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ON A BARRELLED SPACE OF CLASS ¥,
AND MEASURE THEORY

J. C. FERRANDO and L. M. SANCHEZ RUIZ

1. Introduction.

Throughout this paper the word “space” will stand for “Hausdorfflocally convex
topological vector space defined over the field of real or complex numbers. Let us
recall a space E is Baire-like, [8], if given an increasing sequence of closed
absolutely convex subsets of E covering E, there is one which is a neighbourhood
of the origin. A countable family {C,:neN} of classes of spaces with strong
barrelledness conditions is studied in [4] considering as C, the class of Baire-like
spaces and, for each ne N, a space E is said to be barrelled of class n, or more
briefly E € C,, if given an increasing sequence of subspaces of E, there is one which
belongs to C,_ 4. So, C; is the class of suprabarelled spaces, [11], and C, is the
class of ordered suprabarrelled spaces, [3]. A space E is barrelled of class ¥, [4],
if E€C, for every neN.

Given a g-algebra o/ onaset X, [(X, &) will stand for the normed space over
the field of real or complex numbers generated by the characteristic functions
e(A), Ae o, whose norm is defined by | z|| = sup {z(j)|: je X}.

In [10] I§ (X, &) was shown to be suprabarrelled, in [6] it was shown to be
barrelled of class 2 and in [5], using some duality methods, it was shown to be
barrelled of class ¥,.

In this paper we show the sequential methods used in [6] can be applied to
show IZ(X, <) is barrelled of class N, clearly separating the algebraic part of the
proof (Lemmas 1-4) from the topological part (Theorem 1). Besides, we give new
applications of this result to vector measures theory. We think the methods used
in this paper are easier to understand than those given in [ 5], where algebraic and
topological parts of the proof are mixed up.

Given 4 € «, I3 (A, o) will denote the linear subspace of I3 (X, /) generated by
{e(B): Be o and B = A}. Given a continuous linear form u on I§ (X, ), u(A4) will
stand for the restriction of u to IF(4, &) and {[u(A)|| for the norm of u(A4). # will
stand for the family of all the finite dimensional subspaces of I3 (X, «/). When
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X:= N and & is the g-algebra 2" of all subsets of N, we write [¥ instead of
I2(N,2%).

2. Strong barrelledness of I3 (X, <7).
We shall use the following two results, [6],

LemMMA 1. Iet E be a linear subspace of I7(X,.s/) and A€o/ such that
I8(A, ) & E + F forevery Fe F. If {P,Q} is a partition of A, P, Q € s/ then either
IX(P, o) & E + F for every Fe or I3(Q, /) & E + F for every Fe ZF.

LEMMA 2. Let E be a linear subspace of IF(X,of) and Ae s/ such that
IY(A, ) & E + F for every F e . Given a number of elements xy, X,,...,X, of
I3(X, o)and ge N, there are g elements Q,,0Q,, ..., Q, of & which are a partition of
A, such that e(Q))é (E U {x1,X5,...,x, )y fori=1,2,...,q.

For the next result we shall assume given:

1. A positive integer p > 2.

2. A number of elements x,, x,,...,x, of I (X, ).

3. q positive integers m(1) < m(2) < ... < m(q); for each i; € {1,2,...,q},4(i,)
positive integers m(iy, 1) < m(iy,2) < ... < m(i,q(i;)). And in general, making
k=2,...,p—1, given i;e{1,2,...,q} and i;e{l,2,...,q(iy,is,...,ij-4)} for
j=2,...,k, we assume there are q(i,,i,,...,i) positive integers m(iy,i,,. ..,
o ) <miyis,. . i-1,2) < ... <mM(igiz..nsip—1,q4(i1, 02, .-, i)

4. A family of subspaces E; of I (X, o/) where s takes values in:

i) The set S:= {(m(iy),...,m(iy,is...,0,): i;€{1,2,...,q} and §;e{1,2,...,
q(iy, iy,...,0—q)} forj=2,...,p}.

ii) Some set of type (1), where we call sets of type (1) those of the form
{(m(iy), my,...,m,):i;€{1,2,...,q} and for each one of these m(i,), m, may take
infinitely many values; for each one of these m,,m; may take infinitely many
values;. . . ; and for each of one these m,_ ;, m, may take infinitely many values}.

(i) Some set of type (k) foreach k = 2,...,p — 1, where we call sets of type (k)
those of the form {(m(i,),...,m(iy,izs. i)y Mgs1,-..,mp) i1 €{1,2,...,q},i;€
{L,2,...,9(1,iz,...,ij-4)} for j=2,...,k and for each one of these m(i,),...,
m(iy,is,. .., i), My, may take infinitely many values; .. .; and for each one of
these m,_,, m, may take infinitely many values}.

