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ON THE IRREDUCIBILITY OF FLENSTED-JENSEN’S
FUNDAMENTAL SERIES REPRESENTATIONS FOR
SEMISIMPLE SYMMETRIC SPACES

H. THORLEIFSSON

Abstract.

In [5] T. Oshima and T. Matsuki gave a construction of the discrete series representations of
a symmetric space G/H, satisfying the equal rank condition rank G/H = rank K/K n H, and proved
their irreducibility for regular infinitesimal character. In [11] D. Vogan proved the irreducibility of
these representation also for singular infinitesimal character. In [3] Flensted-Jensen used the
construction of T. Oshima and T. Matsuki to construct fundamental series representations
¥(a,Z*, ) of functions on G/H, when the space G/H satisfies a certain condition, and proves their
irreducibility for regular infinitesimal character. In this paper we characterize the spaces handled by
Flensted-Jensen, and give a proof that for those spaces ¥'(a, Z*, ) is cohomological induced from
a one-dimensional representation. As a consequence we get some irreducibility results for these
representations.

1. Introduction.

Throughout this paper let G be a connected real semisimple linear group and
H an open subgroup of the fixed point subgroup of an involution ¢ of G. Then
X = G/H is a semisimple symmetric space. Let &(X) be the space of smooth
function on X. We are interested in certain G-submodules of £(X). Before we can
formulate the statement we are going to look at we have to put together some
notations.

Let g, be the Lie algebra of G. We will use the same letter ¢ to denote the
involution on gg. Let

8o = bo ® 5o

be the decomposition of g, into the + 1 and the —1 eigenspaces of 6. Choose
a Cartan involution 6 of go, commuting with o, and let

g0 =T ®po

be the corresponding Cartan decomposition. Let a, = 5o be a fundamental
Cartan subspace for X = G/H, so ty:= ao N [, is maximal abelian in f, N s4. Let
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¢, be a fundamental Cartan subalgebra of g, containing t,. Let X(g,a)
(resp. 4(g, ¢)) be the set of roots of a (resp. ¢) in g (we use gothic letters with suffix
0 to denote real Lie algebras and their subspaces, and the same letter without the
suffix 0 to denote the complexification), and let W = W(g, a) be the correspond-
ing Weyl group.

Let X*(g,a) be a positive system of restricted roots, and 4¥(g,¢) a positive
system of roots compatible with X *(g, a). Suppose further that Z* = X*(g,qa) is
0-compatible, that is ae Z*(g,a), «|t + 0 implies O e X * (g, a). Put

(1) L=g'= Y g,®¢, u:= Y g,
aeX(g,a) aelt(g,a)
alt=0 alt¥0

(g, is the root space of « and g' is the centralizer of tin g)and q:= [ @ u. Then qis
a f-stable parabolic subalgebra of g.

We are mainly interested in symmetric spaces X = G/H satisfying the follow-
ing condition, which is condition (22) from [3] § VL.3.

2 a|t + O for each a e X (g, a).

Further let D(X) be the algebra of invariant differential operators on X, and
&(a)” the subspace of the symmetric algebra S(a) of elements invariant under W.
For each A€ a* (the algebraic dual of a) there is a homomorphism yx,;: D(X) —» C
defined through the canonical isomorphism D(X) —» S(a)¥, and evaluation at
A (see for example [3] Theorem IL.2). Put & ,(X) = { f € &(X) | Df = y(D)f for all
DeD(X)}.

Define p(u)el* through p(u)(Y):= 34 Trace(ad(Y)|u), Yel, and p(unf)e
(I~ D)* through p(u N )(Y):= § Trace(ad(Y)|unf), Yel n L. Let {,) denote the
Cartan-Killing from on g. We use {,) also for the corresponding form on g*.
Using {,) we look at t*, a*, ¢* and [* as subspaces of g*. The decompositions
g2u@l@Pou and t=UnHBINnHDa(unt) imply p(u)]Inh=0 and
pun®|Intnbh =0. The 6-invariance of u implies p(u)| [~ p = 0. Since t is
maximal abelian in f N 5, we get Inf s = t. All this implies p(u), p(u N f)et*.
Put A*(l,¢):= 47%(g,¢) n A(,,¢), and let p(I)e c* be half the sum of the roots in
A*(I,¢). For Aea* put

= At + p(u) — 2p(u nf)et*,

andlet ¥(a, 2%, A) = &,(X) be the (g, K)-module constructed by Flensted-Jensen
in [3] §V.3. We will recall the construction in the next section. The following
theorem is a part of [3] Theorem VI.8.

