ON THE λ-DIMENSION OF CARTESIAN SQUARES

SUSANA SCRIVANTI

By a ring, we always mean a commutative ring with identity. Consider a commutative square of rings and ring homomorphisms

$$\begin{array}{ccc}
A & \xrightarrow{i_1} & A_1 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
A_2 & \xrightarrow{j_2} & A_0
\end{array}$$

Then (1) is called a cartesian square (or a pullback, or a fiber product) if given $a_1 \in A_1$, $a_2 \in A_2$ with $j_1(a_1) = j_2(a_2)$, there exists a unique element $a \in A$ such that $i_1(a) = a_1$ and $i_2(a) = a_2$. We shall use the equivalent definition that diagram (1) is a pullback if the restriction of i_2 to ker i_1 is an isomorphism onto ker j_2 , and j_1 induces an injection of coker i_1 into coker j_2 .

The following definitions and the proofs of the several assertions can be found in [GS]. Let M be an A-module, a finite n-presentation of M is an exact sequence

$$F_n \to F_{n-1} \to \ldots \to F_0 \to M \to 0$$

with F_i finitely and free A-modules.

If M is a finitely generated A-module, we denote by:

$$\lambda_A(M) = \sup \{n \mid \text{there is a finite } n\text{-presentation of } M\}$$

If M is not finitely generated we put $\lambda(M) = -1$.

Let

$$0 \rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow 0$$

be an exact sequence of A-modules then:

- (2) $\lambda(M_2) \ge \inf\{\lambda(M_1), \lambda(M_3)\}$
- $(3) \ \lambda(M_3) \ge \inf\{\lambda(M_2), \lambda(M_1) + 1\}.$
- $(4) \ \lambda(M_1) \ge \inf\{\lambda(M_2), \lambda(M_3) 1\}.$

The λ -dimension of A, denoted by $\lambda \dim A$ is the least integer such that

Received June 6, 1991.

 $\lambda_A(M) \ge n$ implies $\lambda_A(M) = \infty$ for all A-modules M. If no such n exists we set $\lambda \dim A = \infty$.

It follows that:

 $\lambda \dim A \leq 0$ iff A is noetherian.

 $\lambda \dim A \leq 1$ iff A is coherent.

This paper is motivated by the results in [O] and [G]. In [O], Ogoma studies necessary and sufficient conditions for the fiber product of noetherian rings to be noetherian, while Greenberg [G] studies coherence over a special case of a pullback ring, in terms of coherence of the components.

We will prove the result (cf. Theorem 4 and its corollaries below) that generalizes their results, and which in a certain sense is best possible.

In [O, Theorem 2.1] Ogoma showed that if (1) is a cartesian square with A_1 and A_2 noetherian, then the fiber product A is noetherian if only if

- (i) $C = j_1(A_1) \cap j_2(A_2)$ is noetherian and
- (ii) a_1/a_1^2 and a_2/a_2^2 are finite C-modulus where $a_i = \ker j_i$ (i = 1,2).

On the other hand, Greenberg showed in [G, Theorem 2.4] that if (1) is a cartesian square in which i_2 is a flat epimorphism, a_2 is a flat ideal of A (also of A_2) and $A_1 \simeq A/a_2$, the A is coherent in each of the following cases:

- (i) A_1 and A_2 are coherent and $a_2 \in MAX(A_2)$.
- (ii) A_1 is coherent and reduced and A_2 is hereditary.
- (iii) A_1 is notherian and A_2 is coherent.

We give a sufficient condition for the fiber product of rings with $\lambda \dim \leq n$ to be a ring with $\lambda \dim \leq n$.

The following proposition is used several times throughout.

PROPOSITION 1. Suppose given a pullback diagram (1) with i_1 surjective, and an A-module M. The following then hold.

- (a) M is projective iff $A_i \otimes_A M$ is a projective A_i -module (i = 1,2).
- (b) M is flat iff $A_i \otimes_A M$ is a flat A_i -module (i = 1,2).
- (c) M is finitely generated iff $A_i \otimes_A M$ is a finitely generated A_i -module (i = 1,2).

PROOF. The assertions concerning projectivity and flatness are proved in [W] and [FV] respectively. We will prove statement c). The only if direction is clear.