(iv) Some set of type (0), where we call sets of type (0) those of the form
{(my,m,,...,m,). where m, may take infinitely many values; for each one of these
m,, m, may take infinitely many values; for each one of these m,, m3; may take
infinitely many values; . . . ; and for each of one these m, _ ;, m, may take infinitely
many values}.

q
We shall set g, = ¢q,q, = Y, 4(i), and for each je {3,...,p},
i1=1

"=
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q 461 qG1,i2,..005-2) i
gG= 3 Y ... Y. q(iy,iz,...,0j—). Besides, let 5;= 3 g; for
=1

ii=1iy=1 ij—1 j
eachie{l,...,p}.

LEMMA 3. Let A€/ be such that I§(A, &) & E; + F for every Fe % . Then
there are g, pairwise disjoint elements of o {M,,s€ #}, contained in A such that
e(M,) ¢ (E; U {x1,X3,...,X,}) for each se #. Moreover IT(A\ L {M,,s€ I}, o)
& E; + F for every F e &, for each s€ .# and some sets of type (0)-(p — 1).

ProOF. Pick an se #. As IJ(A, /) ¢ E; + F for every Fe %, by Lemma 2,
there is a partition of 4, {Q,:n = 1,2,...,s, + 2}, formed by elements of .o/ such
that e(Q,) ¢ (E; U {x1,X3,...,x,}yforn=1,2,...,s, + 2.

As P (A, ) & E; + F for every F € & when s takes values in some set of type
()withi, €{1,...,q},by Lemma 1, thereissomen;e {1,2,...,s, + 2},1 <j < q,
such that I§(Q,,, o) & E, + F for every F e # when s takes values in some set of
type (1), which in general will be a subset of the original set of type (1).

Now, as [T (A, ) ¢ E; + F for every F € # when s takes values in some set of
type (2) with i;e{l,...,q}, i€{1,2,...,4(i;)}, by Lemma 1, there is some
ne{l,2,...,s, + 2}, g + 1 £j <'s,, such that I(Q,, o) ¢ E, + F for every
Fe % when s takes values in some set of type (2).

Going on in this way, as IJ (4, /) ¢ E, + F for every Fe & when s takes
values in some set of type (p — 1) with i, {1,...,q},i;€{1,2,...,q(is, iz, ..,ij-1)}
for j=2,...,p— 1, by Lemma 1, there is some n;e€ {1,2,...,s, + 2}, s,-2 +
1 £j < s,-y,suchthat [§(Q,, o) ¢ E, + F for every F e # when s takes values
in some set of type (p — 1).

In the same way, as [7(4, &/) ¢ E; + F for every F € # when s takes values in
some set of type (0), there is some n, _, . € {1,2,...,s, + 2} such that
l(',"(Q,,sPA‘“,&I) ¢ E, + F for every Fe# when s takes values in some set of
type (0).

Ifweset Qo = U{Q, 1j=1,...,5,-1 + 1}, theni§(Qo, #) ¢ E + F for every
F e & when s takes values in some sets of type (0)-(p — 1).

Let J:={0,1,2,...,s, + 2\{ny,n2,...,n, _ +1}. Now {Q;:i€J} is a parti-
tion of 4 and for each ie{l,...,q}, i;€{1,2,...,q(iy,iz,...,i;—1)} for
j=2,...,p, by Lemma 1, there is some n;eJ,s,_ + 2 <j <5, + 1, such that
I8(Qn;» ) & E; + F for every Fe # when se S,

Therefore, at least two elements of J cannot be contained in {n;
1 £j <, + 1} and some of them, say j,, must be non zero.

sp+1
As l(","( U 2Q,,j, .sal) ¢ E, + Fforevery Fe # whense 4, 13(4\Q;,, ) ¢
j=sp-1+
E, + F for every Fe # when se.# and this is also true when s lakes values in
some sets of type (0)-(p — 1) since Q¢ = A\Q;,.
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Setting s(1):= (m(1),...,m(1,...,1)), the set M,,:= Q; satisfies e(My;,¢
CEq1yV {x1,X2,...,%,}) and IF(A\M,, /) & E, + F for every F € #, for each
se.# and some sets of type (0)-(p — 1).

Picking now another se.#, s # s(1), A\M, instead of A, and repeating the
same argument we find another M, e/ such that e(Mg,)) ¢ {Eys U
{x1,X2,..., %} and [P (A\{M,1, U M), ) & E, + F for every F e #, for each
se.# and some sets of type (0)-(p — 1).

