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APPROXIMATION OF PLURISUBHARMONIC
FUNCTIONS AND THE DIRICHLET PROBLEM FOR
THE COMPLEX MONGE-AMPERE OPERATOR

URBAN CEGRELL and AZIM SADULLAEV

0. Introduction.

In section 1 of this paper, we show that every globally defined plurisubharmonic
function can be approximated from above by functions that are plurisubhar-
monic and real analytic.

In section 2, we use the Perron method and approximation with bounds to
study the Dirichlet problem for the complex Monge-Ampére operator.

By PSH(Q2) we denote the cone of plurisubharmonic functions on Q and by
A(Q) the real analytic function on Q. The Lebesgue measure is denoted by dV.

1. Approximation by real analytic functions.

Let Q be an open subset of C", B the unit ball. To smooth (regularize) a plurisub-
harmonic function, a standard method is to pick a non-negative testfunction
K with [c. KdV = 1 and consider the regularization u; defined by

1) uyz) = fu(z + SwK(w)dV = %Ju(w)K(w = Z)dV; 5> 0.

Then u; is both plurisubharmonic and C*® on Q;, where
Qs ={zeQ, d(z, C"\Q) > ¢}

and u,s(z) \ u(z), 6 \ 0 Vze Q. If Q is not equal to C”, then Q; + Q so u; is not
globally defined, and there are examples of sets Q2 where global approximation is
impossible (cf Fornaess [8] and Cegrell [4], p. 321, Ex. 2).

However, if Q is pseudoconvex, then plurisubharmonic functions on Q can be
approximated by C®-functions that are plurisubharmonic [12]. See also For-
naess and Wiegerinck [9].
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The global smoothing of plurisubharmonic functions is based on the following
theorem.

THEOREM 1.1 [12] Suppose M < C" is a closed complex submanifold. Then, if
u is any plurisubharmonic function on M, there is a plurisubharmonic function w on
C", such that wiy = u.

If M is a Stein manifold of dim n, then it can be imbedded in C*"* ! as a complex
submanifold (cf. [10]). We can therefore consider every plurisubharmonic func-
tion on M as the trace of a plurisubharmonic function defined on C?"*!. So if we
approximate a given plurisubharmonic w with a C*-function w; € PSH n C*(C")
and then take the restriction w;|,,, we get a global approximation of u with

Us; = W@IMGPSH N COO(M)

Thus, Theorem 1 reduces to the question of global approximation of plurisub-
harmonic functions on C". Here, we prove that every plurisubharmonic function
on C" can be approximated from above by plurisubharmonic and real-analytic
functions.

THEOREM 1.2. For every ue PSH(C"), there exists a sequence of real-analytic,
plurisubharmonic functions

u;e PSH(C") n A(C"), j=12,...,
suchthatuyz) \ w(z)forj Z jo(z), where jo(z) is alocally bounded N-valued function.
ProoF. First we assume that
0=5u(z) £ Me°, zeC", where M,C are constants, CeN.
As a kernel function K(z) we take
K(z) = ae1#1*¢

where « is chosen so that jK(z)dV = 1. We put

us(z) = J u(z + wO)K(w)dV(w) = %2 J u(w)K< id = Z)dV(w).

We note that uy(z) is plurisubharmonic and the integral on the right side is
uniformly convergent not only on E cc C"~ R*", but on each compact
F cc R?" 4+ R?". In fact, let z = (X1, X2, ..., X2), W = (@1, ®3,..., ,,) be coor-
dinates on R?",

Let z* = (y1, ¥2,..., V2a). Then
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e
6

is a real-analytic kernel function in C" ~ R?". We have

— iz¥*
K[W (Zé+ 1z )} = ae—s%t[(an—x1—‘l'yx)2+.n+(“2n_x2n_i)’2n)zc’

and

[w; — x; — iy )? + ... 4 (@20 — X20 — iV24)2€

={(0; — x1)* + ... + (020 — X20)* — Y3 =¥} — ... — ¥3, = 2i[ys(@; — xy)
+...+ y2n(w2n - x2n)]}c
= |W*°[1 + a(w,z,z%)] + ib(w, z,2*),|w| = 1

where a, b are real functions, such that for every compact F = R?"(z) + iR?"(z*)
the norm |la(w, z, z*)||r tends to zero as w — 0.
This shows that the integral

fu(w)K ( id = z ) av(w)

is convergent on every F cc R?"(z) + iR?"(z*) and defines a holomorphic func-
tion in R2"(z) + iR?"(z*). The restriction to R?"(z) is then a real analytic function.
We have (cf. [11])

us(z) = f u(z + owK(w)dV(w) = Jdt J u(z + dw)K(w)da(w)