Let $A_i \otimes_A M$ be generated as an A_i -module by $a_{i_k} \otimes m_{i_k}$, $m_{i_k} \in M$, $a_{i_k} \in A_i$, for i = 1, 2 and $1 \le 1_k \le n_1$, $1 \le 2_k \le n_2$. We then have exact sequences.

$$A_i \otimes_A A^{n_i} \simeq A_i^{n_i} \to A_i \otimes_A M \to 0$$
$$1 \otimes (0, \dots, 0) \mapsto a_{i_k} \otimes m_{i_k}$$

We can obtain a map φ

$$A^{n_1+n_2} \xrightarrow{\varphi} M \to \operatorname{coker} \varphi \to 0$$

(0,..., 1,...,0) $\mapsto m_k$

with $m_s = m_{1_s}$, when $1 \le s \le n_1$, and $m_s = m_{2_{s-n_1}}$ when $n_1 < s \le n_2$. Then $A_i \otimes_A \operatorname{coker} \varphi = 0$ (i = 1, 2). Indeed

$$A_i \otimes_A A^{n_1 + n_2} \xrightarrow{f_i} A_i \otimes_A M \to A_i \otimes_A \operatorname{coker} \varphi \to 0$$

$$1 \otimes (0, \dots, 1, \dots, 0) \mapsto 1 \otimes m_k$$

is exact and f_i is surjective.

Consider the exact sequences of A-modules

$$0 \to A \xrightarrow{\{i_1, i_2\}} A_1 \oplus A_2 \xrightarrow{j_1 - j_2} j_2(A_2) \to 0$$

By a) coker φ is a projective A-module. So tensoring the sequence with coker φ , we obtain an exact sequence:

$$0 \to \operatorname{coker} \varphi \to (A_1 \otimes_A \operatorname{coker} \varphi) \oplus (A_2 \otimes_A \operatorname{coker} \varphi) \to j_2(A_2) \otimes_A \operatorname{coker} \varphi \to 0$$

Since $A_i \otimes_A \operatorname{coker} \varphi = 0$ we obtain $\operatorname{coker} \varphi = 0$. We conclude that the map $A^{n_1 + n_2} \to M$ is surjective and M is a finitely generated A-module.

The case n = 1 of the following proposition generalizes proposition 2.1 of [G].

PROPOSITION 2. Suppose given a pullback diagram (1), with i_1 surjective, M an A-module and $\lambda_{A_i}(\operatorname{Tor}_j^A(A_i, M)) \ge n - j$ for $1 \le j \le n$ (empty condition if n = 0) and i = 1, 2. Then

$$\lambda_A(M) \ge n \text{ iff } \lambda_{A_i}(A_i \otimes_A M) \ge n \text{ for } i = 1, 2$$

PROOF. The proof is by intduction on n.

For n = 0 the proposition follows from proposition 1.c).

Assume that $\lambda_{A_i}(\operatorname{Tor}_j^A(A_i, M)) \ge n - j, 1 \le j \le n, i = 1, 2.$

Let $\lambda_A(M) \ge n$. We then have an exact sequence of A-modules

$$(5) 0 \to K \to A^k \xrightarrow{f} M \to 0$$

and $\lambda_A(M) \ge n$ iff $\lambda_A(K) \ge n - 1$.

Since $\operatorname{Tor}_{j}^{A}(A_{i},K) \simeq \operatorname{Tor}_{j+1}^{A}(A_{i},M)$ for $j \geq 1$, by the induction hypothesis $\lambda_{A_{i}}(A_{i} \otimes_{A} K) \geq n-1$ (i=1,2). In addition, tensoring (5) with A_{i} over A, and put $K_{i} = \ker(1_{A_{i}} \otimes f)$, we obtain two exact sequences

$$0 \to K_i \to A_i^k \xrightarrow{1_{A_i} \otimes f} A_i \otimes_A M \to 0 \quad \& \quad 0 \to \operatorname{Tor}_1^A(A_i, M) \to A_i \otimes_A K \to K_i \to 0$$

By (3) $\lambda_{A_i}(K_i) \ge n-1$, hence $\lambda_{A_i}(A_i \otimes_A M) \ge n(i=1,2)$ as desired.

