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COMPOSITION OF POTENTIALS WITH
INNER FUNCTIONS

MANFRED STOLL

Abstract.

For a regular Borel measure p on the unit disc U satisfying (1 — |w|) € L (), let G, denote the Green
potential of . In the paper we characterize those measures u such that G, of is a good plurisuperhar-
monic function on the unit ball Bin C" (or U") for every inner function f on B (or U"). The results are
then used to obtain several results concerning the boundary behavior of G,(f(rt)).

1. Introduction.

For n = 1, let B or B, denote the unit ball in C" with boundary S. For conveni-
ence, when n =1 we will denote the unit disc in C by U, with boundary T.
A nonconstant bounded holomorphic function f : B — U is called an inner func-
tion on Bif | f*(t)] = 1 a.e. on S, where

S¥(®) = lim f(re).

r—1

As in [7,9], an inner function f on B is said to be good if

(1.1) lim J log|f(rt)| da(t) = 0,
r=1 JS
where o denotes the normalized rotation-invariant measure on S. In the disc, the
good inner functions are precisely the Blaschke products.
In the unit disc U, a superharmonic function V with V(z) = 0 s called a poten-
tial on U if the greatest harmonic minorant of V is the zero function. It is well
known that this is equivalent to

2n
(1.2) limf V(re®)do = 0,

r-14J0
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and if this is the case, then

(1.3) V(z) = G,(2) = J G(z, w)du(w),
U
where G is the Green function of U given by
Gz.w) = log |21,
w—z

and p is a nonnegative regular Borel measure on U satisfying

(1.4 JU(I — |w])du(w) < oo.

The superharmonic function G,(z) as defined by (1.3)is called the Green potential of
the measure u. The condition (1.4) is necessary and sufficient that G, & + co.
In [3], M. Heins proved that if B(z) is a Blaschke product in U, then

1
(1.5 liminf(1 —r)lo =0
) minf(l = rlog 1z

for all te T. This result was extended by the author in [10] to arbitrary Green
potentials on U as follows:

THEOREM A. If G, is a Green potential of a measure p satisfying (1.4), then for all
curves y:[0,1) > U with lim,_, { y(r) = 1,

(1.6) liminf(1 — [y(")) G (y(r)t) =0

r—1

forallteT.

If B is a Blaschke product with zeros {a,}, a, + 0, satisfying the Blaschke
condition ) (1 — |a,|) < oo, then —log|B(z)| = G,(z) where u = Zéa,.’ and ¢, is
point mass measure at a,. Thus (1.5) follows from (1.6) with y(r) = r. An alternate
way to consider the function —log|B(z)| is as the composition of the potential G,
with the inner function B, i.e.,

—log|B(2)| = G;,(B(z)),

where §, is point mass at 0. The purpose of the paper is to consider the
composition of a potential G, with an inner function f on the ball B (or the
polydisc U"), and to consider generalizations of (1.5) for G, ° f.

As we will see in section 2, if G, is the potential of a regular Borel measure p,
then G,° f is plurisuperharmonic on B for every nonconstant holomorphic
function f: B — U. In analogy with (1.1) and (1.2), we will say that a plurisuper-
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harmonic function V = 0 on B is good if

r—1

(1.7) lim j V(rt)da(t) = 0.
N

Since plurisuperharmonic functions are also superharmonic on B, any plu-
risuperharmonic function V satisfying (1.7) can also be expressed as V = G, for
some measure v on B, where G is the euclidean Green function for B.

The main result of the paper (Theorem 1) characterizes the regular Borel
measures u on U such that G,° f is good for every inner function f on B.
Specifically, we will prove that G, ° f is good for every inner function f if and only
u(K) = 0 for every compact subset K of U of capacity zero. As a consequence of
Theorem 1 and Theorem A, for such a measure y,

(1.8) liminf(1 —r)G,(f(rt)) =0

r—1
for every inner function f: U — U and every t € T. By example, we will show that
(1.8) in general is false for n > 1. However, in Theorem 6, we will prove that if we
restrict ourselves to those t€ S for which | f*(t)] = 1, then (1.8) is valid for every
potential G,,.

The main result of the paper is stated and proved in section 3. In section 4 we
give two examples of measures satisfying the hypothesis u(K) =0 for every
compact subset K of U of capacity zero. Finally, in section 5 we give several
applications of the result to boundary limits of G,,(f(rt)).