We go on this way until that we find the last My, € o/, which establishes the
Lemma.

Given te NP* ! we shall denote by #¢ the sum of the coordinates of t. For each
ieN, N?*1(p +i):= {teN?*1: #t = p + i} and let * N?*1(p + i) stand for the
cardinal of N”**(p + i). We shall consider {a(n): ne N} the sequence of all the
elements of N?*! ordered following the diagonal ordering, i.e., a(n,) < a(n,) if
either *a(n,) < *a(n,) or, when *a(n,) = #a(n,), the first coordinate which is
smaller than the same coordinate of the other element belongs to a(n;).

LEMMA 4. Let {E;:se NP}, p > 2, be a countable family of infinite codimensional
linear subspaces of 1§ (X, of). Then there is a countable family of pairwise disjoint
elements of o/ {M,:teN?*1}, an increasing sequence of positive integers {m(i):
ieN}; for each iy € N, an increasing sequence of positive integers {m(iy,i):ie N};
and, in general, for j = 1,...,p — 1, given (i1, i,,. ..,i;)€ N’ there is an increasing
sequence of positive integers {m(iy,i,,...,i;i):i€ N} such that setting for each
t=(iniz,...,0ip4+1) NPT p(e)i= (m(iy), m(iy, i), ...,m(iy, iz,...,i,)) NP, we
have e(M,) ¢ {E, U {e(M,): re N** ' and *r < *t}) for each te N** 1.

PROOF. Set qg=1, q(1,.9., 1)=1 for j=1,....p—1, m()=...=

such that e(M,,) ¢ E 1y and, for each se .#; and some sets of type (0)-(p — 1),
IF(X\M,,, ) & E; + F for every Fe Z.

Let us now define all the m(iy,...,i;) such that i; + ... +1i;=j+1, for
i=12...,p.

Let m(2) be the smallest m; > m(1) of the set of type (0) where s may take values;
m(1,2) the smallest m, > m(1, 1), depending on m(1), of the set of type (1) where
smay take values; m(2, 1) the smallest m,, depending on m(2), of the set of type (0)
where s may take values; m(1, 1, 2) the smallest m3 > m(1, 1, 1), depending on m(1)
and m(1, 1), of the set of type (2) where s may take values; m(1, 2, 1) the smallest m5,
depending on m(1) and m(1, 2), of the set of type (1) where s may take values;. ..

Once we have defined all the m(iy,...,i;) such that iy +... +i;=j+ 1,
L<j<p let S:= {m(iy,...,i,): i; +... + i, =p+ 1}. Bearing in mind that
now q(iy,...,i;) =j+ 1 —(iy + ... + i;), 1 £j < p, then, by Lemma 3, there are
91,270 4+q1.222, 1,2)4...+q2, 1,222, D=2+1+ 221,
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+ 1 = p + 1 pairwise disjoint elements of o, {M,: te N** ! (p + 2)}, contained in

X\M,), such that e(M,) ¢ (E ¢ U e(M,q,)> for each te N?*!(p + 2) and, for
each se.#, and some sets of type (0)-(p — 1), IF(X\ U {M; teN?*1(p + 1)U
N2+ (p + 2)}, of) & E, + F for every Fe #.

By recurrence, let us assume we have obtained ¢ positive integers
m(1) <... < m(g)and,foreachje{l,...,p}, we have the {m(i,...,i;):i; +... +
i; <j— 1+ g} (calling .#, the corresponding set obtained when j = p), such that
for each iy e{l,...,q}, {m(i,i):i=1,...,1+ q— i} is strictly increasing;
for each (iy,iy...,i,—1)€eNP™' such that iy, +...+i,-; <(p—2)+gq,
{m(iy, iz, ip-pii=1...,(p— 1) +q— (1 +iy+... +i,_y)}isstrictlyin-

q
creasing. We shall also assume we have obtained ), *NP*!(p + i) pairwise
i=1
q
disjoint elements of .7, {M,: te NP 1 (p + i)}, such that e(M,)¢{E,,u
i1
q
{e(M,): reNP*! and *r < *t}) for each re () N?*!(p + i) and, for each se .7,
i=1

q
and some sets of type (0)-(p — 1), l(")°<X\u {M,: re N (p + i)}, M) ¢
i=1

E, + F for every Fe &.

Let us now define all the m(i,...,i;) such that i; +...+i;=j+ g, for
j=12,...,p.

