ON CYCLIC FIELD EXTENSIONS OF DEGREE 8

LEILA SCHNEPS

Abstract.

A 6-parameter family of cyclic extensions of degree 8 is given over any field. This family parametrizes all C_8 extensions over a number of fields including \mathbb{Q}, any field containing $\sqrt{2}$ or $\sqrt{-1}$, all number fields having a single prime over 2, all local fields whose residue field has characteristic different from 2 and all these fields with any number of indeterminates adjoined.

Let G be a finite group and K a field. Let $P(X, t_1, \ldots, t_n)$ be a polynomial defined over $K(t_1, \ldots, t_n)$, where t_1, \ldots, t_n are indeterminates. Let E be the splitting field of P over $K(t_1, \ldots, t_n)$, and suppose that P has the following properties:

(i) the Galois group of E over $K(t_1, \ldots, t_n)$ is G,

(ii) every Galois extension E_0 of K such that $\text{Gal}(E_0/K) \simeq G$ is the splitting field of a polynomial of the form $P(X, \alpha_1, \ldots, \alpha_n)$ for some $\alpha_1, \ldots, \alpha_n \in K$.

We say that the polynomial P parametrizes all G-extensions of K. It is said to be versal or generic for K if it satisfies the following additional property:

(iii) Let F be any field containing K. Then every Galois extension E_1 of F such that $\text{Gal}(E_1/F) \simeq G$ is the splitting field of a polynomial of the form $P(X, \alpha_1, \ldots, \alpha_n)$ for some $\alpha_1, \ldots, \alpha_n \in F$.

Versal polynomials have been constructed for all cyclic groups of odd order (cf. [Sm]). However the methods fail in the case of cyclic 2-groups of order ≥ 8; in fact it is known that there is no versal polynomial for the cyclic group of order 8 over \mathbb{Q}, for there exists a Galois C_8-extension of \mathbb{Q}_2 which cannot be obtained as the splitting field of a polynomial obtained by specialization to values in \mathbb{Q}_2 of any C_8 polynomial defined over $\mathbb{Q}(t_1, \ldots, t_n)$ (cf. [L], [Sa]).

In this article we give an explicit extension E of $K(t_1, \ldots, t_6)$ having Galois group C_8 and which actually parametrizes all C_8-extensions of K (but is not versal) whenever K satisfies a certain hypothesis. I owe particular thanks to J-P. Serre for asking me about C_8 extensions, and noticing that the hypothesis applies to more fields than I thought. I also thank the ETH Zürich for its hospitality and

Received September 12, 1991.
financial support during the preparation of this paper. Finally, certain state-
ments (in particular improvements of some parts of Lemma 4 and the remark at
the very end of the article) are due to helpful remarks by the referee.

Let \(i = \sqrt{-1} \). Let \(\text{Br}_2(K) \) be the kernel of multiplication by 2 in the Brauer
group of \(K \). We write this group additively and denote by \((a, b)\) the class of the
quaternion algebra \((a, b)\) for \(a, b \in K\). We say that \(K \) satisfies hypothesis (H) if the
following is true for \(K \):

Hypothesis (H): For all \(d \in K \) such that \((-1, d) = 0 \) in \(\text{Br}_2(K) \) and \((2, d) = 0 \) in
\(\text{Br}_2(K(i)) \), we have \((2, d) = 0 \) in \(\text{Br}_2(K) \).

After describing the extension \(E \) and proving that it parametrizes all
\(C_8 \)-extensions of \(K \) whenever \(K \) satisfies (H), we give a list of fields satisfying (H),
calculate an explicit family of \(C_8 \) extensions and consider what can happen over
some fields not satisfying (H).

