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TENSOR PRODUCTS OF WEIGHTED BERGMAN SPACES
AND INVARIANT HA-PLITZ OPERATORS

GENKAI ZHANG

§0. Introduction.

The Moebius group SU(1, 1) acts unitarily on a weighted Bergman space A* %(D)
(or the complex conjugate 4> 2(D) of it). If we have two such spaces 4% %(D) and
AP-%(D), then the same group acts on the space of Hilbert-Schmidt operators from
one space into the other (or into its complex conjugate). As to the second
alternative, we remark that, quite generally, the study of linear operators from
a space of analytic functions into the conjugate of a space of analytic functions is
equivalent to the study of bilinear forms between the two spaces.

In the case when o = § the decomposition of the space of Hilbert-Schmidt
forms into irreducible components was considered by Janson and Peetre [6].
Forms belonging to such an irreducible component were called Hankel forms of
higher weight. The corresponding problem for operators was treated in Peetre
[10]. Now operators reminding of Toeplitz operators arise. So perhaps it is
justified to speak, as a unifying concept, of “Ha-plitz” operators (Nikol'skii,
1984).

In this paper we generalize some of the results of [6] and [10] to the case o + B.
We find the irreducible decomposition of the space of forms and establish their
Schatten-von Neumann properties. We also study the corresponding problem
for operators. There are now only finitely many discrete parts in the decomposi-
tion. We find explicit realizations of these discrete parts. The operators in the
discrete parts are certain kinds of combinations of fractional integrations (or
differentiations) and ordinary Toeplitz operators. The Schatten-von Neumann
properties of these operators display the usual cut-off phenomenon. This follows
from the results in [19], dealing with an equivalent class of operators.

Note that on the abstract level the problem of irreducible decomposition of
tensor products of holomorphic discrete series representations of SU(1, 1) has
been studied by Pukanszky [14] and Repka [15].
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§ 1. Hankel forms of higher weight.

Let D be the unit disk in the complex plane equipped with dm the Lebesgue
measure. The Moebius group SU(1, 1) consists of the following 2 x 2 matrices

(g Z),a,bec, lal> — [b)? = 1.

It acts on D via the transformations

s =32 0= (5 2)esuan,

bz+a’ a

The group SU(1, 1) has an Iwasawa decomposition SU(1, 1) = KAN, where

{4 2]
0 e 2

_ Jfcosh(3) sinh(3)
4= {(sinh(%) cosh(%)) $£€ R}’

_ cosh(§) isinh(§)
M= K—isinh@) cosh(%))’SER}'

The Lie algebra SU(1, 1) is generated by

i 0 0 4 0
(s 2)e-(3 o)en(C

The Casimir operator is

O N~
N———

c=4}+ ek —éd).
Let o and B be nonnegative integers. We consider the weighted measure
1 .
du,(2) = E—E—( 1 — |z|?) dm(z). Let A* *(D) be the weighted Bergman space con-

sisting of the analytic functions on D square integrable with respect to du,. The
tensor product A* (D) ® A% %(D) of two such spaces can be realized as the space
of Hilbert-Schmidt forms on A*%D) x A?*(D). A bilinear form F on
A% %(D) x AP *(D) can be written
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F(f,9) = J N f N F(z,w) f(2)g(w) dug(w), f € A *(D), ge A**(D),

where F is analytic in z, w and

(1.1) f J |F(z, w)I dpto(2) dpy(w) < o0
DJD

Here we use the same notation for the form and its kernel.
Denote
v=a+2,k=0+2.

The group SU(1, 1) acts on the space A* %(D) unitarily via

UYf = f(¢2)(¢2)).

The corresponding action on A? (D) is U™). The representation U™ ® U™ on
A% (D) ® A (D) is the following

(1.2) F(z, W)~ F($(2), $w)(@ @2 (w)2.
The infinitesimal actions corresponding to es, e;, e, are the following
E;f = zzg + lwaif— + —(v + K)f.
E1f=%.<(1 )f+(1+w)?—+vzf+xwf)

Ef= %((1 - 22)% +01 - WZ)%_ vaf — KWf)'

The Casimir operator becomes

R Y

C=—(-w’ 0z

LEMMA 1.1. Let r be a nonnegative integer and let b e 0D, where 0D is the unit
circle. Then the function

(1.3) (z —wy(l — bz’ *"(1 — bwy*r
is an eigenfunction of the Casimir operator:

