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HOMOLOGICAL DIMENSION OF PULLBACKS

SUSANA SCRIVANTI

By a ring, we always mean a commutative ring with identity. A commutative
square of rings and ring homomorphisms

A —,—"—’Al

(1) j | j.l

Az__’f__, Ao

is said to be a cartesian square (or a pullback, or a fiber product) if givena, € 4,
a, € A, withj(a,) = j,(a,) there exists a unique element a € A such thati;(a) = a,
and i,(a) = a, (note that if j, is a surjection then so is i;, but not conversely). The
ring A is called the fiber product of 4, and 4, over A4,.

For aring A, gldim A and wd 4 will denote the global dimension of 4 and the
weak global dimension of A4, respectively. For an A-module M, the projective
dimension of M, and the flat dimension of M are denoted by pd ,(M) and fd ,(M),
respectively.

This paper is motivated by the results in Kirkman and Kuzmanovich [KK]
which give an upper bound on the global dimension of a fiber product. In [KK,
Theorem 2] Kirkman and Kuzmanovich showed that if (1) is a cartesian square
with j, surjective, then
(*) gldim A < max {gldim 4; + fd 4(4,)}

i=1,2

We give sufficient conditions for the fiber product of rings with global dimen-
sion =n to be a ring with global dimension <n, that generalize the preceding
result. We also give examples which show that, in a certain sense, our results are
best possible. Indeed, we can cover cases where (*) is a strict inequality.

Our main result is:

THEOREM 1. Suppose given a pullback diagram (1), with i, is surjective, and such
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6 SUSANA SCRIVANTI
that for all ideals a of A we have that pd Ai(Tor}‘(A,-, Ala)) En—jfor0<j<nand
i=1,2. Then
gldmA4 <n
We will also prove the analogue of theorem 1 for weak global dimension:

THEOREM 2. Let (1) be a pullback diagram in which i, is surjective and such that
for all finitely generated A-ideals a we have that fd ,(Tor{(A/a,A;)) < n —j for
0<j<nandi= 1,2 Then

wdA<n

We begin by giving sufficient conditions for an 4-module M to have projective
(flat) dimension <n.
We need the following proposition.

PROPOSITION 3. Let the diagram (1) be a pullback in which i, is surjective, M an
A-module and suppose that pd 4 (Torf(A,M)) <n—j for0<j<nandi=1,2
Then if n = 1, we have that

pd(4;i®K,)sSn—(t+1) for 0=5t=<n—1 and i=12
where K, is a tth syzygy of M.
Proor. The proof is by induction on ¢. Let

@ P ..opP,-Lp 2p Lp M0

be a projective resolution of M.
For t = 0, if we tensor the exact sequence of A-modules

0—Ko— P~ M0
with A; (i = 1, 2), we obtain an exact sequence of 4;-modules.
©) 0 - Tor{(4;, M) > 4, ®4 Ko = A; ®4 Po > Ai®M >0
and an isomorphism
Torf(A;,Ko) =~ Torf, (4, M), j = 1.

Put I; o = ker(1,, ® fo), and break up (3) into two exact sequences

) 0L Ai®Po— 4 @M -0
and
5) 0 — Tor{(4;, M) = 4; ®; Ko = L, 0~ 0

fori=1,2.
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If P, is an A-projective module, it is well known that A4, ®, P, is an
A;-projective module. Since pd,(4; ®4M) <n, we obtain from (4) that
pd4(; 0) < n — 1. In addition we have that pd,(Tor{(4; M)) <n— 1, and
hence from (5) we obtain that pd ,(4; ®,4 Ko) £ n — 1fori = 1,2 as desired.

For ¢t = 1, consider the short exact sequences

OAK,—»I’,A-»K,_l - 0.

If we apply the functor TorZ(4;, —) (i = 1,2) to short exact sequence above, we
obtain exact sequences of A;-modules

(6) 0- TOI":(Ai, K!—l) g Ai (N K: nd Ai ®A P, - A,- ®4 Kt-—l -0
and isomorphisms
Tor}’(Ai,K,) = Tor‘j‘+ (A Ki—q) j2 1

Put I; , = ker(1,, ® f,), and break up (6) into two exact sequences

) 01,4, ®P, 22 4,®,K,_, >0
and

) 0 - Tor{(4;,K,—) > A, K, —» I;,—»0
fori=1,2.