We construct a \(C_8 \)-extension \(E \) of \(K(t_1, \ldots, t_6) \) as follows. Let
\[
D = t_1^2 + t_2^2 - t_3^2 + 2,
\]
\[
x = (2t_1t_3 - t_1^2 + t_2^2 - t_3^2 + 2)/D,
\]
\[
y = (2t_2t_3 - 2t_1t_2)/D,
\]
\[
z = (t_3^2 - 2t_1t_3 + t_1^2 + t_2^2 + 2)/D,
\]
\[
w = (2t_3 - 2t_1)/D,
\]
\[
d = x^2 + y^2 = z^2 - 2w^2,
\]
\[
r = t_4^2 + t_5^2,
\]
\[
u = t_4x - t_5y - t_4y - t_5x,
\]
\[
v = t_4x - t_5y + t_4y + t_5x
\]
\[
u_1 = (1/x)(vx - uy + u \sqrt{d})
\]
\[
v_1 = (1/x)(ux + vy - v \sqrt{d})
\]
\[
\gamma = (z + \sqrt{d})(2rd + u_1 \sqrt{rd + ry \sqrt{d}}).
\]

Let \(K_6 = K(t_1, \ldots, t_6) \) and \(E = K_6(\sqrt{t_6 \gamma}) \). Let \(P(X, t_1, \ldots, t_6) \) be the minimal
polynomial of \(\sqrt{t_6 \gamma} \) over \(K_6 \). It is easy to calculate \(P \) using a computer, however
every coefficient, even factored, takes several lines to write down, so we do not
give it here. At the end of the article we give an example of a one-parameter family
of \(C_8 \) polynomials.

Main Result: The Galois group \(\text{Gal}(E/K_6) \) is \(C_8 \). Moreover, if \(K \) is a field
satisfying (H), then every extension of \(K \) having Galois group \(C_8 \) comes from \(E \) by
specialization of the parameters \(t_1 \) to values in \(K \): that is, every such extension is the
splitting field of a polynomial of the form \(P(X, \alpha_1, \ldots, \alpha_n) \) for \(\alpha_i \in K \).

The proof is contained in Lemmas 2 and 3. The essential idea of the construction
is the following. We first construct the complete set of \(C_4 \) extensions of
K which can be embedded into a C_8 extension. Let L be such a C_4 extension and $K(\sqrt{d})$ its quadratic subfield: we then construct the complete set of C_4 extensions of $K(\sqrt{d})$ containing L. Finally, we give the subset of these fields which are actually Galois over K.

Before proving the main result we recall some general facts about C_8 extensions.

Lemma 1. Let $d \in K$. Then

(i) There exists a C_4 extension L/K containing $K(\sqrt{d})$ if and only if $(-1, d) = 0$, i.e. d is the sum of two squares $x^2 + y^2$. If this is the case the complete set of such fields is given by

$$\{L_r = K(\sqrt{rd} + ry\sqrt{d}) | r \in K^*\}.$$

(ii) Suppose we have a C_4 extension L, as in (i). Then L_r can be embedded in a C_8 extension E/K if and only if $(2, d) + (-1, rd) = 0$ in $Br_2(K)$.

(iii) Let $d \in K$. Then $K(\sqrt{d})$ can be embedded into a cyclic extension of K of degree 8 if and only if $(-1, d) = 0$ and there exists $r \in K$ such that $(2, d) = (-1, r)$. If K satisfies (H), these conditions become: $(-1, d) = (2, d) = 0$.

Proof. (i) A field $K(\sqrt{d})(\sqrt{\alpha})$ for $\alpha \in K(\sqrt{d})$ is a Galois C_4 extension of K if and only if $N_{K(\sqrt{d})/K}(\alpha) = da^2$ for some $a \in K^*$. Clearly this is the case for all the fields L_r. If $K(\sqrt{d})(\sqrt{\alpha})$ is a C_4 extension, then all others containing $K(\sqrt{d})$ are given by $K(\sqrt{d})(\sqrt{r\alpha})$ for $r \in K^*$, so when $d = x^2 + y^2$, the L_r give the complete set. Now suppose L is a C_4 extension of K and $K(\sqrt{d})$ is its quadratic subfield. Then we can write $L = K(\sqrt{d})(\sqrt{\alpha})$ where $\alpha \in K(\sqrt{d})$ and $N_{K(\sqrt{d})/K}(\alpha) = da^2$, so writing $\alpha = a_1 + a_2 \sqrt{d}$, we have $a_1^2 - da_2^2 = da^2$, so $d = a_1^2(a^2 + a_2^{-1})^{-1}$, so it is the sum of two squares.