If on the other hand $\lambda_{A_i}(A_i \otimes_A M) \ge n$, then $\lambda_{A_i}(K_i) \ge n-1$ and by (2) $\lambda_{A_i}(A_i \otimes_A K) \ge n-1$. (i=1,2) Hence we conclude that $\lambda_A(M) \ge n$ iff $\lambda_{A_i}(A_i \otimes_A M) \ge n$ (i=1,2).

THEOREM 3. Let diagram (1) be a pullback in which i_1 is surjective and A_1 , A_2 are flat A-modules. Then

$$\lambda \dim A \leq \max_{i=1,2} \{\lambda \dim A_i\}$$

PROOF. Since A_1, A_2 are flat A-modules, it is easy to see that for every A-module N we have that $\lambda_A(N) \ge k$ iff $\lambda_A(N \otimes A_i) \ge k$ for $k \ge -1$.

Let $n = \max_{i=1,2} \{\lambda \dim A_i\}$ and M be an A-module with $\lambda_A(M) \ge n$. Then we have that $\lambda_{A_i}(M \otimes A_i) \ge n$ (i = 1, 2). Because $\lambda \dim A_i \le n$ we get $\lambda_{A_i}(M \otimes A_i) \ge n + 1$ and we can conclude that $\lambda_A(M) \ge n + 1$ for i = 1, 2.

THEOREM 4. Suppose given a pullback diagram (1) with i_1 surjective. Suppose that for all A-modules M with $\lambda_A(M) \ge n$ we have $\lambda_{A_i}(\operatorname{Tor}_j^A(A_i, M)) \ge n + 1 - j$ for $1 \le j \le n + 1$ and i = 1, 2. Then

$$\lambda \dim A_i \leq n (i = 1, 2) \Rightarrow \lambda \dim A \leq n.$$

PROOF. Let M be an A-module with $\lambda_A(M) \ge n$ and $\lambda_{A_i}(\operatorname{Tor}_j^A(A_i, M)) \ge n+1-j$ (i=1,2). It follows from proposition 2 that $\lambda_{A_i}(A_i \otimes_A M) \ge n$ (i=1,2). But $\lambda \dim A_i \le n$ (i=1,2) and hence $\lambda_{A_i}(A_i \otimes_A M) \ge n+1$ (i=1,2). Using proposition 2 we have that $\lambda_{A_i}(A_i \otimes_A M) \ge n+1$ (i=1,2) iff $\lambda_A(M) \ge n+1$.

We have shown that $\lambda_A(M) \ge n$ implies $\lambda_A(M) \ge n + 1$. Hence $\lambda \dim A \le n$.

COROLLARY 5. Let diagram (1) be a pullback with it, surjective and A. A.

COROLLARY 5. Let diagram (1) be a pullback with i_1 surjective and A_1, A_2 noetherian. Then A is noetherian iff $Tor_1^A(A_i, A/a)$ is a finitely generated A_i -module for i = 1, 2, and all ideals a of A.

PROOF. The only if assertion follows from theorem 4. We will prove the converse.

Let a be an ideal of A. Since A is noetherian, the ideal is finitely generated and hence $A_i \otimes_A a$ is a finitely generated A_i -module for (i = 1, 2).

We tensor the exact sequence of A-modules

$$(6) 0 \to a \to A \xrightarrow{\pi} A/a \to 0$$

with $A_i(i=1,2)$ over A, put $H_i = \ker(1_{A_i} \otimes \pi)$, and we obtain two exact sequences

(7)
$$0 \to H_i \to A_i \xrightarrow{1_{A_i} \otimes \pi} A_i \otimes_A A/a \to 0$$

and

(8)
$$0 \to \operatorname{Tor}_1^A(A_i, A/a) \to A_i \otimes_A a \to H_i \to 0$$

Since $\lambda_{A_i}(A_i \otimes_A A/a) = \infty$, $\lambda_{A_i}(H_i) = \infty$ (i = 1, 2). From $\lambda_{A_i}(A_i \otimes_A a) = \infty$ and $\lambda_{A_i}(H) = \infty$ it follows that $\operatorname{Tor}_i^A(A_i, A/a)$ is a finitely generated A_i -module (i = 1, 2).