2. Preliminaries.

Let Q be a domain in C". A lower semicontinuous function V: Q - (— o0, 0],
with V F o0, is said to be plurisuperharmonic on Q if for each ae Q and b e C", the
function 4 — V(a + Ab) is superharmonic in a neighborhood of 0 in C. The class
of plurisubharmonic and the class of pluriharmonic functions on Q are defined
analogously. As in the unit disc, it is easily shown that if >0 is a good
plurisuperharmonic function on B, then the greatest pluriharmonic minorant of
V is the zero function.
For a compact subset K of U, the (Green) capacity of K is defined to be

C,(K) = sup {u(K):S, = K and G, < 1 on K},

where S, denotes the support of the measure u. Thus a compact subset K of U has
positive capacity if there exists a positive measure y supported on K such that the
Green potential G, is bounded on U. An arbitrary set E has positive capacity if
some compact subset of E has positive capacity.

For a fixed compact set K, let #¢ denote the set of Borel measures u with
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S, = Kand u(K) = 1. Ameasure ue.# issaid to have finite energy if I() < oo,
where I,(1) denotes the energy integral of u given by

I = f Gule)du).

It is well known that if C,(K) > 0, then there exists a unique measure g €4,
called the equilibrium measure of K, which minimizes the energy integral and
satisfies

Ig(#x) = m

Finally, for we U, let ¢,, be the biholomorphic automorphism of U given by

—Z

w
Ow(z) = =
— WZ

Then G(z,w) = —log|ep.(2)l.

LEMMA 1. If f is an inner function on B, then

(1) @ o f is an inner function on B for every inner function ¢ on U, and

(2) @, ° f is a good inner function on B for all we U except possibly a subset of
U of capacity zero.

Proor. That ¢ f is an inner function on B is due to W. Rudin [9, Theorem
17.5]. The proof of (2) is identical to the corresponding result in the unit disc,
which is initially due to O. Frostman [2].

LeMMA 2. Let G, be the Green potential of a regular Borel measure y satisfying
(1.4) and let f: B— U be a nonconstant holomorphic function. Then

(1) G,(f(2)) is plurisuperharmonic on B, and

(2) G.(f(2)) is pluriharmonic for all z€ B such that f(z)¢S,.

PrOOF. The proofis an immediate consequence of the fact that for fixed we U,
the function z — G(f(z), w) is plurisuperharmonic on B, and pluriharmonic for all
z such that f(z) + w.

LeMMA 3. If V is plurisuperharmonic on B, then for 0 < p <r < 1,

(2.2) J V(rt)do(t) < J V(pt) do(t).
S N

PRrOOF. Since (2.2) holds for superharmonic functions (e.g. [4, p. 103]), it also
holds for plurisuperharmonic functions.
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ReMARK. If B is replaced by the unit polydisc U” in C”, then the results of
Lemmas 1 through 3 are still valid for inner functions on U”. In this setting,
a bounded holomorphic function f on U"is inner if | f *(t)] = 1 a.e. on T", where
f*(®) = lim,,, f(rt) [7], and a nonnegative plurisuperharmonic function V on U"
is good, if

2.3) lim J V(rt)dm,(t) = 0,
r-1 n

where m, is normalized Lebesgue measure on 7"

3. Composition of potentials with inner functions.
If f is an inner function on B (or U"), let
E;={weU:¢,-° fis not good}.

That the set E is a Borel set is obtained as follows: Forwe U and 0 < r < 1, set

3.1 U,(w) = J G(f(rt),w)da(t).
s

Then U, is lower semicontinuous on U, and thus U(w) = lim,_; U,(w) is Borel
measurable on U. Since E, = {w:U(w) > 0}, E, is a Borel set.

THEOREM 1. Let G, be the potential of a regular Borel measure p satisfying (1.4).

(1) If f is an inner function on B (or U"), then G, f is good if and only if
WEys) = 0.

(2) G,° f is good for every inner function f on B(or U")if and only if w(K) =0
for every compact subset K of U of capacity zero

Proor. (1). Let f be a nonconstant inner function on B (or U"). By Tonelli’s
Theorem,

