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ON A THEOREM OF GUNDERSEN AND LAINE

HIN-MING LI

Abstract.

In this paper, we give conditions under which an algebraic differential equation cannot possess any
algebroid solution. These conditions generalize a theorem by Gundersen and Laine [3; Theorem 2.2].

1. Preliminaries And Main Results.

We shall apply the usual notations and basic results of Nevanlinna’s theory [5] of
value distribution. Let w(z) be a v-valued algebroid function in the complex plane
defined by an irreducible equation

(*) a,(W +a,_ @)W +... +ao(2) =0,

where aj(z) (j =0,1,...,v) are holomorphic functions in the complex plane
without any common zeros.
We consider the following algebraic differential equation

1.1 Qz,w) = zn: A(2) W,
k=0

where A4,(z) (k =0,1,...,n) are meromorphic functions with A4,(z) £ 0, and
Q(z,w) is a differential polynomial in w and its derivatives with meromorphic
coefficients. Write

(1.2) Q(z,w) = zz B,(2) w)o(w)ir. .. (w™)in,
el

where 4 = (ig, iy,. . . ,i,) denotes the multi-index; each B,(z) is meromorphic, and
I is a finite index set.

Gundersen and Laine [3] discussed the existence of meromorphic solutions of
algebraic differential equations and gave conditions under which an algebraic
differential equation (1.1) cannot possess a meromorphic solution. In this paper,
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we shall show that such equation cannot have any solution even in the larger
class of algebroid functions. To prove this, we shall make use of the following
special form of Malmquist’s Theorem.

THEOREM A ([2], [4]). If the equation (1.1) has at least one admissible v-valued
algebroid solution w(z), that is, w(z) satisfies the condition:

Y T, A) + Y. T(r, B;) = S(r,w),
Ael

k=0

where S(r, w) = o{T(r, w)}, then we have

(1.3) n<A4+ 20(v—1),

where

(1.4) 4= Max{ Y (a+ l)ia}; = Max{ Y (Qa— l)ia}.
Ael a=0 a=1 a=1

In [3], it was asked how many distinct meromorphic solutions can
a “non-Malmquist” equation of the form (1.1) possess. For this reason, we need
the following definition.

DErFINITION ([3]). Consider the algebraic differential equation (1.1) and sup-
pose that g is a fixed integer such that 0 < g < n. We say that the 4,-hypothesis
holds, if there exist v & 0 meromorphic and h nonconstant entire function such
that

(1.5) A, (2) = v(z) ",
where
(1.6) T(r,v) = S(r, "),

and fork  ¢q,0 < k < n, Ael we have
(1.7 T(r, Ay) = S(r, Ap); T(r, B;) = S(r, Ay).

Our main result is Theorem 1 which improves the following Theorem due to
Gundersen and Laine [3].

THEOREM B ([3]). Consider an equation (1.1) such that
(1.8) n> A,

and assume that the A,-hypothesis holds for some q that satisfies A < q < n— 1.
Suppose also that Ay(z) £ 0, Byo,...0)(z) =0. Then the equation (1.1) does not
possess a meromorphic solution.
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THEOREM 1. Consider an equation (1.1) such that
(1.9 n>A4+2((v—1)

where A and ¢ are the quantities defined by (1.4), and assume that the A ,-hypothesis
holds for some q that satisfies A < q < n — 1 with 4 = 4 + 20(v — 1). Suppose
also that Ao(2) £ 0, Byo,...0)(z) = 0. Then the equation (1.1) does not possess
av-valued algebroid solution w(z) with N,(r,w) < 2(v — 1) N(r, w), where N,(r, w) is
the counting function of branch points.

CoOROLLARY 1. Consider (1.1) with n > A and assume that the A,-hypothesis
holds for some q that satisfies 4 < q < n— 1. Suppose also that Ay(z) £ 0,
,,,,, 0)(2) = 0. Then the equation (1.1) does not possess a v-valued algebroid
solution w(z) with N,(r,w) = o{N(r, w)}.

THEOREM 2. Consider

iw kZO Az) W
(1.10) e =

’

Ms ]

2 Biw

j=0

]

suchthatn =2 m + 3 + 2(v — 1)(2m — 1), and assume that the A -hypothesis holds
for some q that satisfiesm + 2 + 2(v — 1)(2m — 1) < q £ n — 1. Suppose also that
Ao(2) £ 0. Then the equation (1.10) does not possess a v-valued algebroid solution
w(z) with N,(r,w) < 2(v — 1) N(r, w).

In order to prove our Theorems, we need

THEOREM C ([1]). Let (z, w) be a differential polynomial and let

Pew = 3 AW 06w = § BEW,

where w(z) is a v-valued algebroid function satisfying

0(z, w(2)) 2(z, w(2)) = P(z, w(2)).
Then, whenever m = n, we have m(r, 2(z, w(z))) = S(r, w).
2. Proofs.