From corollary 5 and proposition 2.1 of [O] we have the following:

REMARK. Suppose given a pullback (1) with A_1, A_2 noetherian. Then $\operatorname{Tor}_i^A(A_i, A/a)$ is a finitely generated A_i -module for (i = 1, 2) iff a_2/a_2^2 is a finitely generated $j_1(A_1)$ -module (where $a_2 = \ker j_2$).

LEMMA 6. Let (1) be a pullback with i_1 surjective. Suppose that a_2/a_2^2 is a finitely generated $j_1(A_1)$ -module and that for all ideals b of A_2 , there exists an ideal a of A such that $A_2 \otimes_A a \simeq b$. Then A is noetherian iff A_1 and A_2 are noetherian.

PROOF. The only if assertion follows from corollary 5. In showing the converse, note that since i_1 is surjective, A_1 is noetherian.

Let b be an ideal of A_2 . Since $A_2 \otimes_A a \simeq b$ and a is a ideal of A, a is a finitely generated. It follows that b is a finitely generated ideal of A_2 .

COROLLARY 7. Let the diagram (1) be a pullback with i_1 surjective and A_1, A_2 coherent. Then A is coherent iff $Tor_1^A(A_i, A/a)$ is a finitely presented A_i -module and $Tor_2^A(A_i, A/a)$ is a finitely generated A_i -module, for all finitely geneated ideals a of A, (i = 1, 2).

PROOF. The only if assertion follows from theorem 4, we will prove the converse.

From the sequences (6), (7) and (8) we have $\lambda_{A_i}(\operatorname{Tor}_1^A(A_i, A/a)) \ge 1$, i.e. $\operatorname{Tor}_1^A(A_i, A/a)$ is a finitely presented A_i -module (i = 1, 2).

Since a is a finitely presented ideal of A, we have an exact sequence

$$(9) 0 \to P \to A^r \xrightarrow{g} a \to 0$$

where P is a finitely generated A-module. If we apply the functor $\operatorname{Tor}_{\star}^{A}(A_{i}, -)$ to (9) and put $P_{i} = \ker(1_{A_{i}} \otimes g)$ (i = 1, 2) we obtain two exact sequences.

$$0 \to P_i \to A_i^r \xrightarrow{1_{A_i} \otimes g} A_i \otimes_A a \to 0 \quad \& \quad 0 \to \operatorname{Tor}_i^A(A_i, a) \to A_i \otimes_A P \to P_i \to 0.$$

It follows from (4) and $\lambda_{A_i}(A_i \otimes_A a) = \infty$, that $\lambda_{A_i}(P_i) = \infty$, and from $\lambda_{A_i}(A_i \otimes_A P) \ge 0$, $\lambda_{A_i}(P_i) = \infty$ and (4) that $\lambda_{A_i}(\operatorname{Tor}_i^A(A_i, a)) \ge 0$ (i = 1, 2).

LEMMA 8. Let (1) be a pullback with i_1 surjective. Suppose that for all finitely generated ideals a of A, $Tor_i^A(A_i, A/a)$ is a finitely presented A_i -module and that $Tor_2^A(A_i, A/a)$ is a finitely generated A_i -module (i = 1, 2). Supose, moreover, that for all finitely generated ideals b_i of A_i , there exist finitely generated ideals a_i of A such that $A_i \otimes_A a_i \simeq b_i$ (i = 1, 2). Then A is coherent iff A_1 and A_2 are coherent.

PROOF. The only if assertion follows from corollary 7. We will prove the converse.

Let b_i be a finitely generated ideal of A_i (i = 1, 2). By hypothesis $b_i \simeq A_i \otimes_A a_i$, where a_i is a finitely generated ideal of A. Then a_i is finitely presented and we conclude that b_i is a finitely presented A_i -module (i = 1, 2).

REMARK. Corollary 7 is a generalization of proposition 2.4 of [G].