THEOREM 1.1. Suppose G/H is simply connected and condition (2) is satisfied.
Then ¥ (a, 2%, A) is a finitely-generated (g, K)-module, with infinitesimal character
—(A + p(), and the following holds:
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A If¥(a,2%,2) % 0, then
(1) {uza)/{a,a)eZ for each aeZ*(g,a).
(ii) Any K-type occurring in ¥ (a,Z ™, A) has lowest weight — u, where
=+ Y ngp
Ped(unp,cni)

for some nge N U {0}.
B. Assume {u,,ad/{a,a)eN U {0} for eachaeZ (uni,t). If

3) Re{A + p(l),a) = 0 for each ae X*(g,q),
then ¥ (a,Z*, A) is irreducible.

If G/H is not simply connected the statements remain true, if one adds an
integrability condition on g, in part B (u; must be the differential of a weight of
a finite dimensional K-module).

In Corollary 2.3 these modules are written as modules cohomologically
induced from one dimensional representations of a two-fold (metaplectic) cover
of L, extending the same result for the discrete series for G/H ([3] Theorem
VIIL.2). In Proposition 2.4 a description of the symmetric spaces G/H satisfying
condition (2), and in Therem 2.6 some irreducibility results are given.

Finally I want to thank G. Olafsson and H. Schlichtkrull for helpfull dis-
cussions while working on this article.

2. The fundamental series as cohomologically induced modules.

Wekeep the notations from the introduction. In [ 3] M. Flensted-Jensen general-
ized a construction of the discrete series given by T. Oshima and T. Matsuki in
[5] to construct fundamental series representations. Let me recall this construc-
tion (see [3] § V.3 for more details).

Let G be a real form of the complex Lie group G. and (g3, b3, t) denote the dual
symmetric triple corresponding to (go, o, fo) ([3] §1.4), defined by

g% = (ho N To) @ i(ho N Po) @ i(s0 N Eo) @ (50 N Po)s
b‘ci) =(hon o) @ i(so N To),
1 = (ho N To) @ i(ho N Po).

Further let G%, K¢ and H* be the analytic subgroups of G corresponding to g4,
) and b¢. K? is a maximal compact subgroup of G*. Put

a§ = angf =i(ap N ) ® (ap N po),

and let A¢ be the corresponding analytic subgroup of G*.
Let K (resp. A%K)) be the set of equivalence classes of irreducible finite



314 H. THORLEIFSSON

dimensional representations of K (resp. H? that extend to a holomorphic repre-
sentation of K¢). Thus K and HA%K) are in one-to-one correspondence via
holomorphic representations of K. For a H-module V (resp. K-module) let Vya
(resp. V) be the space of sums of v € ¥, that behave under H¢ (resp. K) correspond-
ing to some representation in HYK) (resp. K). In [2] (Theorem 2.3) Flen-
sted-Jensen uses analytic continuation on G./H to give an isomorphism

n: 8(G*/K*)ua > 8(G/H)x,

that commutes with the left 2(g)-action (we are using the formulation given in [5]
Proposition 1).

Let Z* = X*(g,a) be as in the introduction, and let P? be the corresponding
parabolic subgroup of G¢, with Langlands decomposition P = M?4°N* and
pea* equal to half the sum of roots in X*. For ica* let C, be the
one-dimensional P*-module on which M?N* operates trivially and a with weight
4, and let P* - C, p— p* be the corresponding one-dimensional character of P*.