(1.4) Cf = Af,

with

=(v+r+r—Dr+@+rV+r-—2)
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ProoF. Itis easy to check that the function f(z,w) = (z — w)' is an eigenfunc-
tion of the Casimir operator with the given eigenvalue 1. Take zoe D and let
geSU(1,1) be the symmetry interchanging the points 0 and z,, that is

z—2z . . .
1 ~%  Since C commutes with the group action, we see that the
— ZgZ

g(z) =

function (g(z) — g(w))'(g'(z))%(g’(w))% is an eigenfunction of C with the same eigen-
value 4. A straightforward calculation shows now that this is a constant multiple
of the function

(z—wy

(1 _ Z—oz)v+r(1 _ Z-ow)x+r *

Next let z, approach a boundary point b. This function then approaches the
function (1.3) (in the distribution sense). Therefore (1.3)is a solution of (1.4). This
proves the lemma.

Now we can form the following kernel function

f(b)
D (b _ z)v+r(b _ W)x+r ’

(1.5) HP(z,w) = (z — wy L

where f is an arbitrary analytic function on the disk. It is clear that H{" is also an
eigenfunction of the Casimir operator.

The corresponding Hankel form on A% %(D) x A#-%(D) with the “symbol” f is
then given by the formula

HP(f, f2) = J , L H{(z, w) f1(2) f2(w) do(2) dpg(w).

The group action (1.2) on these forms is equivalent to the following action on the
symbols:

f(z) - f(¢z){¢’(z)} —(r— 1+ V;x).

It is also easy to check that H{ has finite Hilbert-Schmidt norm for
f(z) = z2*P*2r+4 Therefore by the Arazy-Fisher theory of Moebius invariant
function spaces (see e.g. [1]), we see that for an analytic function f;

IHPNZ = e 1£1%, 4

s
+r—%
2
B,

with suitable constant c. (Here B is the usual scale of Besov spaces). It follows
that for each nonnegative integer r, the Hilbert-Schmidt forms H{ constitute an
irreducible component, which we denote
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vtk

V.= {HP,feB,? ).
By the same calculation as in [6], we see that ¥, is an irreducible SU (1, 1)-module
of lowest weight 2r + v + k — 2, and that
(1.6) A= D)® A»*D) = ¥, ®V,.
r=0

Moreover, we have the following theorem.

THEOREM 1.2. For p > 0, the generalized Hankel form H}” is in the Schatten-von
v+x+2!r—1|+L
Neumann class S, if and only if feB, ? P,
ProOF. Mapping D to the upper plane and performing a Fourier transform,
we can see that the Hankel form H{" is unitarily equivalent (disregarding
a constant) to the following paracomutator on H*(R) x H?(R),

(fx,fz)'—"J f J@1+ &) E) i€ [aE)E @ VSV dE, dE,,
RJR

where
a+B+r+2 a+B+r+2 r . .
J s — —1Y¢E u+B+r+2—J.
Cut)= % ( ) )(Hr_H 1)( yeies

The S,-result therefore follows from the general theory of Janson and Peetre [6]
(see also Peng [13]). We omit the details here.

§2. Invariant Toeplitz operators.

In this section we study the same problem for the tensor product
A*%(D) ® AP*(D), which can be realized as the space of Hilbert-Schmidt oper-
ators F from A% %(D) to A* %(D). Such an operator can be written

2.1 Fy(z) = f N F(z, w)g(w) dpug(w),

where the function F(z, w) is analytic in z and anti-analytic in w and satisfies (1.1).

For simplicity we assume that « and B are nonnegative integers and that o — f8
is an nonnegative even integer. Thus we can write « — f = 2/ were [ is an integer
>0. It is proved in Repka [15] that A**(D) ® AP %(D) has | = (o« — B)/2 discrete
parts. We will find an explicit realization of the discrete parts and study their
Schatten-von Neumann properties.
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The tensor product U® @ U™ (where U™ acts on A% %(D) by taking formally
ecomplex conjugate in the expression for U® on A% (D) is the following:

F(z,w) > F($(2), pw){¢' @)} {FW)}2, peSU(L, 1),

The generators corresponding to the Lie algebra elements es, e,, e,, are (see [10]
for the case v = k).

.0 _ 0 i
E3=12—52——1waw+2(v—’€),

_1 250 529 —
E1_2<(1_Z)6z+(1 W)(J’W vz—xw),

_i Zi_ __Zi ety
Ez—z((l‘*'z)az ( w)dw+vz KW).