To see this, note that Greenberg has studied the case where A_2 and A/a_2 are coherent rings, A is a subring of A_2 , which is a flat epimorphic image of A, and a_2 is a flat ideal of A. That is, we have a diagram

$$\begin{array}{ccc}
A & \xrightarrow{i_1} & A/a_2 \\
\downarrow^{i_2} & & \downarrow^{j_1} \\
A_2 & \xrightarrow{j_2} & A_2/a_2
\end{array}$$

Since A_2 is a flat A-module, we have that $\operatorname{Tor}_i^A(A_2, -) = p$ and since a_2 is a flat ideal of A, $\operatorname{Tor}_2^A(A/a_2, -) = 0$. Then by corollary 7, A is coherent iff $\operatorname{Tor}_1^A(A/a_2, A/a)$ is finitely presented A/a_2 -module for all finitely generated ideals a of A.

The three cases studied by Greenberg in theorem 2.4 give that $A/a_2 \otimes_A a$ are finitely presented for all finitely generated ideals a of A. Equivalently, that $\operatorname{Tor}_1^A(A/a_2,A/a)$ is finitely presented, because if we consider the sequences (6), (7) and (8), we see that $\lambda_{A/a_2}(\operatorname{Tor}_1^A(A/a_2,A/a)) \geq 1$ as $\lambda_{A/a_2}(A/a_2 \otimes_A a) \geq 1$ and $\lambda_{A/a_2}(H) = \infty$.

COROLLARY 9. Let (1) be a pullback with i_1 surjective, A_1 , A_2 coherent and $fd_4(A_i) \le 1$. Then

$$\lambda \dim A \leq 2$$

PROOF. Since $\operatorname{Tor}_{j}^{A}(A_{i}, -) = 0$ for $j \geq 2$, and $\lambda_{A_{i}}(N) \geq 1$ implies that $\lambda_{A_{i}}(N) = \infty$ for all A_{i} -modules N, it follows from theorem 4, that we only need to show that $\operatorname{Tor}_{1}^{A}(A_{i}, M)$ is a finitely presented A_{i} -module for all A-modules M with $\lambda_{A}(M) \geq 2$ (i = 1, 2).

Let M be an A-module with $\lambda_A(M \ge 2$. Then we have an exact sequence of A-modules

$$(5) 0 \to K \to A^k \stackrel{f}{\to} M \to 0$$

with $\lambda_A(K) \ge 1$. Since $\lambda_A(K) \ge 1$ implies $\lambda_{A_i}(A_i \otimes_A K) \ge 1$, we obtain $\lambda_{A_i}(A_i \otimes_A K) = \infty$ (i = 1, 2).

If we apply the functor $\operatorname{Tor}^A(A_i, -)$ to (5), and put $K_i = \ker(1_{A_i} \otimes f)$ (i = 1, 2), we obtain two exact sequences

$$0 \to K_i \to A_i^k \xrightarrow{1_{A_i} \otimes f} A_i \otimes_A M \to 0 \quad \& \quad 0 \to \operatorname{Tor}_1^A(A_i, M) \to A_i \otimes_A K \to K_i \to 0$$

Since A_i are coherent and $\lambda_{A_i}(A_i \otimes_A M) \ge 1$ we see that $\lambda_{A_i}(K) = \infty$, and it follows from (4) that $\lambda_{A_i}(\text{Tor}_1^A(A_i, M)) = \infty$ (i = 1, 2).

Given a pullback (1) with i_1 and i_2 surjective, it is well-known that A is noetherian iff A_1 and A_2 are noetherian. We now show that a similar result holds if we replace noetherian by coherent.

PROPOSITION 10. Let (1) be a pullback with i_1 and i_2 surjective, and suppose that $\ker j_1$ and $\ker j_2$ are finitely generated A-modules. Then A is coherent iff A_1 and A_2 are coherent.

PROOF. Recall that A is coherent iff $\prod_I A$ is flat for all I. By proposition 1,b) A is coherent if $A_i \otimes_A \prod_I A$ is flat for all I (i = 1, 2). Since A_i are finitely presented A-modules, $A_i \otimes_A \prod_I A \simeq \prod_I A_i$. Thus A coherent if $\prod_I A_i$ is A_i -flat for all I (i = 1, 2).

We conclude with the following example where corollary 7 and corollary 9 can be applied.

EXAMPLE. Let T be a ring consisting of those power series with positive rational exponents increasing towards ∞ in an indeterminate x over a field k, denoted by $T = k[[Q^+]]$ (for more details cf. [S]).