(3-2) L Gu(f(rt))do(t) = L L G(f(rt), w)da(t) du(w) = L U, (w) du(w),

where U, is as defined by (3.1). If f is an inner function on U”, the integration is
taken over T".
Suppose u(E) = 0. Since ¢,,° f is good for every we U ~ Eg,

limU,w)=0 pu-ae.
r—1

Since z — G(f(z), w) is plurisuperharmonic on B for each we U, by Lemma 3 we
have 0 < U,(w) < U,(w) for all we U and all r, $ < r < 1. Furthermore,
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f Us(w) du(w) = J Gu(f(ry)do(t) < oo,

since G, ° f is superharmonic (e.g. [4, p. 67]). Thus by (3.2) and Lebesgue’s
Dominated Convergence Theorem,

limj G, (f(rt)da(t) = limj U,(w)du(w) = J lim U,(w) du(w) = 0.
s U

r—1 r-1JU r—1

Conversely, suppose u(E,) > 0. Since p is regular, there exists a compact set
K with K < E; such that u(K) > 0. Thus

Gu(f(2) 2 J . G(f(2), w)du(w),

and with U, as defined by (3.1),

L Gu(f(rt) da(r) 2 L U,(w) du(w).

But U(w) = lim,_,; U(w) > O for all we K. Hence by Fatou’s Lemma,

0< J Uw)du(w) = limJ U, (w)du(w) = limf G, (f(r1)) do(2),
K r—-1JK r-1J8
and thus G, ° f is not good.

PRrOOF OF (2). Let f be any inner function on B (or U"). Suppose u satisfies
w(K) = 0 for every compact subset K of U of capacity zero. By Lemma 1, E has
capacity zero. Since y is regular, u(E ;) = sup {u(K)}, where the sup is taken over
all compacts subsets K of E;. Thus u(E;) = 0, and thus G, ° f is good by (1).

Conversely, Suppose K is a compact subset of U of capacity zero with
u(K) > 0. By [1, p. 118] there exists an inner function ¢ on U whose range is
precisely U ~ K. Let g be any inner function on B. Then f(z) = ¢(g(z))is an inner
function on B whose range is contained in U ~ K. Since

Gu(f(2) 2 f . G(f(2), w) dpu(w),
1 —af(rt)

G 1) do(t) = lo
But F(z) = G(f(z),w) is pluriharmonic on B for all we K. Therefore

do(t) du(w).

L G(f(rt),w)da(t) = G(f(0), w),

and hence, forallr,0 <r < 1,
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J S G, (f(rt)) do(t) 2 L G(£(0), w)du(w),
which proves the result.

4. Examples.

In this section we provide two examples of measures satisfying (1.4)and u(K) = 0
for every compact set K with C,(K) = 0. If u is a regular Borel measure on U, we
adopt the notation u << C, to mean that u(K) = 0for every compact subset K of
U with C,(K) = 0. This notion is sometimes referred to as C-absolute continuity.

ExAMPLE 1. Let h be a nonnegative Borel measurable function on U satisfying

4.1) J‘ (1 — |w)h(w)dA(w) < o0,
U

where A denotes area measure on U. Then u defined by

(4.2) H(E) = L h(w) dA(w)

is clearly a regular Borel measure on U satisfying (1.4). Since every compact set
K of capacity zero has planar measure zero, u << C,.

EXAMPLE 2. Let K be any compact subset of U with C,(K) > 0, and let ux be
the equilibrium measure of K as defined in section 2. Suppose C is any compact
subset of U with C,(C) = 0. Then

pk(C) = px(C ~ K) + pug(C N K).

Since C ~ K < §,,K, ux(C ~ K) = 0. If ux(C n K) > 0, then C,(C n K) > 0, and
thus C,(C) > 0, which is a contradiction. Thus ux << C,. In fact, the same
argument shows that if u is any measure with S, < K for which the energy
integral I(4) < oo, then u << C,

As a consequence of this example we obtain the following variation of the
Theorem of Frostman:

THEOREM 2. IfEisa subset of U with C,(E) > 0, then there exists a measure y.on
U with S, < E such that G,° f is good for all inner functions f on B (or U").
5. Applications to Boundary limits.

In this section we will consider several applications of Theorem 1 to boundary
limits of G,(f(rt)), where f is an inner function on B or U". The results are new
even in the case n = 1.
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If G, is the potential of a measure u on U, then by a classical result of
Littlewood [5],

(5.1) lim G,(rt) =0

r—>1

for almost every t e T. It is also known (see [11]) that in general G, need not have
a nontangential limit at any point ¢e T, even if u is an absolutely continuous
measure. However, for G,(f(z)) we have the following;

THEOREM 3. Let G, be the potential of a regular Borel measure p satisfying (1.4).
(1) If f is an inner function on B (or U") for which p(E;) = 0, then

(5.2) lim G,(f(rt)) =0 ae.teS(or T").

r-1
(2) If u << C,, then (5.2) holds for every inner function f on B (or U™).