Let m(q + 1) be the smallest m; > m(q) of the set of type (0) where s may take
values. And for eachje {2,...,p},

a) Ifi; > 1, wedefine m(is,. .., i;) as the smallest m; > m(i,, . ..,i; — 1),depend-
ing on m(i,),...,m(iy,...,i;—) of the set of type (j — 1) where s may take values,

b) If i; = 1, we define m(i,,.. .,i;) as the smallest m; > 1, depending on m(i,),
ooy m(iy,...,i;-1) of the set of type (k — 1) where s may take values, with k the
greatest positive integer smaller than j such that i, > 1.

Let 4 q:={m(iy,...,i,): i1 +... +i,=p +q}

q
Then by Lemma 3, with 4 : = X\U{M,:re (NP Y (p + i)},q+ 1 instead of ¢,
i=1
q
and xj, X,...,x, equal to each possible e(M,), te | ) N**'(p + i), there are
i=1
q+1 gq(i1) q(i1,i2,..0sip-2)
Y Y q(iysizs- - rip—g) = *NP*1(p + g+ 1) pairwise dis-

i1=1i=1 ip-1=1
q
joint elements of </, {M,: te N**!(p + g + 1)}, contained in X\U{M,II‘E U
i=1

q

N?*1(p + i)}, such that e(M,) ¢ <E,,(,) U {e(M,): re U NP+ (p + i)}> for each

i=1
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q+1

teN?*1(p + q + 1). Moreover, I <X\U{M,:re U NP 1 (p + i)}, M) ¢ E, +
i=1

F for every Fe %, for each se .4, ; and some sets of type (0)-(p — 1).

THEOREM 1. I3 (X, ) is barrelled of class N,.

ProoF. Assume I3 (X, o) is not barrelled of class p,p > 2. Then there is an
increasing sequence of subspaces of I (X, &) covering it, { F,: n e N}, such that no
F, is barrelled of class p — 1. In the same way, makingj = 1,...,p — 1, for each
ingit, {F,, nniNE N},suchthatnoF,, n,nis barrelled of class p — (j + 1). So,
for each s € N” there is an increasing sequence of closed absolutely convex subsets
of F;, { B, ,:n€ N}, covering F; such that no B, , is a neighbourhood of the origin in
F,. We may assume without any loss of generality that 2B, = B, , . for each

neN. Let R, , be the closure of B, ,in [ (X, «/)and E,: = U R, . foreach se N”.
n=1

Now, I§(X, /) being barrelled, for each se N?, I?(X, /) ¢ E; + F for every
Fe %. Therefore, by Lemma 4, there is a countable family of pairwise disjoint
elements of o/, {M,: te N?* '}, an increasing sequence of positive {m(i): ie N}; for
each i; eN, an increasing sequence of positive integers {m(i;,i): ie N}; and, in
general, for j =1,...,p — 1, given (iy,i,,...,i})e N/ there is an increasing se-
quence of positive integers {m(i, is,...,i;,i): i€ N} sucht that setting for each
t=(iy,iz,...,ip+1) NPT p(t):= (m(iy), m(iy, is),...,m(iy,iz,...,i,))ENP, it
holds e(M,) ¢ CE U {e(M,): reNP* ' and *r < *t}) for each te N?* 1,

If for each t = (iyyizs.--sipr1)ENPTL we set T,:=
Roymiy.ig)..omiis.ine.niphiys o then  e(M)&3(T, + 6, {e(M,):r e NP*!  and
*r < *t}), 6, being card {e(M,):re N** ! and *r < #t}, and, by the Hahn-Banach
theorem, there is some continuous linear form u, on [F(X,.o/) such that
[Ke(M,), u,»| > 3, Z{|<e(M,), u,p: re N*** and *r < *1} < 1 and [{z,u4,)| < 1 for
every ze T;, (*).

Next we shall find a decreasing sequence {N,,: ne N} of subsets of N°*! such
that for each se N, there are infinitely many elements in each N, whose first
p coordinates are just those of s and satisfy ||ty (U {M, r€ Ny}l < 1 for each
neN, (**).

Set G:=uU{M;teNP*'} and let m be a positive integer such that
lty1)(G)| < m. Let {B: 1 < r < m} be a partition of N**! such that in each P,
given any se NP, there are infinitely many elements whose first p coordinates are

just those of s. Clearly now, [10], Y. llugq)(U{M,: te PP £ [l (G)]| < m.
r=1

Hence, there exists some P, 1 < j < m, such that |u,q,(U{M,:teP;})| < 1. Then
we shall take N,,:= P;.
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Let us find N, + 1) assuming we have determined N,,), neN.
Let g be a positive integer such that |[u,,+1,(G)|| < g. Let {Q,: 1 £ r < g} be
a partition of N, such that in each Q,, given any s N, there are infinitely many

q
elements whose first p coordinates are just those of s. As Y. |[tgm+ 1) (U {M;:
r=1

teQ DI = ltgw+1)(G)l < g, there exists some Q,, 1=<h<gq, such that
ton+ 1y (U {M;: t€ Q})|| < 1. Then we shall take Ny 1 1):= Q.