Thus T is a valuation ring with a non principal ideal $m = \sum_{i=1}^{\infty} x^{1/i} T$. Moreover, gldim T = 2, and T is coherent (since every f. g. ideal is principal thus free). Consider the cartesian square, where T_1 and T_2 are two copies of T

$$\begin{array}{ccc}
R & \xrightarrow{i_1} & T_1 \\
\downarrow i_2 & & \downarrow j_1 \\
T_2 & \xrightarrow{j_2} & T/m
\end{array}$$

where the maps onto T/m are the natural ones.

Then $R = \{(a, b) \in T \times T | a - b \in m\}$. Hence R is a local ring with zero divisors and maximal ideal $J = m \times m$.

In [OB, theorem 2.37] B. Osofsky showed that gldim R = 3 and wd R = 2 We now address the question of determining the λ -dimesion of R.

First we determine $fd_R T_k (k = 1, 2)$. But exactly as in [S, example 1 (ii)] one shows that $fd_R T_k \leq 1$.

Using corollary 7 we can show that R is not a coherent ring.

To see this, let I be a finitely generated ideal of R. From [OB, theorem 2.37] we obtain that I = (a, b)R where $a \neq 0$ and $b \neq 0$ (which is a projective ideal of R), or $I = (a, 0) R \oplus (0, b) R$.

We may assume that I = (a, 0) R. We then have an exact sequence

$$(10) 0 \to I \to R \to R/I \to 0.$$

Tensoring (10) with T_2 , we get

$$0 \to \operatorname{Tor}_1^R(T_2, R/I) \to T_2 \otimes_R I \overset{g_2}{\to} T_2 \to T_2 \otimes_R R/I \to 0$$

But $g_2 = 0$, because $g_2(t \otimes (a, 0)) = t(a, 0) = 0$, and hence we have that

 $\operatorname{Tor}_{1}^{R}(T_{2}, R/I) \simeq T_{2} \otimes_{R} I$. Consider the exact sequence

$$(11) 0 \rightarrow (0, m) \rightarrow R \rightarrow I \rightarrow 0.$$

Tensoring (11) with T_2 we obtain

$$0 \to T_2 \otimes_R (0, m) \to T_2 \to T_2 \otimes_R I \to 0.$$

Since $T_2 \otimes_R (0, m) \simeq m$, and m is not a finitely generated T_2 -module, it follows that $T_2 \otimes_R I$ is not a finitely presented T_2 -module, and we conclude from corollary 7 that R is not a coherent ring.

We shall now show that $\lambda \dim R = 2$:

PROOF. Since $\operatorname{fd}_R(T_k) \leq 1$ (k = 1, 2) and T is coherent, by corllary 9 we obtain that $\lambda \dim R \leq 2$. But since we know that R is not coherent, we conclude that $\lambda \dim R = 2$.

ACKNOWLEDGEMENTS. I want to thank Jan-Erik Roos for his generous advice and helpful discussions during the preparation of this paper. I am grateful also to Ralf Fröberg and Juan Alonso for comments on the final manucscript.

REFERENCES

- [FV] A. Facchini and P. Vamos, *Injective modules over pullbacks*, J. London Math. Soc. (2) 31 (1985), 425–438.
- [G] B. Greenberg, Coherence in cartesian squares, J. Algebra 50 (1978), 12-25.
- [GS] S. Glaz, Commutative coherent rings, Lect. Notes Math. 1371 Springer Verlag 1989.
- [OB] B. Osofsky, Homological dimensions of modules, CBMS Regional Serier in Math., 12, Amer. Math. Soc Providence, 1973.
- [O] T. Ogoma, Fibre product of noetherian rings and their applications, Math. Proc. Camb. Phil. Soc. 97 (1985) 231–241.
- [S] S. Scrivanti, Homological dimension of pullbacks, Math. Scand. 71 (1992), 5-15.
- [W] A. N. Wiseman, Projective modules over pullback rings, Math. Proc. Cambridge Phil. Soc. 97 (1985), 399-406.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF STOCKHOLM SWEDEN

CURRENT ADDRES VÄSTERBY BACKE 16, 4TR 163 72 SPÅNGA SWEDEN