Let (¢, V) be a smooth Fréchet space representation of P, and 2(G*/P% V) the
space of smooth functions on G with values in V¥, satisfying f(xp)=
pPEp)” 1 f(x),for all xe G, p e P?, given the topology described in [1] Definition
4; 1 (note that GY/P?is compact). Let 2'(G%/P% V) the space of distributions T on
G with value in V; satisfying T(xp) = p~*&(p) " T(x), for all xe G%, pe P?. There is
a canonical isomorphism 2'(G%; V') = 2(G% VY ([1] Proposition 1; 1, see also [1]
for the topology used). Using [1] Proposition 4; 1 and [ 1] Corollaire 3; 3 one gets
an isomorphism

“4) D'(GY/P4 V') = 9(G*/P4 V).
(Here we only need this for finite dimensional V)

The Poisson transform 2, defined in [5] (1.3) (see also [3] §IV.1) defines, when
restricted to 2'(G*/P%, C _;)ya, a (g, HY)-morphism

(8] Py D'(GY/P% C_)u = 6:(GY/Kya.
If A € a* satisfies
(6) Re{4,0) = 0 for all xe £*(g, a),

then (5) is an isomorphism (this follows from [3] Theorem IV.2 and Corollary
IV.10).

Now put ¥(a,Z* ) =n"12({Te2(GP,C_,)y*|supp T = H'P}),
where supp T denotes the support of T. If A€ a* satisfies (6) then ¥(a,Z*, ) is
actually isomorphic to the space of T € 2'(G*/P%; C _ ,)z*, with supp T = H*P?, as
U(g)-module.

For p e c*, the extremal weight of the finite-diemsional G-module F(u), we let
Y -4 120+ ¥ be the Jantzen-Zuckerman translation functor ([9] Definition 4.5.7).
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LEMMA 2.1. Let Aea* satisfy (6) and pea* be the highest weight of an
He-spherical representation of G.. Then

™ YA Y (@ 2N A+ ) = ¥ (0,2, 4).

Proor. Put V =C,;,,. Let (n, E) be an irreducible finite dimensional G*-
module, and (7, E’) the contragredient representation. The map 2(G%V ® E’)
- 2G45VR®E)= AGCLV)QE, fimf, with f(x):=(1@n'(x)f(x), xeG’,
is an isomorphism. Restriction gives an isomorphism 2(G‘/P%V ® E') —»
2(GY/PLV)® E. Now (4 and dualizing gives an isomorphism Q:
2'(GY/PLV)Q E - 2'(GY/P%4 V' ® E), in such a way, that the support of
Q(T ® v) is equal to the support of T, if ve V is non-zero, and T e 2'(G/P%; V).

F+— 92'(G%/H%F) is an exact functor from the category of finite dimensional
(continuous) P-modules into the category of G-module. The left exactness is
obvious, and the right exactness follows from (4) using the left exactness of
2(G*/P%F). This means that there is a G-module filtration of
2'(G*/P% V' ® F(u)) with subquotients of the form 2'(G%/P%, V' ® F), where F is
an irreducible subquotient of F(u)| MAN.

Now suppose F has lowest weight v. Then 3(g) operates on 2'(G*/P%, V' ® F)
with infinitesimal character —(4 + p(I) + u) + v. If this subquotient occurs in
IGO0 W (GY P4 V'), then —(A + p(l) + p) + ve — W(g,a)(A + p(I). Now
we can apply Lemma 4.8 of [11] (with q of that paper equal to the opposite of our
q). We get v = u and that F must be the one-dimensional M AN-submodule of
F(u) of weight p. This implies 2'(G*/P%C_,) = ¢ 2100 D' (G/P4 C_av ),
the isomorphism being given by the embedding C_; - C_ ;. ,, ® F(u) and the
inverse of the isomorphism Q above.

Since Q(T ® v) has same support as T, for non-zero ve F(u), we also get an
isomorphism when we restrict to the (g)-submodules of distributions with
support contained in H?P?. Now the above definition of ¥"(a, Z*, 1) implies the
lemma.

Let L be the normalizer of q in G, and L the metaplectic (two-fold) cover of
L ([10] Definition 5.7). Write { for the non-trivial element of the kernel of the
covering map. A metaplectic representation of L is one that is —1 on { ([11]
Definition 5.7). Further let (LN K) be the preimage of LN K under this
covering map. 2p(u) is the differential of a one dimensional character of L and, by
definition of L, p(u) is the differential of a one dimensional metaplectic represen-
tation of L.