By the induction hypothesis pd,(4; ®4K,-1) £ n — t, thus (7) implies that
pd, (L) £n —(t + 1). Recall now that we have that Tord (4, K,_{) ~
Torf, 1 (A;, M). Since pd, (Torf (A, M) Sn—(t+1)for 0<t<n—1, we
obtain from (8) that pd ,(4; ®4 K;) £ n — (t + 1) for i = 1,2 as desired.

Now we can deduce the following proposition which genralizes theorem 2.3 of
[W]. Theorem 1 is an immediate consequence of proposition 4.

PROPOSITION 4. Suppose given a pullback diagram (1) with i, surjective and let
M be an A-module with pdAl.(Torf(Ai, M) En—jforO<j<nandi=1,2.Then

pd4(M) £ n.

Proor. For n =0 we have, from [W, theorem 2.3], that M is a projective
A-module iff 4; ®, M are projective A;-modules (i = 1,2).

Forn = 1,consider (2). We want to show that K,,_; = im(f;) isan A-projective
module. By proposition 3, we have that 4; ®,4 K, ; are A;-projective modules for
i=1,2 as desired.

REMARK. We can obtain similar results about flat dimension if we replace
projective by flat, in the argument above. Thus:

PROPOSITION 5. Suppose given a pullback diagram (1) with i surjective, and let
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M be an A-module withfd 4 (Torf(A;, M)) <n —j for0 <j<nandi=1,2. Then
fd (M) < n.

PROOF OF THEOREM 1. Let a be an ideal of A with pd 4 (Tor{(4;, A/a)) < n — j
for0 <j < nandi=1,2. It follows from proposition 4 that pd ,(4/a) £ n, and
since gldim 4 = sup{pd ,(4/a)|a an ideal of A}, we conclude that gldim 4 < n.

PROOF OF THEOREM 2. From proposition 5 we have that fd ,(4/a) < n for all
finitely generated ideals a of A, and since wd A = sup {fd(4/a)|a a finitely
generated ideal of A}, we conclude that ws 4 < n.

Now we can use theorem 2 to get an upper bound about weak global
dimension, analogous to theorem 2 in [KK].

COROLLARY 6. Let diagram (1) be a pullback in which i, is a surjection. Then

wd A < max {wd 4; + fd ,(4;)}

i=1,2
PROOF. Let n = max;-q,, {wd 4; + fd4(4,)}.

Then for j > fd 4(A;) we have that Tor{(4;, —) = 0,and for 0 < j < fd ,(4,), we
have that pd . (Torf(4;, —) S n —j(i = 1,2),since n — j = n — fd 4(4;) 2 wd A4;.
Using theorem 2 we conclude that wd 4 < n.

The next corollaries show that we can obtain more precise results in some
specific cases.

COROLLARY 7. Let (1) be a pullback diagram in which i, is a surjection,
gldim 4; < nandfd,(A4;) < 1 fori=1,2. Then

gldim A < n iff pd 4 (Tor{(A;, A/a)) < n — 1 for all ideals a of A and i = 1,2.

Proor. The only if assertion follows from theorem 1. We will prove the
converse. Thus assume gldim 4 < n. Let M; be an 4;-module (i = 1, 2). Then there
is a change of rings spectral sequence

9 E%? = Ext} (Torf(A;, A/a), M;) = H" = Ext’y(A/a., M;)
and from [CE, theorem 5.11] there is an exact sequence
(10) .o HMU S ERY S ERP2O S gt

since H™ = 0 for m > nand E%? = 0 for p > n we conclude that E%}! = 0 for all
A;-modules M; and i = 1,2 as desired.

CoOROLLARY 8. Let (1) be a pullback diagram in which i, is surjective, wd A; £ n
and fd(A;) £ 1 fori=1,2. Then
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wd A < niff fd,(Tor{(A/a,A)) S n— 1 forallfg.idealsaof Aandi=1,2.

ProOF. The only if assertion follows from theorem 2. We will prove the
converse. Thus assume wd 4 < n. Let g; be an finitely generated ideal of A;
(i = 1,2). Then there is a change of rings spectralsequence

§8)) EZ , = Torji(Tor}(A/a, A;), Ai/a;) = H, = Tor(A/a. A;/a;)
and from [R, Exercise 11.31] there is an exact sequence
(12) cee n+2“’E,2.+2,0"E3,1"Hn+1—’-~

Since wd A £ nand H,, = Ofor m > nand since wd 4; < n,Ef,‘q =0forp > n,
then we have that Tor2{(Tor{(A4/a., A;), A;/a;) = 0 for all finitely generated ideals
a; of A;, which is equivalent to fd 4 (Tor{(4;, 4/a)) < n—1(i = 1,2).