(ii) We briefly recall the main result about obstructions to embedding problems. Let H be a group, G an extension of H by C_2 and L/K a Galois extension with Galois group H. Let $\{v_\sigma | \sigma \in H\}$ be a system of representatives for G/C_2 and let ζ be the factor system defined by $v_\sigma v_\tau = \zeta(\sigma, \tau)v_{\sigma\tau}$. The field L can be embedded in a Galois extension E/K of Galois group G if and only if the crossed-product algebra $(L/K, \zeta)$ splits (cf. [R]).

In our case, we have $H = C_4 = \text{Gal}(L/K)$ and $G = C_8$. Let ε be a generator of C_8 so $\varepsilon^4 = -1$, and take $1, \varepsilon, \varepsilon^2$ and ε^3 for the set $\{v_\sigma\}$. The algebra $(L/K, \zeta)$ can be written $\sum_{i=0}^3 L\varepsilon^i$, where multiplication is given by $\varepsilon x = \varepsilon(x)\varepsilon$, ε acting on L via H. Since the dimension of this algebra is 16 and it is killed by 2, it can be written as a tensor product of the two quaternion algebras. We claim that we can take $(2, d)$ and $(-1, 10rd)$ to be these two algebras, generated as follows. Let $\sigma = \varepsilon - \varepsilon^3$ and
\[\lambda = \sqrt{rd + ry \sqrt{d}} + \sqrt{rd - ry \sqrt{d}}^2. \] Then \((2, d)\) is generated by \(\sigma\) and \(\sqrt{d}\) and \((-1, 10rd)\) is generated by \(\varepsilon^2\) and \(\lambda + \sigma \lambda \sigma / 2\) (note that each pair of generators anticommutes). To check that \((L/K, \zeta)\) is a tensor product of these two algebras it suffices to check that the generators of \((2, d)\) commute with those of \((-1, 10rd)\) and to notice that each of them is contained in \((L/K, \zeta)\). Note that \((-1, 10) = 0\) in \(\text{Br}_2(K)\) so \((-1, 10rd) = (-1, rd)\), and the obstruction to the embedding problem as an element of \(\text{Br}_2(K)\) is \((2, d) + (-1, rd)\). For similar considerations, see [K].

(iii) First suppose \((-1, d) = 0\) and there exists \(r\) such that \((2, d) = (-1, r)\). Then by (i), \(d = x^2 + y^2\) and \(L_r = K(\sqrt{rd + ry \sqrt{d}})\) is a \(C_4\) extension of \(K\) and by (ii), since \((2, d) + (-1, rd) = (2, d) + (-1, r) = 0\), \(L_r\) admits a \(C_8\) extension. Now suppose that \(E\) is a \(C_8\) extension of \(K\) and let \(L\) be its \(C_4\) subfield and \(K(\sqrt{d})\) its quadratic subfield. Then since \(K(\sqrt{d})\) admits the extension \(L\), by (i) we must have \((-1, d) = 0\), \(d = x^2 + y^2\) and \(L = L_r\) for some \(r\). Moreover, \(L_r\) is embedded in the \(C_8\) extension \(E\), so the obstruction to the embedding problem \((2, d) + (-1, rd)\) must be trivial, so \((2, d) = (-1, r)\). If \(K\) satisfies (H), this condition implies that \((2, d) = 0\).

We now prove the main result in Lemmas 2 and 3.

Lemma 2. \(\text{Gal}(E/K_6) = C_8\).