Next we shall find a sequence S = {¢(n): ne N} in N?*! such that foreachneN,

a) t(n + 1) Ny).

b) *t(n) < *t(n + 1).

©) {T,m: neN} covers I§(X, ).

In order to do it we take #(1):= «(1) and assuming we have obtained the first
n — 1 elements of § we shall take as t(n) the first element of N,,_, whose first
p coordinates are the same as those of t(n — 1) and the coordinate p + 1 is such
that *t(n — 1) < *t(n).

Taking Q:= U{M,q,: ne N}, by property c) of S, there exists some t(ny)€S
such that e(Q) € Ty,,). By (*), this implies that |{e(Q), t,u,>| < 1. But S also
satisfies property b), so

Ce(Q), thyngy = {e(Myiny), Uringyy + <e(U {Mym: n < no}), Uping))
+ (e(U{Myuy: 1 > o)), tyng)-

Lastly, using property a) of S,

|<€(Q), ut(n0)>| g |<e(Mt(no))’ ut(n0)>| - E{KQ(M,_), “t(n0)>|: #r < #t(nO)}
- IIe(u {Mr: re Nt(no))”-

From this, (*) and (**), it follows that |[<e(Q), 4y, >| > 1. Contradiction.

3. Application to vector measures theory.

DerFINITION. We shall say a family of linear subspaces {E,,...,n,:
(ny,ny,...,n,)e NP} of E is p-increasing if given any (ny,n,,...,n,_;)e N?~ 1,
{E.,...,n,; n,eN} is increasing and for each ke{2,...p—1},

o0 e}
{U U ... U En,... ,,k_l.,,k_“npznk_leN}isincreasing.

ne=1 ne+1=1 np=1
Let us recall a locally convex space E is a I',-space if given any quasi-complete
subspace G of E*(o(E*, E)) such that G n E’ is dense in E'(a(E’, E)), then G con-
tains E’, and that I',-spaces are the maximal class of locally convex spaces
verifying the closed graph theorem when barrelled spaces are considered in the
domain, see [9] and [12,Ch. 1 §6.2].

PROPOSITION 1. Let #~ be a p-increasing family of linear subspaces of a space
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E covering E and let f be a linear mapping of I3 (X, o/) into E with closed graph. If
each Le W has a locally convex topology t, stronger than the induced topology
such that 1(t;) is a I',-space, then there is a Ge W such that Imfc G and f:
IX(X, o) - G(tg) is continuous.

PRrOOF. By Theorem 1, there is some G € #” such that F: = f ~!(G) s barrelled
and dense in I3 (X,.o). So, given xely (X, H)\F, the set L:= {{x} UF) is
barrelled. Let h: L - G be a linear extension of the restriction of f to F with closed
graph. Then, by the closed graph theorem of Valdivia, h is continuous. Therefore
if {x,: ne N} is a sequence in F which converges to x in I$ (X, &), {h(x,): ne N}
converges to h(x) in G and, the graph of f being closed, f(x) = h(x)e G. Hence
Im f< G and f: I§ (X, o) = G(zg) is continuous.

[1, Theorem 1.1, (i) = (iii)] and [2, Corollary 3, 1.3] were generalized in [6,
Theorems 2 and 3]. With the help of Theorem 1 it is easy to strengthen the results
obtained in [6].

THEOREM 2. Let u be a finitely additive measure on </ with values in a space
E and let H be a a(E', E)-total subset of E'. Let #~ be a p-increasing family of linear
subspaces of E covering E such that each Le %" has a locally convex topology 1,
stronger than the induced topology, such that L(t;) is a sequentially complete
I',-space which does not contain a copy of I°. If u~p is a countably additive scalar
measure for each ue H, then there exists some Ge W such that u: o/ — G and p is
countably additive.

THEOREM 3. Let u be a mapping of < into a space E and let H be a o(E', E)-total
subset of E', let W be a p-increasing family of linear subspaces of E such that each
LeW has a locally convex topology t,, stronger than the induced topology, such
that L(ty)is a I',-space. If u ° uis a bounded finitely additive scalar measure for each
ue H, then there is some Ge W such that u: o/ — G and p is a bounded vector
measure.
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