COROLLARY 9. Let diagram (1) be a pullback in which i, is a surjection,
wd A; £ n,fd(A4;) £ 1, and where for all finitely generated ideals a; of A; we have
that fd 4(A;/a;) < n(i = 1,2), Then

wdA<n

Proor. If we consider the sequences (11) and (12), then corollary 9 is an
immediate consequence of corollary 8.

COROLLARY 10. Let diagram (1) be a pullback in which i, is a surjection, and
suppose that gldim A; < 1. Then

gldim A < niff Tor(A;, A/a) is A;-projective for all ideals a of A (i = 1,2)

ProoF. The only if assertion follows from theorem 1. We will prove the
converse. Thus assume gldim 4 < n. Let M = A/a in (2) where a is an ideal of A.
We know that Tor(4;, A/a) ~ Tor{(4;,K,_,) (i = 1,2). If we consider the se-
quences(7) and (8)fort = n — 1,and recall that pd , (4; ®, K, - 1) is A;-projective
(i = 1,2), we obtain that Tor?(A4;, A/a) is A;-projective for i = 1,2.

As an example where corollaries 6, 7 and 8 can be applied, we present the
following.

ExaMmPLE 1. Let V be a valuation domain with a non principal maximal ideal
m. Explicit examples of such rings will be given below.
Consider the cartesian square, where V; and V, are two copies of V

A —

S

V, — Vimg
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and where the maps onto V/m are the mnatural ones. Then
A= {(a,b)eV; x V,/Ja — bem}. The ring A4 is local with zero divisors and
maximal ideal J = m x m.

(i) We claim that fd (V;) < 1 for k = 1,2.

Proor. Let I be a finitely generated ideal of A. By considering
min{v(a,)|(a;,a,) €I} where v is the valuation associated to ¥ we can conclude
that either I = (a;,a,)4 with a; £ 0, a, £ 0, (and since V is a domain, I is
projective), or I = (a,0)4 @ (0, b)A.

Thus for the proof of (i), we may assume that I = (a, 0)4.

Consider the exact sequence

(13) 0-0m->A->1-0.
Tensoring (13) with ¥, we obtain
0 Torf (Vi 1) = % ®4(0,m) —L5 V= ¥, ®, I > 0for k = 1,2

For k = 1, we have that V; ®,(0,m) = 0.

Indeed, since m is not a principal ideal, the set {v(m)|mem} has no minimal
elements, hence for every mem, there exists an element n in m, such that
v(m) > v(n). Recalling that the lattice of ideals of V are linearly ordered. we obtain
that menV. Thus we may write m = n-w, where n and w are elements of m.

It follows that if ve ¥, m em, then v ® (0,n)(0, w) = 0.

For k = 2, we have that f, is injective.

To see this, let x be an element of V, ®,(0, m), say x = Z}; o (V; ® (0, m;)), where
v;€ V,, and m; e m. By considering {vy, v,,. .., v,}, and recalling that the lattice of
ideals of V are linearly ordered, we obtain an element ve V, such that v; = o; - v,
where a;€ V.

Thusx = Yo (0 ® 0,m)) = Yoo (- v ® (0,m) = T (v ® (o )
O,m)) =v® Y7, (0,0;-m;),and f5(x) = v- Y 7, (&; - m,). Since V, is a domain, it
follows that f, is injective.

Thus Tor{(¥,I) = 0 for every finitely generated ideal I of 4 and k = 1,2.
Hence we can conclude that fd (V) £ 1 (k = 1,2).

In [V, theorem 3.4] W. Vasconcelos showed that
gldimV< gldimA4 < gldimV + 1

(ii) Let k be a field, G be a totally ordered group, G* = {geG|g = e} (eis the
neutral element of G) and let V = k[[G*]] be the ring of all formal power series,
ie. V consists of formal infinite sums o =), +0,9, Where o ek and
supp(a) = {ge G™ | a, + 0} is well ordered. Anelement « % 0 of ¥, may be written
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inthe form o = Bg(e + @), withfek,geG*,peV,and ¢, = 0((e + ¢)is a unit of
Vand, (e + @) "' =e+ Yo (—0)).

We can think of V as the ring of all power series in a symbol x with exponents
the well ordered subsetsin G+, i.e., if r € ¥, we can write r = x°u, wherea e G* and
u is a unit in V. The ring V is a valuation domain (more information about this
ring can be found in [F, p134] and in [S]).