Then we find that the corresponding Casimir element is, omitting a constant
term, the following operator (if v = k see again [10])

2

0z Ow

C =(1—zw)? — v(l — zW)i_ — Kz(l — zv_v)i + vKzWw.
ow 0z

We study the eigenvalue problem

(2.2) CF = JF.
LEMMA 2.1. Let be 0D and s € R. Then the following function,
1 — TS
@3 (2 ) = —— 2%

(1 — zb)~5(1 — bw)<™*’
is a solution of (2.2) with the eigenvalue
2.4 A= —s)k—s)+s.

Proor. We use anideain Helgason [8] (Chapter IV, § 2, pp. 402-403). First we
observe that ey ,(z, w) = e, 1(bz, bw), so we need only to prove that e, ; is an
eigenfunction. If ge SU(1, 1), we have the known identity

(1 = g(2)gW)) = (@' g WP — z).

From this it is not difficult to prove the following transformation formula for e; ;:

f  es1(gka), glkw))(g'(k2))2(g (ew))? |dk|

= (90)2(g0)ze, (4(0), 9(0)) LD e, 1(kz, kw) |dK|.
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Since the operator C commutes with the group action, it follows that

J o Ce,, 1(g(kz), glkw))(g'(k2)2(g Tkw))? |dk]

= (¢(0)(g(0))2e, 1(9(0), 9(0)) j . Ceai(kz,kw) K.

Therefore, putting z = w = 0 gives

Ces, 1(g(0), g(O)) = Ces, l(O, O)es, 1(9(0), g(O))

Since Ce, ; and e, ; are analytic in the first variable and anti-analytic in the
second varible, we have

Ces, 1(25 W) = Ces, 1(0> O)es, I(Z, W)
The eigenvalue Ce ;(0,0) can be computed directly and it is (2.4).

We can also write down the radial part of the Casimir operator. Suppose
oF _df OF  df

F(z,w) = f(zw). Writing t = zw, then one finds e i and
0*F df _d¥f .

520w~ dr + ZWE‘ The equation (2.2) then becomes

(2.5) A= + 1) =+l —0f + vetf = Af.

Integrating the function (2.3) over the unit circle we then find that
(1= F(v—sk—s11),

is a solution of (2.5) with A as in (2.4), where , F; is the hypergeometric function.
Expanding it as a power series Y., p,(A)t", we arrive at the following recursion
formula for p, (¢f. [10]):

(n 4+ 1Py a(A) + (0 — 1+ V)(n = 1 + K)pa—1(A) — n(2n + v + ©)pa(4) = Ap,(A).

One can also prove that

_ 5= ik — h (Sh-k
P = L T k)

_ G

n!

3F(—nv — sk —s1,1 —n—s; 1),

where 3F, is the generalized hypergeometric function ([4]), (a) = a(a + 1)
...{a+k—1), and A and s are connected as in formula (2.4) (we have not
indicated v and « in the notation for p,).

These polynomials are orthogonal with respect to the spectral measure of the
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selfadjoint operator in (2.5), but we have not determined this measure. They seem
to be connected with certain orthogonal polynomials studied in [18].
However, we are more interested in the discrete spectrum of the Casimir
operator, which corresponds the discrete parts of the irreducible decomposition.
Given an analytic function f on the unit disk, we form the following kernel

b* ¥ (b)
(1 — bz)’ (1 — bw)*

T zw) = (1 - zrv)-SL

wheres =a— I+ 2,a— 1+ 1,...,a + 1. The corresponding A’s obtained from
(2.4) then give the discrete spectrum of C.

To illustrate the invariance property of T, we put s = « + 1 — ¢ where thus
0=0,1,...,1 — 1. Let us further put t = | — 6. The group action on T} is then
equivalent to the following action on f: if ¢ € SU(1, 1),

(2.6) f@ f(92)(@(2)).
Note thus that f transforms like a form of degree ¢t (weight 2t).

ReMARK. Using the reproducing property of the Szego kernel (1 — bw) ™1, we
can also write

TPEw) = (1 - z@“‘(;%—)“ L/(z)(1 — 2y

The transformation properties of this kernel can be read off directly from “Bol’s
lemma” ([5]): notice that the expression within brackets has weight 1 — ¢ so

0z
fractional derivatives.)
The corresponding operator T from A”*(D) to A* (D) is

oY’ . .o . .
(———) applied to it gives weight 1 + o. (If « and f are not integers we get here

TPg(z) = L Tz, wig(w)dug(w), ge A*3(D).