0 S«(0)

= ozje"zc dt j u(z + ow)do(w) = ac,, Je“zctz"“,/{,,(z, td) dt,
0 S¢(0) 0

where S,(0): |z] = ¢ is a sphere with radius ¢,

1
M(2,0) = T J uz + &)do(¢)
2n S6(0)

is the spherical mean of u on the sphere |¢ — z| = §,and 6,, denotes the area of the
unit sphere in C". Since .#,(z, d) \ u(z), if 6 |, 0 (cf. [11]) u, is decreasing in é and
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[}
lim u; = u(z)ao,, Jtz"_le"2C dt = u(z).
50

0

which completes the proof in our case.
To complete the proof of the theorem we can assume u(z) = 0 (we can take
max{u(z), — M} + M and then M — ).
||

We put vg(z) = Mg 'ln-R—, where Mg > sup u(z) is some constant. Then
Izl =R
wg(z) = 1. sup {vr(2), u(2)}, %f 2] < eR
R UR(Z)9 lf |z| > eR

. . _ 1.
is plurisubharmonic in C" and wg(z) = u(z) + X in|z] £ R.

We note that wg(z) satisfy the above growth condition. And we can construct
u{®(z) \ wg(z),j — o0, where u{®(z) are real-analytic and plurisubharmonic func-
tions. Using u{®(z),j, R = 1,2,..., it is not difficult to construct a sequence uX/(z)
so that u}i(z) — u(z) for every ze C", and for j large enough u$®)(z) \ u(z).

COROLLARY. For every pseudoconvex domain D there exists a sequence of
strictly pseudoconvex domains D; < Dj, y, with real-analytic boundary so that

D—_- U Dj.
j=1

2. The Dirichlet problem for the complex Monge-Ampére operator.

Let Q be an open and bounded subset of C". If u;€ C*(Q), 1 <j < n, then the
Monge-Ampére operator operates on (uy, ..., u,);

MA(u,,...,u,) =dduy A ... Anddu, where d=0+0 and d°=i0 — 0).

It was shown in [2] that M A4 is well-defined on (L3 n PSH)" and MA4 = 0.
Suppose that Q is strictly pseudoconvex, that h e C(0€2) and that p is a positive
measure on Q. We are then interested in the Dirichlet problem:

@ePSH N L*(Q)

(@) (dd¢*=pu on Q
lim ¢(z) = h(¢), V¢edQ.
z=¢&

Here, we face several problems. It was proved in [2] that if u = (dd“¢p)" for some
@ e L. N PSH then u vanishes on pluripolar sets. But there are more restrictions
on p for (i) to have a solution. This is a consequence of the following lemma.
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LEMMA 2.1. Let B be the unit ball, R > 1. Then there is a constant ¢ such that

J—u(dd‘(p)" < cf—udV, V0 = ue PSH(RB),
B B
VoePSH(RB), —1=¢=<0.

ProoOF. See [5,p. 57].

If we take u to be a negative and plurisubharmonic function on RB, unbounded
on B, then there is a f € L'(RB) with [puf dV = — oo since the dual of L' is L.

It follows now from Lemma 2.1 that there is no ¢ e PSH n L*(RB) with
(dd°p)" = faV.

Since Q is strictly pseudoconvex, there is always a function ¢ e PSH N C(Q)
with ¢ = h on 0Q, but another difficulty in solving (i) comes from the following:

Consider the class

B(h,p) = {p e PSH N L (Q); (dd°p)' 2 p: Tim (z) < h(&) VE € 002}
z—¢&

Then B(h, 1) may be non-empty, but containing no element with lim ¢(z) = h(&),

VEe Q. il

ExAMPLE. Fix ;e dQ and choose z/e Q, je N so that &, is the only limit point
of (z/)i2,. Choose r; > 0 so that the balls B(z/,r;) are pairwise disjoint and
contained in Q.