Suppose that |G| = 4, (/G| denotes the cardinality of G)and that G* — {e} has
no coinitial subset B with |B| < A4/,_,, i.e., for all subsets B of G* — {e} with
|B| £ A,_;,thereexists anelement gin G* — {e} (g not in B) such that g < b, for
every element b in B. Then every ideal I of V can be generated by a set D with
|D| £ A,. The maximal ideal m can not be generated by < .4/, elements. To see
this, suppose that m has a set of generators D with |D| < A4, _,. If we let
B = {g;| x*ue D} then |B| £ 4, _,, and there exists an element ge G* — {e},
such that g < g; for all g;e B, i.e. x? is not in m, which is a contradiction.

In [OB-2, p227] B. Osofsky showed that for a ring R with no zero divisors and
linearly ordered ideals, an R-ideal I has pdg(I) = n + 1 if and only if the smallest
cardinality of a generating set of I is .#,. From this we obtain that
pdy(m) = n + 1ifand only if the smallest cardinality of a generating set of I is A#/,.
From this we obtain that pd,(m) = n + 1 and pd,(I) < n + 1 for every ideal I of
V, and from these assertions we conclude that gldim V =n + 2.

(iii) Let I be the well ordered set of all ordinals <.#/,. Let G be the coproduct of
I copies of Z,i,e,m G = I1;Z. Order G lexicographically. Then we have that G is
a totally ordered group with |G| = 4, and G* — {e} has no coinitial subset of
cardinality <.4,,. So that by (ii) we obtain that gldimV =n + 2.

CLaM. gldim A4 =n + 3.
Proor. We know that
n+2=<gldmAdA=<n+3

Consider the ideal I = (a,0)4 with a in m. We tensor the exact sequence of
A-modules

0->1->A4A- A4/ -0
with V,, and we obtain an exact sequence
0 - Torf{(Vy, A/I) » V, @1 SV, -V, ®,4 A/ -0
Since g = 0, we have that Tor{(V,, A/I) ~ V, ®, 1. From the exact sequence
0V, ®4(0m) 5 ¥y >V, @10
we see that pdy (Tor{(Vz,A/I)) =n+ 2. This follows from the fact that
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V>, ®,4(0,m) ~ m and that, by (ii), pdy,(m) = n + 1. Appealing to corollary 7, we
can conclude that gldimA4 = n + 3.

(iv) Ifwe consider G = Q,i.e., V = k[[Q*]], we obtain that gldim A = 3. This
is the same ring that B. Osofsky studies in [OB-1, theorem 2.37].

ExaMpPLE2. (a) Let T = k[[Q*]], m the maximalideal of ,andR =T x,, T
with maximal ideal J.
Consider the cartesian square

S — T

l 1

R—> R/J~T/m~k

where the maps onto k are the natural ones. Then S = {a,b,c)|a,b,ce T and
ap=Dbo=co} where a=),_¢a;x", b=Y;_obx™, c=),_ocx" and
0=ny, <n; <n, <nsy<....Thering S is local with zero divisors and maximal
ideal m x J. We know that gldimT =2, wd T = 1, gldimR = 3 and wdR = 2.

We will determine gldim S.

First we shall show that fdg T < 1 and fdgR < 1.

To see this, let I be a finitely generated ideal of S, generated by

{(ry vy, Wy), (€2, V2, W3), (3,V3,W3),. .., (Tns Vs Wp)}. If v denotes the valuation
associated to T, then by considering min {v(r;)} and min {v(v;)}, we can conclude
that either

I =(a,0,0)S ®(0,b,c)S, or

I =(a,b,0)8S ®(0,0,c)S, or

I =(a,b,c)S where a+ 0, b+ 0, c+ 0 (I is then S-projective since T is
a domain).

LetI; = (a,0,0)S,I, = (0,b,0)S, I = (0,b,c)S and I, = (a, b, 0)S. It is sufficient
to assume that I = [, for k = 1,2, 3,4.

We shall show that Tor$(T, L) = 0

For k = 1 we have an exact sequence

(14) 0-0,J)->S—>1,-0.
Tensoring (14) with T, we get
0— TorS(T,1,) » T ®s(0,J) -2 T > T ®s1; - 0.

But since J is not pricipal, T ®s (0, J) = 0,and hence we have that Tor3(T, I;) = 0.
For k = 2, there exists an exact sequence

(15) 0-(m,0,m—-S—>1I,-0.
Tensoring (15) with T, we get
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0 - Torj(T, I,) » T ®s(m,0, m)———> T->T®sl, 0.