It is easy to calculate the integral. We find that

9y — 3 (O Oa—i pje\oaj
T7ee) = jgo (f ) (K)o —j D@D
Recall the relationship
@, = (=17 @)1 —a—0),-;

Using this we can transform the expression, up to a constant, to the form
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o [0\ D) D gla)
P ”’(,-) 20, B+2.

Thus we have an instance of a bilinear differential covariant, the transvectant,
studied in [5]. The covariance of T}*g is again manifest.

Z”
12"l
{e®} the corresponding one of 4% *(D). The matrix elements of T\ are given by

Let {e;}, e1(z) =

, be the standard orthonormal basis of 4* %(D) and

) llz"|
<Tzie$f>,e$,°”> = Omik-a,n(—1)

2™ 5
o (O\B+2—80;
ngo(j> B+ 2),-; (=Rs{=m)e-;

”z""a (B +2— s)tr(_m)a
12"l B+2),

3F)(—o,—1 —0—B,—k;1 + m—og,00 — f — 20;1).

= 5m+k—a,n(— 1)0(— 1)“

So we see that the only possible non-zero elements are
(TRl e
2. (B+2—9),(—n—0+k),
[ " B +2),
X 3F(—0, -1 —0—B,—k1+n—koa—f—20;1).

= (-1

Since o is a positive integer, the hypergeometric term 3F,(—a, —1 — o — B,
—k;1 +n—k,a — B — 26;1) has at most ¢ non zero terms in its expansion.
Moreover if n — oo, the term approaches to the constant 1. So the singular
numbers of the operator are

1

(s) @D\ ~ -
<Tkegpla+l‘s*k’enu > ~ s—a;Q—l.
m

z

Using (2.6) and the invariance argument we can then prove the following

THEOREM 2.2. Then the operators T} is in the Schatten-von Neumann class S, if
and only if fe B} ™', wheret =s + | —a — 1.

It follows from the theorem that the spaces
{TP, feB}™},

withs=a+1—0,t=1—0,0 =0,1,...,1 — 1, constitute all the discrete parts
of the irreducible decomposition of A* (D) ® A* *(D).
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The S,-properties of those operators are studied in [19].

§3. Concluding remarks.

We indicate here a simple application of our decomposition in § 1. Let /(D) be
the disk algebra. We note here since A*%(D) and A” *(D) are Hilbert modules
over (D), so we can form the tensor product A% (D) ® ) A* *(D), see [3]. It
can be viewed as a space of analytic function on D (identifying D with the diagonal
in D x D). We claim that

A% D) ® oy AP (D) = A"~ 23(D),

In fact, from (1.5) we see thatif He V,, r = 1, then

b
HP(z,w) = z(z — wy ™! LD b — z)”‘{’ib)— W)
- f(b)
—wz—w ILD b= 26—

and

- f(b)
_ r—1
(Z W) J;il) (b _ Z)v+r(b _ W)x+r
Hence H = 0in A% %(D) ® ) A *(D) by definition. If H € V;, then H = H{ for

v+x__3_
some f€B,?

dbe A**(D) ® A* (D).

and
HPXz,z) = D***" ' f(2).
By the Moebius invariance of A% *(D) ® p) A* %(D), we see that

2 -—
"H}‘O)"AE'Z(D)®.M(D)A/’,2(D) =c|fl zm_* =c|D"** 1f||iv+~—2,2(1))-
B,2

Therefore the map

H{®(z, w)—> H{°(z, z)

induces an /(D)-isomorphismfrom A% *(D)® ) A* *(D)to A***~2*(D). Amore
general result for the module tensor products of two Hilbert spaces of functions
on planar domains was announced in [3], Chapter 5, p. 85.

It is also interesting to work out the explicit decomposition in § 1 for the unit
ball in several variables, or more generally, a bounded symmetric domain. This
problem has been studied by Repka [16] from the point of view of representation
theory.

For a bounded symmetric domain of higher rank, it is known that there are no
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non-trival compact big Hankel operators on the Bergman space. The invariant
Toeplitz operator obtained in § 2 may also shed some light on the construction of
compact Hankel-type operators on a symmetric domain. Eventually, we would
like to obtain the Schatten-von Neumann property of a Hankel-type operator (or
the so called Hausdorff-Young theorem for integral operators).

—
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