Proof. \(E\) is an extension of degree 8 which contains a cyclic 4 extension of \(K\), namely \(L_r = K(\sqrt{rd + ry \sqrt{d}})\). To see that \(E\) is a \(C_8\) extension, it suffices to show that \(L_r(\sqrt{\gamma})\) is one, which we do by checking the following two properties: firstly, \(L_r(\sqrt{\gamma})\) is a Galois \(C_4\) extension of \(K(\sqrt{d})\) and secondly, \(L_r(\sqrt{\gamma})\) is Galois over \(K\).

The field \(L_r(\sqrt{\gamma})\) is a cyclic 4 extension of \(K(\sqrt{d})\) by the identity

\[4r^2d^2 - u_1^2(rd + ry \sqrt{d}) = v_1^2(rd + ry \sqrt{d}), \]

as in the proof of (i) of Lemma 1. The left hand side is, up to squares, just \(N_{L_r/K(\sqrt{d})}(\gamma)\), so the field \(L_r(\sqrt{\gamma})\) is given by adjoining to \(K(\sqrt{d})(\sqrt{rd + ry \sqrt{d}})\) the square root of an element whose norm is, up to squares, equal to \(rd + ry \sqrt{d}\), such an extension is cyclic of degree 4 (as in the proof of (i) in Lemma 1).

In order to verify that \(L_r(\sqrt{\gamma})\) is Galois over \(K\) it suffices to show that the product of \(\gamma\) with each of its conjugates is a square. This is clear for the conjugates of \(\gamma\) over \(K(\sqrt{d})\) since \(L_r(\gamma)\) is Galois over \(K(\sqrt{d})\). Therefore it suffices to check that \(\gamma \gamma'\) is a square where \(\gamma'\) is the conjugate of \(\gamma\) under the map \(\sqrt{d} \rightarrow -\sqrt{d}\). This follows from the identity

\[\gamma \gamma' = w^2(2rd + \sqrt{4r^2d^2 + 2((v^2 - u^2)x - 2uvy)r \sqrt{d}})^2. \]
Thus, \(\gamma \) times any of its conjugates is a square and therefore \(L_\gamma(\sqrt{\gamma}) \) is a Galois extension of \(K_6 \) of Galois group \(C_8 \).

Lemma 3. If \(K \) satisfies (H), then the extension \(E \) of \(K_6 \) described above parametrizes all \(C_8 \)-extensions of \(K \).

Proof. By Lemma 1, the set of \(d \in K \) such that \(K(\sqrt{d}) \) is contained in a \(C_8 \) extension is given by

\[\{d \in K \mid (-1, d) = (2, d) = 0\}. \]

In other words, \(d \) can be written in the form \(x^2 + y^2 \) and also \(z^2 - 2w^2 \). Since the equation \(x^2 + y^2 - z^2 + 2w^2 = 0 \) has an obvious solution \((1, 0, 1, 0)\), the complete set of solutions can be parametrized (the result is given in the description of the extension \(E/K_6 \)).

By Lemma 1, the complete set of cyclic 4 extensions of \(K \) containing \(K(\sqrt{d}) \) for this \(d \) and embeddable into a \(C_8 \) extension of \(K \) is given by

\[L_\gamma = K(\sqrt{rd} + ry \sqrt{d}) \text{ for } r \in K^* \text{ such that } (2, d) + (-1, rd) = (-1, r) = 0. \]

This condition is parametrized by \(r = t_4^2 + t_5^2 \). Finally, over any such \(L_\gamma \), we saw in Lemma 2 that \(L_\gamma(\sqrt{\gamma}) \) is a \(C_8 \) extension of \(K \), so the complete set of \(C_8 \) extensions of \(K \) containing \(L_\gamma \) is given by \(L_\gamma(\sqrt{s\gamma}) \), \(s \in K^* \).

We now take a look at which fields actually satisfy the hypothesis. The following list is certainly not exhaustive.