But since T is a valuation ring and T ®g(m,0,m) ~ T ®s(m,0,0), f, is injective,
hence we obtain that Tor$(T,1,) = 0
For k = 3, there exists an exact sequence

Since f; is injective, we obtain that Torf(’l: 1) =0.
For k = 4, there exists an exact sequence

Since T ®s(0,0,m) = 0, we obtain that Torf (T, 1) = 0.
Now we show that Tor$(R, I;) = 0.
For k = 1 tensoring (14) with R, we get

Since R ®5(0,J) ~ J, f | is injective and it follows that Tor§(R, I;) = 0.
For k = 2 tensoring (15) with R, we get

O*TOIS(R 12)_’R®S(m0m)—)R_’R®s 2—>0

Since R ®g(m,0,m) ~ R ®s(0,0,m), f, is injective, and hence we obtain that
Tor}(R,1,) = 0

With similar arguments, we can show that Tor}(R, I,) = 0 for k = 3,4.

We can shown that Tor$(T, I) = 0 and Tor}(R, I) = 0, for every finitely gener-
ated ideal I of S, so we can conclude that fdg T < 1 and fdgR < 1.

From [KK, theorem 2], [OB-1, proposition 2.36] and corollary 6 we have that

17 3<gldimS <max{2+ 1,3+ 1} =4and
2<wdS<max{l+1,2+1}=3
CLAM. wd S =2
Proor. Consider the exact sequence
0—+I,‘—>S—+S/Ik—*0.
Tensoring with R, we get
0— Tor3(R, S/I,) - R ®s I, —%— R - R ®s /I, — 0.

But g, = 0, so Tor}(R, S/I;) ~ R ®sI,. Since R ®;(0,J) ~ J, and J is R-flat by
[OB-1, p53], we obtain from (16) and fdg(R) < 1, that fdg(R ®s ;) < 1.

For k = 2,3,4 we have that g, is injective hence Tor3(R, S/I;) = 0.

We have shown that fdg(Tor3(R, S/I)) < 1 for all finitely generated ideals I of S.
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Since wd T = 1 we have that fd;(M) < 1 for all T-modules M. Then using
corollary 8, we obtain that wd S < 2. Using (17) we conclude that wd S = 2.

CLAaM. gldimS =3

Proor. By corollary 7 and (17), and given the fact that gldim T = 2, we only
need to show that pdg(Tor$(R, S/I)) < 2 for all ideals I of S.

If I is a finitely generated ideal of S, we have shown that Tor}(R, S/I) = 0 or
Tor$(R, S/I) ~ R ®s ;. Since R ®s(0,J) ~ J and from [OB-1, p53] we know
that pdg(J) < 1, we conclude (from (16) and fdg R < 1) that pdg(Tor}(R, S/I)) < 2
for all finitely generated ideals I of S.

If I is not finitely generated, we have that either {uv(r),(r,v,w)el}, or
{v(v),(r,v,w)e I}, or {v(w),(r,v,w)e I} has no minimal elements. Hence we can
assume that

I=7Y (a,0,08S® Y (0,b;,0S® Y (0,0,c)S
i=0 i=0 i=0

where the orders of a;, b;, ¢; strictly decrease.

Thus Tor}(R,S/I) ~ R ®sY {2 0(a;,0,0)S. With arguments similar to those
used in [OB-1, p53] to show that pdg(}’2 o a;R) < 1, we can prove that

pds ) 20 (a;,0,0)S) < 1. And since fdg R < 1, we conclude that

pdgr(R ®s ) 20(a:,0,0)S) < 1.

We have shown that pdg(Tor$(R, S/I)) < 2 for all ideals I of S. It follows that
gldim S = 3.

(b) Let R and T be rings as in (a).
Consider the cartesian square

R?® — R

[

R —— R/J
where the maps onto R/J are the natural ones.

Then R? = {(a,b,c,d)e T x T x T x T|ay = by = ¢o = do} where
a= Zi=0 a,-x”",b = Zi=o bix”‘,d = Zi=0dix"‘ and0 = no<np <n, < ...isalo-
cal ring with zero divisors and maximal ideal J x J.

With arguments similar to those in (a), we can show that

fdga(R) £ 1, wd R? = 2 and gldim R? = 3.

Summing up we have given examples of pullbacks
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A—ll—bAl

|l

Az__jz__, Ao

such that the matrix

gldimA4 gldimA4,
gldim 4, gldim A4,

3 3 3 2 and n+3 n+2
3 0/°\3 0)° n+2 0
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takes the values

forn > 0.
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