The proof of the following lemma follows the lines of the proof of [7] Lemma
5.5. In case condition (2) is satisfied this lemma shows, with Theorem 1.1, that for
the irreducibility or vanishing of ¥"(a, £+, 4) it is enough to look at 4 € a*, which
are the differential of one-dimensional metaplectic representations of L.
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LEMMA 2.2. Suppose condition (2) is satisfied. Then J.€ a* is the differential of
a one-dimensional metaplectic L -module if and only if u, is the differential of
a weight of a finite dimensional K-module.

PrOOF. Since a is contained in the center of [ we get (A + p(u),a) = 0, for all
ae A, ¢), using [9] Lemma 3.2.4a. By the definition of L, 1 is the differential of
a one dimensional metaplectic representation of L, if and only if A + p(u) is the
differential of a one-dimensional representation of L. Since 4 + p(u) is orthog-
onal to all aeA(l, ¢) this is equivalent to A + p(u) being the differential of
a one-dimensional representation of the Cartan subgroup C of L corresponding
to c¢. Again this is equivalent to u; being the differential of a one dimensional
character of Cn K. Since C n K is a Cartan subgroup of K, this proves the
lemma.

Recall the Zuckerman functors 9?{, which are covariant functors from the
category of meaplectic (I,(L n K) )-modules to the category of (g, K)-modules.
([10] Definition 6.20). Let X*(I,a) = Z*(g,a) " 2 (I, a). The next proposition
describes ¥"(a, Z*, A as cohomologically induced module. The argument is the
same as given by D. Voganin [11] (at the end of section 4) for the discrete series of
G/H, using the Langlands parameter of ¥"(a, Z*, 1) and the Jantzen-Zuckerman
translation functor.

PROPOSITION 2.3. Suppose condition (2) is satisfied. Let /. € a* be the differential
of a one-dimensional metaplectic representation C, of L, and put S = dim(u n f). If
A satisfies (6), then

(0, 2+, 0) = #5C,).

Proor. In [6] the Langlands parameters of ¥"(a, 2%, A are calculated for
those A satisfying condition (3). If condition (3) is satisfied, then by [6] Satz 4.4

'V((l, Z+7 A)c = XG(qs 'V(G, Z+([, a)9 l - p(u))c, /‘ll)

Here X;(*)is the “holomorphic induction” from [8] (see section 4 of that paper).

Suppose condition (2) is satisfied. Part A.ii of Theorem 1.1 shows that the
L-module ¥(a,X*(l,a), A— p(n)) is one-dimensional with differential
—(A — p(u)), so we get ¥(a, 2%, A) = X5(q, Ci— pus H2)-

But [8] Proposition 5.18 (see Theorem 4.23 for parameters) and [9] Theorem
8.2.4 (Independence of polarization) shows that #5(C;) 2 X¢(q, C; -y 14, for
Asatisfying (3), giving the statement for those 4. Now [11] Proposition 4.7 and (7)
give the statement for other A.

We now want to look closer at condition (2), and give a characterization in the
next proposition. But first we need some preparation.
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LEMMA 2.4. With notations as above the following conditions are equivalent:
(@) ¢ =a.

(b) g* =g"

(c) alt +0 for all ae X (g,q).

PROOF. (b) <> (c): This is trivial.

b)=@:s'=g'Nns=g"Ns=s"=a.

(a) = (c): Suppose there exists an aeX(g,a) with a|t =0. Let Xeg, be
non-zero. Then X — 6X €s' = a. Since 0 X eg_, this is a contradiction.

PROPOSITION 2.5. Suppose g, is simple. Then condition (2) is satisfied if and only
if one of the following conditions (a)}{(d) is satisfied.

(a) go has a complex structure and o is complex linear.

(b) go is complex and b, is a quasi-split real form of g,.

(c) rank G/H = rank K/K n H.

(d) g% = sl(n, R), s0(n, n), eg(s), SU*(21) O e 26), and 0| a is an involutive outer
automorphism of X (g, a), leaving invariant some positive system of restricted roots
Z*(g, ).