Proor. Let V(z) = G,(f(z)). Thus by Theorem 1, if either (1) or (2) hold, V is
a good plurisuperharmonic function on B (or U"). By [8, Prop. 1.4.7],forn = 2,

J V(rt)do(t) = J —szn V(re'®t)d0 da(t).
s s2n Jo

As a consequence, the function ¥, defined on U by V(A1) is a potential on U for
almost every te S (or T"). When n = 1, V itself is a potential on U. Thus (5.2) is
now an immediate consequence of (5.1).

COROLLARY 1. If B is a finite Blaschke product in U, then

(5.3) lim G,(B(rt) =0 ae. teT

r—1
for every potential G, on U.

Proor. If Bis a finite Blaschke product, then ¢,, ° B is good for every we U.
Thus Eg = ¢.

Another application of Theorem 1 is the following generalization of the result
(1.5) of M. Heins:

THEOREM 4. Let G, be the Green potential of a regular Borel measure u satisfy-
ing (1.4).
(1) If f is an inner function on U for which w(E;) = 0, then

(5.4 liminf(1 — )G, (f(rt)) =0 forallteT.

r—1

(2) If u << C,, then (5.4) holds for every inner function f on U.
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Proor. Ifeither (1) or (2) hold, then by Theorem 1, V,(z) = G,(f(2)) is a poten-
tial on U. Thus the result follows from Theorem A with y(r) = r.

Theorem 4 can be extended to inner functions on U" as follows:

THEOREM 5. If u << C,, then

(5.5) lim inf( f[ 1- rj)) G, (f(rity,...,raty) =0

n-@1) \j=1

for all te T", where (r) = (ry,...,r).

ProoF. If f is an inner function on U”", then since V/(z) = G,(f(2)) is plu-
risuperharmonic on U", V; is also n-superharmonic on U", i.e., superharmonic in
each variable z;. The result now follows by [6, Lemma 3.1].

The following example shows that for n = 2, the analogue of (5.4) is not valid
for the unit ball Bin C".

ExaMPLE 3. There exists a measure u << C,, an inner function f on B, and
teS, such that

(5.6) G.(f(rt)) =
forallr,0<r<1.

PRrOOF. Let u be an absolutely continuous regular Borel measure given by
a nonnegative Borel measurable function h satisfying

(5.7 J h(w)]ongA(w) = 0.
7} [w]

An example of such an h is h(w) = |w| =2 (—log|w|)~2 for |w| < 1, and h(w) = 0
elsewhere. If u is the measure given by (4.2), then u << C, and G,(0) = c. For
z=(2q,...,2z,) etz =(zy,...,2,-1). By [9, Theorem 8.4], there exists a noncon-
stant inner function f on B, such that f(z’,0) = Ofor all z’e B, _ ;. ThusifteSis
such that t,=0, we have f(rt)= f(rt,0)=0. Thus for this f and
t,G,(f(rt)) = o forallr,0 <r <1

Although the above example shows that the analogue of (5.4) does not in
general hold for inner functions on B,, n = 2, the result is valid for those
boundary points t € S for which | f*(¢)] = 1.

THEOREM 6. Let G, be the potential of a measure p satisfying (1.4) and let f be an

inner function on B. Then

(5.8) liminf(1 —7r) G, (f(r)) =0

r—1
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for all te S for which | f*(t)| = 1.

PrOOF. Let te S be such that [f*(t)] = 1, and let y be the curve in U given by

)= f (rt)B', where B = f*(t). Then y(r) - 1 asr — 1, and G,(f(rt)) = G,(y(r)B).
Thus by Theorem A,

liminf(1 — |f(rt))) G.(f(rt)) = 0.

r—-1
Let b = f(0). By Schwartz’s Lemma [8, Theorem 8.1.4],
- bf(Z)I2 1 — |b?
1-1f@P = =7- ||
for all ze B. As a consequence,

2 112
t—r® _ 1= _ 1+

L—1fre)* = 1 —bfeo)* = 1— b’
Thus there exists a constant C such that

(1 =G (f(r)) £ CA = |frON Gu(f(r1))

for all r,0 < r < 1, from which the result now follows.

REMARKS.
(1) In Theorem 4, we must have u(E;) = 0. For example, if we take

s =exp( 221,

then 0 E,. Thus if u = o, for this f,

1=nG;(fr)=1+r

(2) In Theorem 6 we did not require that u << C,. Ifindeed u << C, and f'is
aninner function on B, then as a consequence of Theorem 4, (5.8) will hold for all
te S for which f; is inner.
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