Lemma 4. The following fields \(K \) satisfy hypothesis (H):

(i) \(K \) contains \(\sqrt{2} \) or \(\sqrt{-1} \) or \(\sqrt{-2} \)

(ii) \(K \) is a local field whose residue field is of characteristic different from 2

(iii) \(K = \mathbb{Q} \)

(iv) \(K \) is a number field with the following property: at most one of the completions \(K_v \) at the places \(v \) lying over 2 does not satisfy (H)

(v) \(K = k(t) \) where \(t \) is a indeterminate and \(k \) is an infinite field of characteristic different from 2 which satisfies (H).

Proof. (i) If \(K \) contains \(\sqrt{2} \) then \((2, d) = 0 \) in \(\text{Br}_2(K) \). If \(K \) contains \(\sqrt{-1} \) and \((2, d) = (-1, x) \) then \((2, d) = 0 \). Finally if \(K \) contains \(\sqrt{-2} \), then \((-1, d) = 0 \Rightarrow (2, d) = (-2, d) = 0 \).

For (ii), it suffices to notice that any local field whose residue field is of characteristic \(p \neq 2 \) contains the square root of \(-1, 2 \) or \(-2 \), for these numbers are units in \(K \) and thus quadratically dependent. As pointed out by the referee, if a local field contains none of these three square roots, it cannot satisfy (H), for if \(K \) satisfies (H) and does not contain \(\sqrt{-1} \), then \((2, d) = 0 \) in \(\text{Br}_2(K(\sqrt{-1})) \) for every \(d \in K \) (by local class field theory). In particular, \((-1, d) = 0 \Rightarrow (2, d) = 0 \),
and thus the square classes represented by -1 and 2 must be dependent, so 2 or -2 is a square in K.

Part (iii) is a direct consequence of (i) and (ii) since if $(2, d) = 0$ in $\text{Br}_2(\mathbb{R})$ and $\text{Br}_2(\mathbb{Q}_p)$ for all $p \neq 2$, then by the product formula $(2, d) = 0$ in $\text{Br}_2(\mathbb{Q}_2)$ and thus in $\text{Br}_2(\mathbb{Q})$. Part (iv) is the same argument: if $(2, d) = 0$ in the Brauer groups of completions of K at all places of K except one (the place over 2), then it is 0 everywhere and therefore also in $\text{Br}_2(K)$.

(v) For this part, we need to use the following two basic facts about the Galois cohomology of function fields (cf. [A]).

(1) Let X denote the set of discrete valuations of K which are trivial on k. For each $v \in X$ let us write $k(v)$ for the residue field of K_v, the completion of K at v. Then we have the following exact sequence:

$$0 \to \text{Br}_2(k) \to \text{Br}_2(K) \to \prod_{v \in X} H^1(k(v), \mathbb{Z}/2\mathbb{Z}).$$

The last arrow is given by $\prod_v \text{Res}_v$ where for each $v \in X$,

$$\text{Br}_2(K) \to \text{Br}_2(K_v) \xrightarrow{\text{Res}_v} H^1(k(v), \mathbb{Z}/2\mathbb{Z}) \cong k(v)^*/(k(v)^*)^2.$$

(2) Let $\alpha = \sum_i (a_i(t), b_i(t))$ be an element of $\text{Br}_2(K)$, and suppose its image under $\prod_v \text{Res}_v$ is trivial. Then by the above exact sequence α is an element of $\text{Br}_2(k)$. For any value $t_0 \in k$ which is not a zero or a pole of any of the $a_i(t)$ or the $b_i(t)$, we have $\alpha = \sum_i (a_i(t_0), b_i(t_0))$.