Suppose we are in case (d). If g% is one of sl(n, R), so(n,n) or eg), then a is
a non-compact Cartan subalgebra of g, is su*(2n), then | is isomorphic to
gl2,C" L.

Proor. If g, is complex, then either ¢ is complex linear or b, is a real form of
go- We can therefore split the proof into the following cases corresponding to the
cases in the proposition.

(a) Suppose g, iscomplex and ¢ complex linear. Then £, is a compact real form
of go, and ay = (ag N ) D i(ag N Ey). Since every a e X (go, ao) is C-linear, we get
ot + O, for all xe X (g0, ap). Thus condition (2) is always satisfied.

(b) Suppose g, is complex and b, a real form of g,. Let a5 < b, be a maximally
split Cartan subalgebra of h,. Then ia, is a fundamental Cartan subspace of
so = iho and by Lemma 2.4a, condition (2) is satisfied if and only if the centralizer
of £, Niag = i(ag N po) in sy is equal to iay, which is equivalent to b, being
quasi-split.

(c) Supposerank G/H = rank K/K n H.Inthiscasea = fn s, s0 condition (2)
is always satisfied.

(d) Suppose g, is simple without a complex structure and the equal rank
condition (condition in part (c)) is not satisfied.

Suppose condition (2) is satisfied. Let ay = 5, be a fundamental Cartan
subspace and X *(g, a) be a positive system of restricted roots invariant under 6.
Since a, is non-compact, 6 defines a non-trivial involutive automorphism of the
Dynkin diagram corresponding to X *(g, a). Such an automorphism must be an
outer automorphism and only exists if the Dynkin diagram is of type A, (I = 2), D,
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(I = 4)or E¢([4] Theorem 3.29). Looking at Table VI in [4] one sees that this can
only happen for (g%,) of type Al DI oe EI with a, a non-compact Cartan
subalgebra of go, or of type AIl or EIV. The sructure of g% can be read off from [4]
Table V (in case DI, af is a Cartan subalgebra of g%, so we only get so(n, n)), giving
also the last statement.

Now suppose g is one of the Lie algebras in part (d) and 6 satisfies the
condition in part (d). For aeZX(g,a) we get a|t=3(a + 6a) + 0, since
0o + —a. This gives condition (2).

An example of a symmetric space satisfying the conditions of part (d) in the
proposition above is given by SU*(2n)/SO*(2n). The corresponding dual sym-
metric triple in (sl(2n, R), sp(n, R), so(2n, R)).

We can now give irreducibility statements for ¥"(a, £+, ) that follow from the
last proposition and known irreducibility results for #3(C;). Call (G, H) complex
if G has a complex structure with ¢ holomorphic.

THEOREM 2.6. Suppose g, is simple, (G, H) not complex and g% not isomorphic to
es(—26)- If condition (2) is satisfied and A € a* satisfies

(8) Re(4, o) > 0, for all xe Z*(g, a),
then ¥ (a, X", A) is irreducible or zero.

Proor. Welook at the cases given in Proposition 2.4. (a) has been excluded, so
we can start with

(b) Here [ = g° is abelian, so we get a fundamental series representation of
G which is irreducible by [11] Theorem 2.6(a).

(c) This is the discrete series case, which has been handled in [11] Theorem
2.10.

(d) By Proposition 2.5, either [ is abelian or isomorphic to gl(2, C)" 1. In case
[ is abelian the statement follows from [11] Theorem 2.6(a). Suppose
[ = gl(2,C)y"~*. Then for simple ae 4¥(g,c) one gets Re{p(l),a">e{£ 1} («” the
a-coroot). If (8) is satisfied, then {1 + p(I),a™) is not a negative integer. By [11]
Theorem 2.6(b), .9?.,5(C ») is irreducible or zero.

For (G, H) complex we do not get such strong restrictions on the structure of I.
For g4 = es-2¢) One can use the t-invariant to prove irreducibility, with the
exception of one 4. Possibly this case could be handled by looking closer at the
coherent continuation of ¥"(a, £ *, A), starting with the Langlands parameters of
¥(a,2%, 2), for 4 satisfying (3).
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