PROOF OF THEOREM 1. Firstly, the equation (1.1) can be rewritten as

Q(z,w) — P(z,w)
wt ’

@.1) A2) =

where
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Pz,w)=Ao(2) + ... + A1 (W + A W 4L+ AW
By [4; p. 217],

22 T R2zw) {4+ 20— 1)} T(r,w) + O{Z T(r,B;)+ X m(r,WT(j)>}
and by [2] or [4; p. 209], we have
2.3 T(r, P(z,w)) = nT(r,w) + O{ Y T, A,‘)}.

k¥q

By the A,-hypothesis (1.7), we can rewrite (2.2) and (2.3) as follow:
.2y T(r,Q(z,w)) < {4 + 2a(v — 1)} T(r,w) + S(r,w) + S(r, 4,)
and
2.3y T(r, P(z,w)) = n T(r,w) + S(r, A,).
By (2.1), we obtain
T(r,A,) < q T(r,w) + T(r, Qz,w)) + T(r, B(z, w)) + O(1)
= DT(r,w) + S(r,w) + S(r, 4,),

where D = g + 4 + 20(v — 1) + n. Note that S(r, 4,) = o{T(r, A,)}. Whenever
r = ro, the above inequality can be written as

2.4) T(r,A;) < D T(r,w) + S(r,w).

Hence, we get

(2.5) Y T(r,A) + Y, T(r, B;) = S(r, A)) < S(r,w).
k¥q Ael

Byn > 4 and from (1.1), any pole of w(z) must be either a zero of 4,(z), or a pole of
some A4,(z) (k F n), or a pole of some B,. By taking multiplicities into account, we
have

N(r,w) < n{N(r,%—) + 5 N(r A) + Y. N(r,BA)}.
n k=0

Ael

By (1.5), (1.6), (1.7) and (2.4), we obtain
N(r,A)) = S(r, Ap) = S(r,w)
and

(2.6) N(r,w) = S(r,w).
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Taking logarithmic derivative on both sides of (2.1), we get

4@ W) | Qwe) - Pewe)

4,6 W) T e we) - Pawi)

This reduces to

en  wlo-aaew+ (40 - 4650 )v] = gem

where Q,(z,w) is a differential polynomial in w and its derivatives with total
degree < n; whose coefficients c,(z) are one of the following forms: A4,(z), 4;(z)
(k * q), Ay(2)/A,(2), B;(z) and Bj(z), A€ I. Thus, we have

T(r,c,) = m(r,c,) + N(r,c,) = S(r,w),(neJ);

where J is a finite index set. Let

e = 0~ 40w + (40 - 4,052

Then, (2.7) becomes
(2.8) w" H(z) = Q,(z, w).
We divide into 2 cases for discussion:

(i) IfH(z) =0, ie.,
m—a - G045,

Since n # ¢, integrating the above equation, we obtain
(2.9) A(2)W! = c A, (2)w",
where ¢ is a constant. Substituting (2.9) into (1.1), we obtain

Q(z,w) = Ag(2) + ... + Ag-1@DW 1+ A QW + L+ (c + 1) A,(2) W
By (2.2), (2.3)' and (2.4), we get
nT(r,w) < {4 + 20(v — 1)} T(r, w) + S(r, w)

whichleadston < 4 + 20(v — 1). This contradicts our hypothesis. It means that
H(z) = 0 cannot happen.

(ii) If H(z) = 0, then by spplying Theorem C to (2.8), we get m(r, H) = S(r, w).
On the other hand, because

n(r,H) < n(r, 4,) + n(r,w') + 7i(r, A)) + ﬁ(r, AL)’
q
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where 7(r, A,) and 7i(r, 1/A4,) is the number of poles and zeros of 4, and each pole
or zero being counted only once, we know in [4]

n(r, w) < n(r,w) + A(r, w) + n,(r,w),

where n,(r, w) is the number of branch points of w(z). By hypothesis of Theorem 1,
N,(r,w) £ 2(v — 1) N(r,w). Thus, we have

N(r,H) £ N(r,w) + N(r,w) + 2(v — 1) N(r,w) + N(r, 4,)

+ N(r,A4,) + N(r, Ay + ﬁ(r,——l—>

A‘l
= S(r,w).
So, T(r, H) = S(r, w). By definition of H(z), we obtain
(2.10) W = ¢y0(2) + c11(2)W,
where
Cuale) = o g and vy = [A,(z)%':% - A;(z)] i
Hence,
T(r,ci0) < T(r,H) + T(r, 4,) + O(1) = S(r,w);
(2.11)