Furthermore, we choose 0 < s; < r; so small that

hy() 2 =

~ on Q\B(z%, M)

where h;(z) = sup{@ e PSH(L); 0 = ¢, @laeisy = — 1}. Then H = ) h;e PSH(%),
j=1
—2<H<Z0 and limH(z) = 0, V¢€dQ. But if e PSHANLE(Q), ¢ <0 and
z—¢

(dd°@)* = (dd°H)" then ¢ < h; Vje N by the comparison principle (cf. [1], [2] or
[5]) which means that lim ¢(z) < —1.

z—¢
Since supp(dd°h;)" = 0B(z’, s;) and since each h;is continuous we can smooth h;
near dB(z’, 5;) so that (dd‘l?j)" is a compactly supported function for every j. Since
h; = h; near 9Q then [(dd°h;)" = [(dd°h;)* which is small if s; is small; if we
1 ~ ~
chose s; so small that |dd°h" < 57> then H = Y hjePSH(Q), —2 < H <0,
(dd°Hy' 2 Y (dd°h;)" = fdV where feL'(Q). As above we see that if
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eePSHNLY(Q); 0=¢ and (dd‘¢)"= fdV then ¢ < f{j, Vi and so
lim ¢(z) £ —1 while lim H(z) = 0 V¢ € 0Q.
z—=&o z-¢

in the positive direction, it was shownin [1], thatif u = £ dV,0 < f e C(Q) then
(i) has a unique solution ue PSH n C(Q). This was extendedin [6]: If u = f dV,
0 = feL*(R) then (i) has a unique solution ue PSH n L*(Q).

Here we prove:

THEOREM 2.1. Assume that 0 < fe Ll (Q) and that there exists a function
we PSH n L*(Q) with (ddw)" = f dV.
Then, for every heC(0Q) there exists a function ¢ € PSH n L*(Q) with
(dd°p)" = fdV and lim ¢(z) = h(£), V¢ € 09Q.
z—E
PrOOF. Put uy = inf(f, M)dV. By the above remark there exists
uy € PSH N L*(Q) with lim uy(z) = h(&), V€€ 0Q and (dd‘uy)" = inf(f, M)dV. If
ind
we PSH n LY (Q2) with lim w(z) < h(§) V¢ e 0Q and (dd‘w)" = f dV it follows from
z—=¢&
the comparison principle that w < u,, and that {u,, } 33—, is a decreasing sequence
of functions. Therefore, u = lim uy, € PSH n L*(Q), (ddu)" = fdV(cf.[1],[2] or

[5]) and limu(z) < h(&), VE€0Q.
z=¢

It remains to prove that

lim u(z) = h(é), VE € 0Q.

z—¢

To get a contradiction, assume that Tim u(z) = h(¢,) — & for a point &, dQ and

z—&o

ae > 0. Then there is a ball B(&,, r) so that u(z) < h(¢) — % on 0Q N B(&y,r) so we
can find a continuous function7;0 £ 7 < —;— on 02 with support in 0Q2 N B(&,, 1)

with 1(&,) =§. We then solve the Dirichlet problem (i) for a function

0<yePSHNC() with pu=0 and h=1. Then u+ yePSHn L(Q),
(dd(u + Y))* = (dd°u)" = fdV and lim (u(z) + Y(2)) £ h(),VE e 0Q. We have pro-

z-¢

ved that then u(z) + ¥(z) < up(2), for every M which is a contradiction since
¥ > 0. The proof is complete.

REMARK 1. It was proved in [7], thatif u = f dV, f € L) then (i) has a unique
solution. We do not know if this is true in general for f e LF(Q); p > 1.

REMARK 2. There exists a strictly pseudoconvex domain €2 with real-analytic
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boundary, a real-analytic function h € 0Q2 such that the solution u to the Dirichlet
problem (i) is not real-analytic.

For let first U be the unit disc in the plane h( & 0) a real analytic and
non-negative function on 0U with at least three zeros. Denote by
V(z) = sup{v(z) e CVX(U); limo(z) < h(¢) VE€dU}. Then V is convex with

z=¢
boundary values h. Since V vanishes on an open set, ¥ cannot be real analytic.
Since V is convex, through every point (zy, V(zo)) in the graph of ¥, there is at least
one tangent plane H below (or in) the graph. Since V is also maximal, the convex
hull of {£edU; h(¢) = H(¢)} must contain z,. Therefore through every point
ze U, there is a line segment on which V is affine.

If we now consider the strictly pseudoconvex domain Q = {(z,w)eC?%
(log|z|®)? + (log|w|®)? < 1}, then h(z, w) = h(log|z|?, log |w|?) is real analytic on
09, V(z,w) = V(log|z|? log|w|?) is continuous on &, with boundary values £,
plurisubharmonic on Q with vanishing Monge-Ampére. But ¥ is not real ana-
lytic.
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