We can now finish the proof of part (v) of the Lemma. Let $d = d(t)$ and $x = x(t)$ be elements of K such that $(-1, d) = 0$ and $(2, d) = (-1, x)$ in $\text{Br}_2(K)$. We first show that the image of $(2, d)$ under the map $\prod_v \text{Res}_v$ is trivial. For any symbol $(a, b) \in \text{Br}_2(K)$, the local symbol $(a, b)_v$ at a place $v \in X$ is trivial if there exist elements a' and $b' \in K$ such that $(a, b) = (a', b')$ in $\text{Br}_2(K)$ and a' and b' both have even valuations at v. We show that this is the case for the symbol $(2, d)$ at every place $v \in X$. Since 2 and -1 have even valuations and $(2, d)$ is equal to $(-1, x)$ by hypothesis, if either d or x has an even valuation at v the local symbol $(2, d)_v$ is trivial. If both d and x have odd valuations, then since $(-1, d) = 0$ by hypothesis, we have $(2, d) = (-1, x) = (-1, dx)$ and dx has an even valuation so again, the local symbol $(2, d)_v$ is trivial. This is true for every $v \in X$ so by the exact sequence in (1), we find that $(2, d)$ is in $\text{Br}_2(k)$.

By remark (2) above, if the symbol $(2, d) = (2, d(t))$ is in $\text{Br}_2(k)$, then for any $t_0 \in k$ which is not a zero or pole of $d(t)$ (and we can always find such a t_0 since k is an infinite field), we have $(-1, d) = (-1, d(t_0))$ and $(2, d) = (2, d(t)) = (-1, x) = (-1, x(t_0))$. Thus, since k satisfies hypothesis (H), we must have $(2, d) = (2, d(t_0)) = 0$ in $\text{Br}_2(k)$, so K satisfies hypothesis (H). As remarked by the referee,
this kind of argument shows that the field $K = k((t))$ also satisfies (H). This
concludes the proof of Lemma 4.

The minimal polynomial of the element $t^6\gamma$ in 6 indeterminates is long and
complicated. However, it is easy to calculate various explicit families of C_8
extensions. We give one here over the field $Q(t)$. Let $d = 1 + t^4$. Then since
d = (1 + t^4)^2 - 2t^2, we have $(-1, d) = (2, d) = 0$. Let $L = Q(t)(\sqrt{d} + t^2 \sqrt{d})$
be a cyclic 4 extension of $Q(t)$ containing $Q(t)(\sqrt{d})$. Set

$$
\gamma = (1 + t^2 + \sqrt{d})(2d + (d + (1 - t^2)\sqrt{d})\sqrt{d} + t^2 \sqrt{d}).
$$

Then $L(\sqrt{\gamma})$ is a Galois C_8 extension of $Q(t)$. It is the splitting field of the
polynomial:

$$X^8 - 8(1 + t^2)(1 + t^4)X^6 + 8t^2(4 + t^2)(1 + t^4)^2 X^4 - 32t^4(1 + t^4)^3 X^2 +
+ 16t^8(1 + t^4)^3.$$

Over fields K which do not satisfy (H), the extension E/K_6 does not parametrize
all C_8-extensions of K. The easiest example is $K = Q_2$. If we set $d = 5$, we have
$(-1, 5)_2 = 0$. But $(2, 5)_2 = 0$: yet $(2, 5)_2 = (-1, 3)_2$. In fact for any $d \in Z$, $d \equiv 5$
(mod 8), we obtain such a counterexample. It is easy to construct number fields
not satisfying (H) as well. For example, let K be an extension of Q of even degree
such that 2 splits and there exist primes p and $q \in Q$, inert in K, with $p \equiv 3$ (mod 8)
and $q \equiv 5$ (mod 8). Then $(-1, q) = 0$ and $(2, q) = (-1, p)$. Thus $K(\sqrt{q})$ can be
embedded into a C_8 extension not obtained by specialization from E.

REFERENCES

[K] I. Kiming, Explicit classification of some 2-extensions of a field of characteristic field of characteristic

[Sa] D. Saltman, Generic Galois extensions and problems in field theory, Adv. in Math. 43 (1982),
250–283.