T(r,cq1) £ T(r,—i—"—) + T(r, ::") + 0(1) £ S(r,w).
q n

Differentiating (2.10), we get
W' = c1o(2) + ¢ (D W + c11(2) W = €20(2) + c21(2) W,

where ¢30(2) = €10(2) + ¢10(2) €11 (2) and ¢;1(2) = ¢1,(2) + c},(2). By (2.11), we
have T(r,cy0) + T(r,c2;) = S(r,w). In the same fashion, we can prove that
WP = ¢,0(2) + ¢,1(2)w and T(r,cp0) + T(r,cpy) = S(r,w). Above all, (1.1) be-
comes

14] n
Y. Diz)w = Y, A(z2)w*, where |A| = Max {io + iy + ... + iy}
i=0 k=0 Ael

Hence,

(2.12) Y a@w =0,

k=0

where ¢,(z) = A,(z) — Di(z). Because |A| < 4 < 4, so when k = q = 4, we have
Ck(Z) = Ak(Z).
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Denote the set of zeros of w(z) by E = U E;(j = 1,2, 3,4). E, (or E,)is the set of
zeros of w(z) with multiple order T < v, butis not(or is) the zeros and poles of 4,(z)
and Dy(z). However, E; (or E,) is the set of zeros of w(z) with multiple order
7 2 v + 1, butis not (or is) the zeros and poles of 4,(z) and D,(z). Let N,)(r, 1/w)
denote the counting functions corresponding to the set of zeros of w(z) in E,.
We claim

(2.13) T(r,w) = NV,(r, %) + S(r, w).

In fact, by definition of H(z), we know that

m<r,%> < m(r,%) +m(r,A,) + m<r,%’) + m(j—i) + m(r,%::) +0(1) = S(r,w).

Thus, we have T(r,w) = N(r, 1/w) + S(r, w).

In the following, we shall prove that the contribution of counting functions
corresponding to the points of E,, E; and E, in N(r, 1/w) are equal to S(r, w). Let
N;)(r,1/w) denote the counting functions corresponding to the points in
E;(j=2734).

Firstly, it is easy to see that

N(2,<r,—»1;> < V{Z[N (r,A4)+ N (r,::—):l + Z[N (r.DJ)+N (r,é)]} = S(r,w).

Forzye E;,wehavet = v + 1. So zq is the zero of w'(z) of order T — v(= 1). As

H@) (A AR
(2.14) G n—qw + ( 4.0 A4, (z)>w(z),

zo must be a zero of H(z)/A,(z) of order 1 —v. Since T = v + 1, we have
(t —v)(v + 1) = 1. Hence,

s £) (. 22)

Lastly, if z, is the zero of w(z) of order 7(=v + 1), and also z, is the zero and
pole of 4,(z) and A,(z), then z, is a simple pole of 4,(z)/4,(z) and A(z)/A,(2).
Therefore, if z, is the zero of w(z) of order (= v + 1), then it must be the zeros of
A, (z) w(z)/An(z) and A(2) w(z)/A,(2) of order 1 — 1 (27 — v). From (2.14), we
know that z, must be the zero of H(z)/A4,(z) of order T — v. So, we also have

1 H
N(4)(",7v‘> <0+ l)N(r, A((ZZ))) = S(r,w).

This proves (2.13).
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For zoe Ey, by (2.12), we get co(zo) = 0, zo€ E,. Since T(r,co) = S(r,w) and
N, c)=Srw)(k=1,2,...,n),if co(z) % 0, then

1 1
Nv)<r, ——> < vN(r, —) + S(r,w) = S(r,w).
w Co

This is impossible. So, we must have ¢y(z) = 0. Thus, (2.12) becomes
n—1
Z 12w =0.
k=0
For the same reason, we obtain
n—q
Ck +q(Z) wk = 0,
k=0
that is,
n-q
Aisq2) W =0.
k=0
In particular, if zo€ E; U E,, then the above equation still holds. In such case,
there may appear either
(1) if Ax(zo) F oo, for all k with k # g, then necessarily 4,(z,) = 0 or

(1) if A,(zo) % O, then it must have some k such that A,(z,) = oo.
In both cases, we must have

1 1 " 1
W) 2+ £ ()} - s

This contradiction to (2.13) proves Theorem 1.
ProoF OF COROLLARY 1. In fact, by the given condition, we have
T(r,2(z,w)) < AT(r,w) + S(r,w).
Similar proof in Theorem 1 gives our conclusion.

PROOF OF THEOREM 2.
Rearrange (1.10) into the form:

i BJ(Z)WJW, = i Ak(Z) Wk.
j=0 k=0

This becomes the special case of (1.1). Here, we take 4 = m + 2,6 = 2m — 1.
So, by applying Theorem 1, the result of Theorem 2 is achieved.
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