rt', 0) = 0. Thus for this f and $t, G_{\mu}(f(rt)) \equiv \infty$ for all r, 0 < r < 1.

Although the above example shows that the analogue of (5.4) does not in general hold for inner functions on B_n , $n \ge 2$, the result is valid for those boundary points $t \in S$ for which $|f^*(t)| = 1$.

THEOREM 6. Let G_{μ} be the potential of a measure μ satisfying (1.4) and let f be an inner function on B. Then

(5.8)
$$\lim_{r \to 1} \inf(1 - r) G_{\mu}(f(rt)) = 0$$

for all $t \in S$ for which $|f^*(t)| = 1$.

PROOF. Let $t \in S$ be such that $|f^*(t)| = 1$, and let γ be the curve in U given by $\gamma(r) = f(rt)\overline{\beta}$, where $\beta = f^*(t)$. Then $\gamma(r) \to 1$ as $r \to 1$, and $G_{\mu}(f(rt)) = G_{\mu}(\gamma(r)\beta)$. Thus by Theorem A,

$$\liminf_{r \to 1} (1 - |f(rt)|) G_{\mu}(f(rt)) = 0.$$

Let b = f(0). By Schwartz's Lemma [8, Theorem 8.1.4],

$$\frac{|1 - \bar{b}f(z)|^2}{1 - |f(z)|^2} \le \frac{1 - |b|^2}{1 - |z|^2}$$

for all $z \in B$. As a consequence,

$$\frac{1-r^2}{1-|f(rt)|^2} \le \frac{1-|b|^2}{|1-\bar{b}f(rt)|^2} \le \frac{1+|b|}{1-|b|}.$$

Thus there exists a constant C such that

$$(1-r)G_{\mu}(f(rt)) \leq C(1-|f(rt)|)G_{\mu}(f(rt))$$

for all r, 0 < r < 1, from which the result now follows.

REMARKS.

(1) In Theorem 4, we must have $\mu(E_f) = 0$. For example, if we take

$$f(z) = \exp\left(\frac{z+1}{z-1}\right),\,$$

then $0 \in E_f$. Thus if $\mu = \delta_0$, for this f,

$$(1-r)G_{\delta_0}(f(r)) = 1+r.$$

(2) In Theorem 6 we did not require that $\mu \ll C_g$. If indeed $\mu \ll C_g$ and f is an inner function on B, then as a consequence of Theorem 4, (5.8) will hold for all $t \in S$ for which f_t is inner.

REFERENCES

- 1. S. T. Fisher, Function Theory on Planar Domains, John Wiley & Sons, New York, 1983.
- 2. O. Frostman, Potential d'équilibre et capacité des ensembles, Lunds Univ. Mat. Sem. 3 (1935).
- 3. M. Heins, The minimum modulus of a bounded analytic function, Duke Math. J. 14(1947), 179-215.
- 4. L. L. Helms, Introduction to Potential Theory, Wiley-Interscience, New York, 1969.

- 5. J. E. Littlewood, On functions subharmonic in a circle, II, Proc. London Math. Soc. 28 (1929), 383-394.
- W. Nestlerode and M. Stoll, Radial limits of n-subharmonic functions in the polydisc, Trans. Amer. Math. Soc. 279 (1983), 691-703.
- 7. W. Rudin, Function Theory in Polydiscs, Benjamin, New York, 1969.
- 8. W. Rudin, Function Theory in the Unit Ball of Cⁿ, Springer-Verlag, New York, 1980.
- 9. W. Rudin, New Constructions of Functions Holomorphic in the Unit Ball of Cⁿ, Amer. Math. Soc., Providence, R.I., 1986.
- 10. M. Stoll, Boundary limits of Green potentials in the unit disc, Arch. Math. 44 (1985), 451-455.
- 11. E. Tolsted, Limiting values of subharmonic functions, Proc. Amer. Math. Soc. 1 (1950), 636-647.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF SOUTH CAROLINA COLUMBIA, SC 29208 U.S.A.